1
|
Brasil IA, Silva JCPL, Pescatello LS, Farinatti P. Central and peripheral mechanisms underlying postexercise hypotension: a scoping review. J Hypertens 2024; 42:751-763. [PMID: 38525904 DOI: 10.1097/hjh.0000000000003702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Blood pressure (BP) reduction occurs after a single bout of exercise, referred to as postexercise hypotension (PEH). The clinical importance of PEH has been advocated owing to its potential contribution to chronic BP lowering, and as a predictor of responders to exercise training as an antihypertensive therapy. However, the mechanisms underlying PEH have not been well defined. This study undertook a scoping review of research on PEH mechanisms, as disclosed in literature reviews. We searched the PubMed, Web of Science, Scopus, Cumulated Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, and Sport Discus databases until January 2023 to locate 21 reviews - 13 narrative, four systematic with 102 primary trials, and four meta-analyses with 75 primary trials involving 1566 participants. We classified PEH mechanisms according to major physiological systems, as central (autonomic nervous system, baroreflex, cardiac) or peripheral (vascular, hemodynamic, humoral, and renal). In general, PEH has been related to changes in autonomic control leading to reduced cardiac output and/or sustained vasodilation. However, the role of autonomic control in eliciting PEH has been challenged in favor of local vasodilator factors. The contribution of secondary physiological outcomes to changes in cardiac output and/or vascular resistance during PEH remains unclear, especially by exercise modality and population (normal vs. elevated BP, young vs. older adults). Further research adopting integrated approaches to investigate the potential mechanisms of PEH is warranted, particularly when the magnitude and duration of BP reductions are clinically relevant. (PROSPERO CRD42021256569).
Collapse
Affiliation(s)
- Iedda A Brasil
- Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - José Cristiano P L Silva
- Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Faculty of Physical Education, University Center of Volta Redonda, Volta Redonda, Brazil
| | - Linda S Pescatello
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| | - Paulo Farinatti
- Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
de Oliveira Carpes L, Domingues LB, Fuchs SC, Ferrari R. Rate of Responders for Post-Exercise Hypotension after Beach Tennis, Aerobic, Resistance and Combined Exercise Sessions in Adults with Hypertension. Sports (Basel) 2023; 11:sports11030058. [PMID: 36976944 PMCID: PMC10058339 DOI: 10.3390/sports11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Post-exercise hypotension (PEH) is typically reported as mean values, but a great inter-individual variation in blood pressure (BP) response after a single exercise session is expected, especially when comparing different modalities of exercise. The purpose was to evaluate the inter-individual BP responses after beach tennis, aerobic, resistance and combined exercise sessions in adults with hypertension. We conducted a post hoc analysis of pooled crossover randomized clinical trials from six previously published studies of our research group, and analyzed data from 154 participants with hypertension (≥35 years). BP was assessed using office BP, and the mean changes throughout the 60 min after recreational beach tennis (BT, n = 23), aerobic (AE, n = 18), combined (COMB, n = 18), and resistance (RES, n = 95) exercise sessions were compared to a non-exercising control session (C). To categorize the participants as responders and non-responders for PEH, the typical error (TE) was calculated as follows: TE = SDdifference/√2, where SDdifference is the standard deviation of the differences in BP measured before the interventions in the exercise and control sessions. Participants who presented PEH greater than TE were classified as responders. The TE was 7 and 6 mmHg for baseline systolic and diastolic BP, respectively. The rate of responders for systolic BP was as follows: BT: 87%; AE: 61%; COMB: 56%; and RES: 43%. For diastolic BP, the rate of responders was as follows: BT: 61%; AE: 28%; COMB: 44%; and RES: 40%. Results evidenced that there was a high inter-individual variation of BP after a single bout of different physical activity modalities in adults with hypertension, suggesting that exercise protocols with aerobic characteristics (i.e., BT, AE, and COMB sessions) presented PEH in most of its practitioners.
Collapse
Affiliation(s)
- Leandro de Oliveira Carpes
- Graduate Program in Cardiology, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Lucas Betti Domingues
- Graduate Program in Cardiology, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Sandra Costa Fuchs
- Graduate Program in Cardiology, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
| | - Rodrigo Ferrari
- Graduate Program in Cardiology, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil
- Sports and Exercise Training Study Group, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil
- Postgraduate Program in Human Movement Sciences, School of Physical Education, Universidade Federal do Rio Grande do Sul, Porto Alegre 90690-200, Brazil
- Correspondence:
| |
Collapse
|
3
|
Acute impact of aerobic exercise on local cutaneous thermal hyperaemia. Microvasc Res 2023; 146:104457. [PMID: 36423711 DOI: 10.1016/j.mvr.2022.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Little is known about the acute changes in cutaneous microvascular function that occur in response to exercise, the accumulation of which may provide the basis for beneficial chronic cutaneous vascular adaptations. Therefore, we examined the effects of acute exercise on cutaneous thermal hyperaemia. Twelve healthy, recreationally active participants (11 male, 1 female) performed 30-minute cycling at 50 % (low-intensity exercise, LOW) or 75 % (high-intensity exercise, HIGH) maximum heart rate. Laser Doppler flowmetry (LDF) and rapid local skin heating were used to quantify cutaneous thermal hyperaemia before (PRE), immediately following (IMM) and 1-h (1HR) after exercise. Baseline, axon reflex peak, axon reflex nadir, plateau, maximum skin blood flow responses to rapid local heating (42 °C for 30-min followed by 44 °C for 15-min) at each stage were assessed and indexed as cutaneous vascular conductance [CVC = flux / mean arterial blood pressure (MAP), PU·mm Hg-1], and expressed as a percentage of maximum (%CVCmax). Exercise increased heart rate (HR), MAP and skin blood flow (all P < 0.001), and to a greater extent during HIGH (all P < 0.001). The axon reflex peak and nadir were increased immediately and 1-h after exercise (all comparisons P < 0.01 vs. PRE), which did not differ between intensities (peak: P = 0.34, axon reflex nadir: P = 0.91). The endothelium-dependent plateau response was slightly elevated after exercise (P = 0.06), with no effect of intensity (P = 0.58) nor any interaction effect (P = 0.55). CONCLUSION: Exercise increases cutaneous microvascular axonal responses to local heating for up to 1-h, suggesting an augmented sensory afferent function post-exercise. Acute exercise may only modestly affect endothelial function in cutaneous microcirculation.
Collapse
|
4
|
Brito LC, Marin TC, Azevêdo L, Rosa-Silva JM, Shea SA, Thosar SS. Chronobiology of Exercise: Evaluating the Best Time to Exercise for Greater Cardiovascular and Metabolic Benefits. Compr Physiol 2022; 12:3621-3639. [PMID: 35766829 DOI: 10.1002/cphy.c210036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Physiological function fluctuates across 24 h due to ongoing daily patterns of behaviors and environmental changes, including the sleep/wake, rest/activity, light/dark, and daily temperature cycles. The internal circadian system prepares the body for these anticipated behavioral and environmental changes, helping to orchestrate optimal cardiovascular and metabolic responses to these daily changes. In addition, circadian disruption, caused principally by exposure to artificial light at night (e.g., as occurs with night-shift work), increases the risk for both cardiovascular and metabolic morbidity and mortality. Regular exercise is a countermeasure against cardiovascular and metabolic risk, and recent findings suggest that the cardiovascular benefits on blood pressure and autonomic control are greater with evening exercise compared to morning exercise. Moreover, exercise can also reset the timing of the circadian system, which raises the possibility that appropriate timing of exercise could be used to counteract circadian disruption. This article introduces the overall functional relevance of the human circadian system and presents the evidence surrounding the concepts that the time of day that exercise is performed can modulate the cardiovascular and metabolic benefits. Further work is needed to establish exercise as a tool to appropriately reset the circadian system following circadian misalignment to preserve cardiovascular and metabolic health. © 2022 American Physiological Society. Compr Physiol 12:3621-3639, 2022.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil.,Chronobiology Applied & Exercise Physiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, São Paulo, Brazil.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Thais C Marin
- Chronobiology Applied & Exercise Physiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Luan Azevêdo
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Julia M Rosa-Silva
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Steven A Shea
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, Oregon, USA
| | - Saurabh S Thosar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, Oregon, USA.,School of Nursing, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Kakavand B. Dizziness, Syncope, and Autonomic Dysfunction in Children. PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Mangum JE, Needham KW, Sieck DC, Ely MR, Larson EA, Peck MC, Minson CT, Halliwill JR. The effect of local passive heating on skeletal muscle histamine concentration: implications for exercise-induced histamine release. J Appl Physiol (1985) 2022; 132:367-374. [PMID: 34941436 PMCID: PMC8799384 DOI: 10.1152/japplphysiol.00740.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic exercise induces mast cell degranulation and increases histamine formation by histidine decarboxylase, resulting in an ∼150% increase in intramuscular histamine. The purpose of this study was to determine if the increase in skeletal muscle temperature associated with exercise is sufficient to explain this histamine response. Specifically, we hypothesized that local passive heating that mimics the magnitude and time course of changes in skeletal muscle temperature observed during exercise would result in increased intramuscular histamine concentrations comparable to exercising values. Seven subjects participated in the main study in which pulsed short-wave diathermy was used to passively raise the temperature of the vastus lateralis over 60 min. Heating increased intramuscular temperature from 32.6°C [95% confidence interval (CI) 32.0°C to 33.2°C] to 38.9°C (38.7°C to 39.2°C) (P < 0.05) and increased intramuscular histamine concentration from 2.14 ng/mL (1.92 to 2.36 ng/mL) to 2.97 ng/mL (2.57 to 3.36 ng/mL) (P < 0.05), an increase of 41%. In a follow-up in vitro experiment using human-derived cultured mast cells, heating to comparable temperatures did not activate mast cell degranulation. Therefore, it appears that exercise-associated changes in skeletal muscle temperature are sufficient to generate elevations in intramuscular histamine concentration. However, this thermal effect is most likely due to changes in de novo histamine formation via histidine decarboxylase and not due to degranulation of mast cells. In conclusion, physiologically relevant increases in skeletal muscle temperature explain part, but not all, of the histamine response to aerobic exercise. This thermal effect may be important in generating positive adaptations to exercise training.NEW & NOTEWORTHY The "exercise signal" that triggers histamine release within active skeletal muscle during aerobic exercise is unknown. By mimicking the magnitude and time course of increasing skeletal muscle temperature observed during aerobic exercise, we demonstrate that part of the exercise-induced rise in histamine is explained by a thermal effect, with in vitro experiments suggesting this is most likely via de novo histamine formation. This thermal effect may be important in generating positive adaptations to exercise training.
Collapse
Affiliation(s)
- Joshua E. Mangum
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen Wiedenfeld Needham
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C. Sieck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R. Ely
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emily A. Larson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Mairin C. Peck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Christopher T. Minson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R. Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
7
|
Pellinger TK, Emhoff CAW. Skeletal Muscle Hyperemia: A Potential Bridge Between Post-exercise Hypotension and Glucose Regulation. Front Physiol 2022; 12:821919. [PMID: 35173625 PMCID: PMC8841576 DOI: 10.3389/fphys.2021.821919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
For both healthy individuals and patients with type 2 diabetes (T2D), the hemodynamic response to regular physical activity is important for regulating blood glucose, protecting vascular function, and reducing the risk of cardiovascular disease. In addition to these benefits of regular physical activity, evidence suggests even a single bout of dynamic exercise promotes increased insulin-mediated glucose uptake and insulin sensitivity during the acute recovery period. Importantly, post-exercise hypotension (PEH), which is defined as a sustained reduction in arterial pressure following a single bout of exercise, appears to be blunted in those with T2D compared to their non-diabetic counterparts. In this short review, we describe research that suggests the sustained post-exercise vasodilation often observed in PEH may sub-serve glycemic regulation following exercise in both healthy individuals and those with T2D. Furthermore, we discuss the interplay of enhanced perfusion, both macrovascular and microvascular, and glucose flux following exercise. Finally, we propose future research directions to enhance our understanding of the relationship between post-exercise hemodynamics and glucose regulation in healthy individuals and in those with T2D.
Collapse
Affiliation(s)
- Thomas K. Pellinger
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD, United States
- *Correspondence: Thomas K. Pellinger,
| | - Chi-An W. Emhoff
- Department of Kinesiology, Saint Mary’s College of California, Moraga, CA, United States
| |
Collapse
|
8
|
Farinatti P, Polito MD, Massaferri R, Monteiro WD, Vasconcelos D, Johnson BT, Pescatello LS. Postexercise hypotension due to resistance exercise is not mediated by autonomic control: A systematic review and meta-analysis. Auton Neurosci 2021; 234:102825. [PMID: 34118764 DOI: 10.1016/j.autneu.2021.102825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Changes in autonomic control have been suggested to mediate postexercise hypotension (PEH). We investigated through meta-analysis the after-effects of acute resistance exercise (RE) on blood pressure (BP) and autonomic activity in individuals with normal and elevated BP. Electronic databases were searched for trials including: adults; exclusive RE interventions; and BP and autonomic outcomes measured pre- and postintervention for at least 30 min. Analyses incorporated random-effects assumptions. Thirty trials yielded 62 interventions (N = 480). Subjects were young (33.6 ± 15.6 yr), with systolic BP (SBP)/diastolic BP (DBP) of 124.2 ± 8.9/71.5 ± 6.6 mm Hg. Overall, RE moderately reduced SBP (normal BP: ~1 to 4 mm Hg, p < 0.01; elevated BP: ~1 to 12 mm Hg, p < 0.01) and DBP (normal BP: ~1 to 4 mm Hg, p < 0.03; elevated BP: ~0.5 to 7 mm Hg, p < 0.01), which was in general parallel to sympathetic increase (normal BP: g = 0.49 to 0.51, p < 0.01; elevated BP: g = 0.41 to 0.63, p < 0.01) and parasympathetic decrease (normal BP: g = -0.52 to -0.53, p < 0.01; elevated BP: g = -0.46 to -0.71, p < 0.01). The meta-regression showed inverse associations between the effect sizes of BP vs. sympathetic (SBP: slope - 0.19 to -3.45, p < 0.01; DBP: slope - 0.30 to -1.60, p < 0.01), and direct associations vs. parasympathetic outcomes (SBP: slope 0.17 to 2.59, p < 0.01; DBP: slope 0.21 to 1.38, p < 0.01). In conclusion, changes in BP were concomitant to sympathetic increase and parasympathetic decrease, which questions the role of autonomic fluctuations as potential mechanisms of PEH after RE.
Collapse
Affiliation(s)
- Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil; Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, RJ, Brazil.
| | - Marcos D Polito
- Department of Physical Education, Londrina State University, PR, Brazil
| | - Renato Massaferri
- Graduate Program in Operational Human Performance, AirForce University, RJ, Brazil
| | - Walace D Monteiro
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, RJ, Brazil; Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, RJ, Brazil
| | - Denilson Vasconcelos
- School of Physical Education and Sports, Federal University of Rio de Janeiro, RJ, Brazil
| | - Blair T Johnson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
9
|
Cardiovascular and Autonomic Responses after a Single Bout of Resistance Exercise in Men with Untreated Stage 2 Hypertension. Int J Hypertens 2021; 2021:6687948. [PMID: 33859838 PMCID: PMC8024104 DOI: 10.1155/2021/6687948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this paper is to assess the integrated responses of ambulatory blood pressure (BP), cardiac autonomic modulation, spontaneous baroreflex sensitivity (BRS), and vascular reactivity after a single bout of resistance exercise (RE) in men with stage 2 hypertension who have never been treated before. Ten hypertensive men were subjected to a RE session of three sets of 20 repetitions and an intensity of 40% of the 1-repetition maximum (RM) test in seven different exercises. For the control (CTR) session, the volunteers were positioned on the exercise machines but did not perform any exercise. Forearm blood flow was measured by venous occlusion plethysmography. We also analyzed the heart rate variability (HRV), ambulatory BP, blood pressure variability (BPV), and BRS. All measurements were performed at different timepoints: baseline, 20 min, 80 min, and 24 h after both RE and CTR sessions. There were no differences in ambulatory BP over the 24 h between the RE and CTR sessions. However, the area under the curve of diastolic BP decreased after the RE session. Heart rate (HR) and cardiac output increased for up to 80 and 20 min after RE, respectively. Similarly, forearm blood flow, conductance, and vascular reactivity increased 20 min after RE (p < 0.05). In contrast, HRV and BRS decreased immediately after exercise and remained lower for 20 min after RE. We conclude that a single bout of RE induced an increase in vascular reactivity and reduced the pressure load by attenuating AUC of DBP in hypertensive individuals who had never been treated with antihypertensive medications.
Collapse
|
10
|
Histamine, mast cell tryptase and post-exercise hypotension in healthy and collapsed marathon runners. Eur J Appl Physiol 2021; 121:1451-1459. [PMID: 33629149 PMCID: PMC8373737 DOI: 10.1007/s00421-021-04645-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/14/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Heat stress exacerbates post-exercise hypotension (PEH) and cardiovascular disturbances from elevated body temperature may contribute to exertion-related incapacity. Mast cell degranulation and muscle mass are possible modifiers, though these hypotheses lack practical evidence. This study had three aims: (1) to characterise pre-post-responses in histamine and mast cell tryptase (MCT), (2) to investigate relationships between whole body muscle mass (WBMM) and changes in blood pressure post-marathon, (3) to identify any differences in incapacitated runners. METHODS 24 recreational runners were recruited and successfully completed the 2019 Brighton Marathon (COMPLETION). WBMM was measured at baseline. A further eight participants were recruited from incapacitated runners (COLLAPSE). Histamine, MCT, blood pressure, heart rate, body temperature and echocardiographic measures were taken before and after exercise (COMPLETION) and upon incapacitation (COLLAPSE). RESULTS In completion, MCT increased by nearly 50% from baseline (p = 0.0049), whereas histamine and body temperature did not vary (p > 0.946). Systolic (SBP), diastolic (DBP) and mean (MAP) arterial blood pressures and systemic vascular resistance (SVR) declined (p < 0.019). WBMM negatively correlated with Δ SBP (r = - 0.43, p = 0.046). For collapse versus completion, there were significant elevations in MCT (1.77 ± 0.25 μg/L vs 1.18 ± 0.43 μg/L, p = 0.001) and body temperature (39.8 ± 1.3 °C vs 36.2 ± 0.8 °C, p < 0.0001) with a non-significant rise in histamine (9.6 ± 17.9 μg/L vs 13.7 ± 33.9 μg/L, p = 0.107) and significantly lower MAP, DBP and SVR (p < 0.033). CONCLUSION These data support the hypothesis that mast cell degranulation is a vasodilatory mechanism underlying PEH and exercise associated collapse. The magnitude of PEH is inversely proportional to the muscle mass and enhanced by concomitant body heating.
Collapse
|
11
|
Combined Aerobic and Resistance Exercises Evokes Longer Reductions on Ambulatory Blood Pressure in Resistant Hypertension: A Randomized Crossover Trial. Cardiovasc Ther 2020; 2020:8157858. [PMID: 32821284 PMCID: PMC7416229 DOI: 10.1155/2020/8157858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Aim The present study compared the acute effects of aerobic (AER), resistance (RES), and combined (COM) exercises on blood pressure (BP) levels in people with resistant hypertension (RH) and nonresistant hypertension (NON-RH). Methods Twenty patients (10 RH and 10 NON-RH) were recruited and randomly performed three exercise sessions and a control session. Ambulatory BP was monitored over 24 hours after each experimental session. Results Significant reductions on ambulatory BP were found in people with RH after AER, RES, and COM sessions. Notably, ambulatory BP was reduced during awake-time and night-time periods after COM. On the other hand, the effects of AER were more prominent during awake periods, while RES caused greater reductions during the night-time period. In NON-RH, only RES acutely reduced systolic BP, while diastolic BP was reduced after all exercise sessions. However, the longest postexercise ambulatory hypotension was observed after AER (~11 h) in comparison to RES (~8 h) and COM (~4 h) exercises. Conclusion Findings of the present study indicate that AER, RES, and COM exercises elicit systolic and diastolic postexercise ambulatory hypotension in RH patients. Notably, longer hypotension periods were observed after COM exercise. In addition, NON-RH and RH people showed different changes on BP after exercise sessions, suggesting that postexercise hypotension is influenced by the pathophysiological bases of hypertension.
Collapse
|
12
|
Santos LP, Umpierre D. Exercise, Cardiovascular Health, and Risk Factors for Atherosclerosis: A Narrative Review on These Complex Relationships and Caveats of Literature. Front Physiol 2020; 11:840. [PMID: 32848823 PMCID: PMC7411151 DOI: 10.3389/fphys.2020.00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
The following narrative review addresses the relationship between physical activity and exercise with cardiovascular health, focusing primarily on the following risk factors for atherosclerosis: hypertension, dyslipidemia, and vascular function. Cardiovascular diseases are intimately associated with mortality and morbidity, and current societal organization contributes to the incidence of cardiovascular events. A worldwide epidemiological transition to cardiovascular deaths was observed in the last century, with important decrements in physical activity and diet quality. An atherogenic environment started to be the new normal, with risk factors such as dyslipidemia, hypertension, and endothelial dysfunction observed in great portions of the population. Exercise is an important tool to improve overall health. For hypertension, a great amount of evidence now puts exercise as an effective therapeutic tool in the treatment of this condition. The effects of exercise in modifying blood lipid-lipoprotein are less clear. Despite the rationale remaining solid, methodological difficulties impair the interpretation of possible effects in these variables. Vascular function, as assessed by flow-mediated dilatation, is a good measure of overall vascular health and is consistently improved by exercise in many populations. However, in individuals with hypertension, the exercise literature still needs a further description of possible effects on vascular function variables. Physical activity and exercise are associated with improved cardiovascular health, especially with reduced blood pressure, and should be encouraged on the individual and population level. Evidence regarding its effects on blood lipids and flow-mediated dilatation still need solid landmark studies to guide clinical practice.
Collapse
Affiliation(s)
- Lucas P. Santos
- Exercise Pathophysiology Laboratory, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS/HCPA), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Health Sciences, Cardiology and Cardiovascular Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniel Umpierre
- Exercise Pathophysiology Laboratory, Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Science and Technology for Health Technology Assessment (IATS/HCPA), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Health Sciences, Cardiology and Cardiovascular Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Ely MR, Ratchford SM, La Salle DT, Trinity JD, Wray DW, Halliwill JR. Effect of histamine-receptor antagonism on leg blood flow during exercise. J Appl Physiol (1985) 2020; 128:1626-1634. [PMID: 32407239 DOI: 10.1152/japplphysiol.00689.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine mediates vasodilation during inflammatory and immune responses, as well as following endurance exercise. During exercise, intramuscular histamine concentration increases, and its production, appears related to exercise intensity and duration. However, whether histamine contributes to exercise hyperemia and promotes exercise blood flow in an intensity- or duration-dependent pattern is unknown. The purpose of this study was to compare leg blood flow across a range of exercise intensities, before and after prolonged exercise, with and without histamine-receptor antagonism. It was hypothesized that combined oral histamine H1/H2-receptor antagonism would decrease leg blood flow, and the effect would be greater at higher intensities and following prolonged exercise. Sixteen (7F, 9M) volunteers performed single-leg knee-extension exercise after consuming either placebo or combined histamine H1/H2-receptor antagonists (Blockade). Exercise consisted of two graded protocols at 20, 40, 60, and 80% of peak power, separated by 60 min of knee-extension exercise at 60% of peak power. Femoral artery blood flow was measured by ultrasonography. Femoral artery blood flow increased with exercise intensity up to 2,660 ± 97 mL/min at 80% of peak power during Placebo (P < 0.05). Blood flow was further elevated with Blockade to 2,836 ± 124 mL/min (P < 0.05) at 80% peak power (9.1 ± 4.8% higher than placebo). These patterns were not affected by prolonged exercise (P = 0.13). On average, femoral blood flow during prolonged exercise was 12.7 ± 2.8% higher with Blockade vs. Placebo (P < 0.05). Contrary to the hypothesis, these results suggest that histamine receptor antagonism during exercise, regardless of intensity or duration, increases leg blood flow measured by ultrasonography.NEW & NOTEWORTHY Leg blood flow during exercise was increased by taking antihistamines, which block the receptors for histamine, a molecule often associated with inflammatory and immune responses. The elevated blood flow occurred over exercise intensities ranging from 20 to 80% of peak capacity and during exercise of 60 min duration. These results suggest that exercise-induced elevations in histamine concentrations are involved in novel, poorly understood, and perhaps complex ways in the exercise response.
Collapse
Affiliation(s)
- Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - D Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
14
|
Trotter CE, Tourula E, Pizzey FK, Batterson PM, Jacobs RA, Pearson J. High‐intensity interval exercise reduces tolerance to a simulated haemorrhagic challenge in heat‐stressed individuals. Exp Physiol 2020; 106:212-221. [DOI: 10.1113/ep088377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Claire E. Trotter
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
- Department of Applied Physiology and Wellness Southern Methodist University Dallas TX USA
| | - Erica Tourula
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
| | - Faith K. Pizzey
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
- School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
| | - Philip M. Batterson
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
- College of Biological and Population Health Sciences Oregon State University Corvallis OR USA
| | - Robert A. Jacobs
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
| | - James Pearson
- Department of Human Physiology and Nutrition University of Colorado at Colorado Springs Colorado Springs CO USA
| |
Collapse
|
15
|
Naylor A, Shariffi B, Gillum TL, William B, Sullivan S, Kim JK. Effects of combined histamine H 1 and H 2 receptor blockade on hemodynamic responses to dynamic exercise in males with high-normal blood pressure. Appl Physiol Nutr Metab 2020; 45:769-776. [PMID: 31961711 DOI: 10.1139/apnm-2019-0645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While postexercise hypotension is associated with histamine H1 and H2 receptor-mediated postexercise vasodilation, effects of histaminergic vasodilation on blood pressure (BP) in response to dynamic exercise are not known. Thus, in 20 recreationally active male participants (10 normotensive and 10 with high-normal BP) we examined the effects of histamine H1 and H2 receptor blockade on cardiac output (CO), mean atrial pressure (MAP), aortic stiffness (AoStiff), and total vascular conductance (TVC) at rest and during progressive cycling exercise. Compared with the normotensive group, MAP, CO, and AoStiff were higher in the high-normal group before and after the blockade at rest, while TVC was similar. At the 40% workload, the blockade significantly increased MAP in both groups, while no difference was found in the TVC. CO was higher in the high-normal group than the normotensive group in both conditions. At the 60% workload, the blockade substantially increased MAP and decreased TVC in the normotensive group, while there were no changes in the high-normal group. A similar CO response pattern was observed at the 60% workload. These findings suggest that the mechanism eliciting an exaggerated BP response to exercise in the high-normal group may be partially due to the inability of histamine receptors. Novelty Males with high-normal BP had an exaggerated BP response to exercise. The overactive BP response is known due to an increase in peripheral vasoconstriction. Increase in peripheral vasoconstriction is partially due to inability of histamine receptors.
Collapse
Affiliation(s)
- Ashley Naylor
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Brian Shariffi
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Boyer William
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Sean Sullivan
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Jong-Kyung Kim
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA.,Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
16
|
A Prior High-Intensity Exercise Bout Attenuates the Vascular Dysfunction Resulting From a Prolonged Sedentary Bout. J Phys Act Health 2019; 16:916-924. [DOI: 10.1123/jpah.2018-0568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/04/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022]
Abstract
Background: This study sought to determine the impact of an acute prior bout of high-intensity interval aerobic exercise on attenuating the vascular dysfunction associated with a prolonged sedentary bout. Methods: Ten young (24 ± 1 y) healthy males completed two 3-hour sessions of prolonged sitting with (SIT-EX) and without (SIT) a high-intensity interval aerobic exercise session performed immediately prior. Prior to and 3 hours into the sitting bout, leg vascular function was assessed with the passive leg movement technique, and blood samples were obtained from the lower limb to evaluate changes in oxidative stress (malondialdehyde and superoxide dismutase) and inflammation (interleukin-6). Results: No presitting differences in leg vascular function (assessed via passive leg movement technique-induced hyperemia) were revealed between conditions. After 3 hours of prolonged sitting, leg vascular function was significantly reduced in the SIT condition, but unchanged in the SIT-EX. Lower limb blood samples revealed no alterations in oxidative stress, antioxidant capacity, or inflammation in either condition. Conclusions: This study revealed that lower limb vascular dysfunction was significantly attenuated by an acute presitting bout of high-intensity interval aerobic exercise. Further analysis of lower limb blood samples revealed no changes in circulating oxidative stress or inflammation in either condition.
Collapse
|
17
|
Brito LC, Ely MR, Sieck DC, Mangum JE, Larson EA, Minson CT, Forjaz CLM, Halliwill JR. Effect of Time of Day on Sustained Postexercise Vasodilation Following Small Muscle-Mass Exercise in Humans. Front Physiol 2019; 10:762. [PMID: 31293439 PMCID: PMC6603126 DOI: 10.3389/fphys.2019.00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Previous studies observed diurnal variation in hemodynamic responses during recovery from whole-body exercise, with vasodilation appearing greater after evening versus morning sessions. It is unclear what mechanism(s) underlie this response. Since small muscle-mass exercise can isolate peripheral effects related to postexercise vasodilation, it may provide insight into possible mechanisms behind this diurnal variation. Methods The study was conducted in ten healthy (5F, 5M) young individuals, following single-leg dynamic knee-extension exercise performed in the Morning (7:30–11:30 am) or the Evening (5–9 pm) on two different days, in random order. Arterial pressure (automated auscultation) and leg blood flow (femoral artery Doppler ultrasound) were measured pre-exercise and during 120 min postexercise. Net effect for each session was calculated as percent change in blood flow (or vascular conductance) between the Active Leg and the Inactive Leg. Results Following Morning exercise, blood flow was 34.9 ± 8.9% higher in the Active Leg versus the Inactive Leg (p < 0.05) across recovery. Following Evening exercise, blood flow was 35.0 ± 8.8% higher in the Active Leg versus the Inactive Leg (p < 0.05). Likewise, vascular conductance was higher in the Active Leg versus the Inactive Leg (Morning: +35.1 ± 9.0%, p < 0.05; Evening: +33.2 ± 8.2%, p < 0.05). Morning and Evening blood flow (p = 0.66) and vascular conductance (p = 0.64) did not differ. Conclusion These data suggest previous studies which identified diurnal variations in postexercise vasodilation responses are likely reflecting central rather than peripheral modulation of cardiovascular responses.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Joshua E Mangum
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - Cláudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
18
|
Sieck DC, Ely MR, Romero SA, Luttrell MJ, Abdala PM, Halliwill JR. Post-exercise syncope: Wingate syncope test and visual-cognitive function. Physiol Rep 2017; 4:4/16/e12883. [PMID: 27550986 PMCID: PMC5002906 DOI: 10.14814/phy2.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 01/23/2023] Open
Abstract
Adequate cerebral perfusion is necessary to maintain consciousness in upright humans. Following maximal anaerobic exercise, cerebral perfusion can become compromised and result in syncope. It is unknown whether post-exercise reductions in cerebral perfusion can lead to visual-cognitive deficits prior to the onset of syncope, which would be of concern for emergency workers and warfighters, where critical decision making and intense physical activity are combined. Therefore, the purpose of this experiment was to determine if reductions in cerebral blood velocity, induced by maximal anaerobic exercise and head-up tilt, result in visual-cognitive deficits prior to the onset of syncope. Nineteen sedentary to recreationally active volunteers completed a symptom-limited 60° head-up tilt for 16 min before and up to 16 min after a 60 sec Wingate test. Blood velocity of the middle cerebral artery was measured using transcranial Doppler ultrasound and a visual decision-reaction time test was assessed, with independent analysis of peripheral and central visual field responses. Cerebral blood velocity was 12.7 ± 4.0% lower (mean ± SE; P < 0.05) after exercise compared to pre-exercise. This was associated with a 63 ± 29% increase (P < 0.05) in error rate for responses to cues provided to the peripheral visual field, without affecting central visual field error rates (P = 0.46) or decision-reaction times for either visual field. These data suggest that the reduction in cerebral blood velocity following maximal anaerobic exercise contributes to visual-cognitive deficits in the peripheral visual field without an apparent affect to the central visual field.
Collapse
Affiliation(s)
- Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - Pedro M Abdala
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
19
|
Akerman AP, Lucas SJE, Katare R, Cotter JD. Heat and Dehydration Additively Enhance Cardiovascular Outcomes following Orthostatically-Stressful Calisthenics Exercise. Front Physiol 2017; 8:756. [PMID: 29062280 PMCID: PMC5640974 DOI: 10.3389/fphys.2017.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 02/04/2023] Open
Abstract
Exercise and exogenous heat each stimulate multiple adaptations, but their roles are not well delineated, and that of the related stressor, dehydration, is largely unknown. While severe and prolonged hypohydration potentially “silences” the long-term heat acclimated phenotype, mild and transient dehydration may enhance cardiovascular and fluid-regulatory adaptations. We tested the hypothesis that exogenous heat stress and dehydration additively potentiate acute (24 h) cardiovascular and hematological outcomes following exercise. In a randomized crossover study, 10 physically-active volunteers (mean ± SD: 173 ± 11 cm; 72.1 ± 11.5 kg; 24 ± 3 year; 6 females) completed three trials of 90-min orthostatically-stressful calisthenics, in: (i) temperate conditions (22°C, 50% rh, no airflow; CON); (ii) heat (40°C, 60% rh) whilst euhydrated (HEAT), and (iii) heat with dehydration (no fluid ~16 h before and during exercise; HEAT+DEHY). Using linear mixed effects model analyses, core temperature (TCORE) rose 0.7°C more in HEAT than CON (95% CL: [0.5, 0.9]; p < 0.001), and another 0.4°C in HEAT+DEHY ([0.2, 0.5]; p < 0.001, vs. HEAT). Skin temperature also rose 1.2°C more in HEAT than CON ([0.6, 1.8]; p < 0.001), and similarly to HEAT+DEHY (p = 0.922 vs. HEAT). Peak heart rate was 40 b·min−1 higher in HEAT than in CON ([28, 51]; p < 0.001), and another 15 b·min−1 higher in HEAT+DEHY ([3, 27]; p = 0.011, vs. HEAT). Mean arterial pressure at 24-h recovery was not consistently below baseline after CON or HEAT (p ≥ 0.452), but was reduced 4 ± 1 mm Hg after HEAT+DEHY ([0, 8]; p = 0.020 vs. baseline). Plasma volume at 24 h after exercise increased in all trials; the 7% increase in HEAT was not reliably more than in CON (5%; p = 0.335), but was an additional 4% larger after HEAT+DEHY ([1, 8]; p = 0.005 vs. HEAT). Pooled-trial correlational analysis showed the rise in TCORE predicted the hypotension (r = −0.4) and plasma volume expansion (r = 0.6) at 24 h, with more hypotension reflecting more plasma expansion (r = −0.5). In conclusion, transient dehydration with heat potentiates short-term (24-h) hematological (hypervolemic) and cardiovascular (hypotensive) outcomes following calisthenics.
Collapse
Affiliation(s)
- Ashley P Akerman
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J E Lucas
- Department of Physiology, Division of Health Sciences, University of Otago, Dunedin, New Zealand.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rajesh Katare
- Department of Physiology, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Abstract
In humans, histamine is a molecular transducer of physical activity responses, and antihistamines modify more than 25% of the genes responding to exercise. Although the upstream signal that results in release of histamine within exercising skeletal muscle remains to be identified, it is likely a fundamental exercise response and not an allergic reaction.
Collapse
|
21
|
Romero SA, Minson CT, Halliwill JR. The cardiovascular system after exercise. J Appl Physiol (1985) 2017; 122:925-932. [PMID: 28153943 DOI: 10.1152/japplphysiol.00802.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Recovery from exercise refers to the time period between the end of a bout of exercise and the subsequent return to a resting or recovered state. It also refers to specific physiological processes or states occurring after exercise that are distinct from the physiology of either the exercising or the resting states. In this context, recovery of the cardiovascular system after exercise occurs across a period of minutes to hours, during which many characteristics of the system, even how it is controlled, change over time. Some of these changes may be necessary for long-term adaptation to exercise training, yet some can lead to cardiovascular instability during recovery. Furthermore, some of these changes may provide insight into when the cardiovascular system has recovered from prior training and is physiologically ready for additional training stress. This review focuses on the most consistently observed hemodynamic adjustments and the underlying causes that drive cardiovascular recovery and will highlight how they differ following resistance and aerobic exercise. Primary emphasis will be placed on the hypotensive effect of aerobic and resistance exercise and associated mechanisms that have clinical relevance, but if left unchecked, can progress to symptomatic hypotension and syncope. Finally, we focus on the practical application of this information to strategies to maximize the benefits of cardiovascular recovery, or minimize the vulnerabilities of this state. We will explore appropriate field measures, and discuss to what extent these can guide an athlete's training.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center, Dallas, Texas.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas; and
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
22
|
Romero SA, McCord JL, Ely MR, Sieck DC, Buck TM, Luttrell MJ, MacLean DA, Halliwill JR. Mast cell degranulation and de novo histamine formation contribute to sustained postexercise vasodilation in humans. J Appl Physiol (1985) 2016; 122:603-610. [PMID: 27562843 DOI: 10.1152/japplphysiol.00633.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
In humans, acute aerobic exercise elicits a sustained postexercise vasodilation within previously active skeletal muscle. This response is dependent on activation of histamine H1 and H2 receptors, but the source of intramuscular histamine remains unclear. We tested the hypothesis that interstitial histamine in skeletal muscle would be increased with exercise and would be dependent on de novo formation via the inducible enzyme histidine decarboxylase and/or mast cell degranulation. Subjects performed 1 h of unilateral dynamic knee-extension exercise or sham (seated rest). We measured the interstitial histamine concentration and local blood flow (ethanol washout) via skeletal muscle microdialysis of the vastus lateralis. In some probes, we infused either α-fluoromethylhistidine hydrochloride (α-FMH), a potent inhibitor of histidine decarboxylase, or histamine H1/H2-receptor blockers. We also measured interstitial tryptase concentrations, a biomarker of mast cell degranulation. Compared with preexercise, histamine was increased after exercise by a change (Δ) of 4.2 ± 1.8 ng/ml (P < 0.05), but not when α-FMH was administered (Δ-0.3 ± 1.3 ng/ml, P = 0.9). Likewise, local blood flow after exercise was reduced to preexercise levels by both α-FMH and H1/H2 blockade. In addition, tryptase was elevated during exercise by Δ6.8 ± 1.1 ng/ml (P < 0.05). Taken together, these data suggest that interstitial histamine in skeletal muscle increases with exercise and results from both de novo formation and mast cell degranulation. This suggests that exercise produces an anaphylactoid signal, which affects recovery, and may influence skeletal muscle blood flow during exercise.NEW & NOTEWORTHY Blood flow to previously active skeletal muscle remains elevated following an acute bout of aerobic exercise and is dependent on activation of histamine H1 and H2 receptors. The intramuscular source of histamine that drives this response to exercise has not been identified. Using intramuscular microdialysis in exercising humans, we show both mast cell degranulation and formation of histamine by histidine decarboxylase contributes to the histamine-mediated vasodilation that occurs following a bout of aerobic exercise.
Collapse
Affiliation(s)
- Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Jennifer L McCord
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | - Tahisha M Buck
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| | | | - David A MacLean
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon; and
| |
Collapse
|
23
|
Ely MR, Romero SA, Sieck DC, Mangum JE, Luttrell MJ, Halliwill JR. A single dose of histamine-receptor antagonists before downhill running alters markers of muscle damage and delayed-onset muscle soreness. J Appl Physiol (1985) 2016; 122:631-641. [PMID: 27493198 DOI: 10.1152/japplphysiol.00518.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/13/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022] Open
Abstract
Histamine contributes to elevations in skeletal muscle blood flow following exercise, which raises the possibility that histamine is an important mediator of the inflammatory response to exercise. We examined the influence of antihistamines on postexercise blood flow, inflammation, muscle damage, and delayed-onset muscle soreness (DOMS) in a model of moderate exercise-induced muscle damage. Subjects consumed either a combination of fexofenadine and ranitidine (blockade, n = 12) or nothing (control, n = 12) before 45 min of downhill running (-10% grade). Blood flow to the leg was measured before and throughout 120 min of exercise recovery. Markers of inflammation, muscle damage, and DOMS were obtained before and at 0, 6, 12, 24, 48, and 72 h postexercise. At 60 min postexercise, blood flow was reduced ~29% with blockade compared with control (P < 0.05). Markers of inflammation were elevated after exercise (TNF-ɑ, IL-6), but did not differ between control and blockade. Creatine kinase concentrations peaked 12 h after exercise, and the overall response was greater with blockade (18.3 ± 3.2 kU·l-1·h-1) compared with control (11.6 ± 2.0 kU·l-1·h-1; P < 0.05). Reductions in muscle strength in control (-19.3 ± 4.3% at 24 h) were greater than blockade (-7.8 ± 4.8%; P < 0.05) and corresponded with greater perceptions of pain/discomfort in control compared with blockade. In conclusion, histamine-receptor blockade reduced postexercise blood flow, had no effect on the pattern of inflammatory markers, increased serum creatine kinase concentrations, attenuated muscle strength loss, and reduced pain perception following muscle-damaging exercise.NEW & NOTEWORTHY Histamine appears to be intimately involved with skeletal muscle during and following exercise. Blocking histamine's actions during muscle-damaging exercise, via common over-the-counter antihistamines, resulted in increased serum creatine kinase, an indirect marker of muscle damage. Paradoxically, blocking histamine's actions attenuated muscle strength loss and reduced perceptions of muscle pain for 72 h following muscle-damaging exercise. These results indicate that exercise-induced histamine release may have a broad impact on protecting muscle from exercise-induced damage.
Collapse
Affiliation(s)
- Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Joshua E Mangum
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
24
|
Dipla K, Kousoula D, Zafeiridis A, Karatrantou K, Nikolaidis MG, Kyparos A, Gerodimos V, Vrabas IS. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obeseversuslean women. Exp Physiol 2016; 101:717-30. [DOI: 10.1113/ep085556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/06/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| | - Dimitra Kousoula
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| | - Konstantina Karatrantou
- Department of Physical Education and Sport Sciences; University of Thessaly; Karyes 42100 Trikala Greece
| | - Michalis G. Nikolaidis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| | - Antonios Kyparos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| | - Vassilis Gerodimos
- Department of Physical Education and Sport Sciences; University of Thessaly; Karyes 42100 Trikala Greece
| | - Ioannis S. Vrabas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Agios Ioannis 62110 Serres Greece
| |
Collapse
|
25
|
Romero SA, Hocker AD, Mangum JE, Luttrell MJ, Turnbull DW, Struck AJ, Ely MR, Sieck DC, Dreyer HC, Halliwill JR. Evidence of a broad histamine footprint on the human exercise transcriptome. J Physiol 2016; 594:5009-23. [PMID: 27061420 DOI: 10.1113/jp272177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Histamine is a primordial signalling molecule, capable of activating cells in an autocrine or paracrine fashion via specific cell surface receptors, in a variety of pathways that probably predate its more recent role in innate and adaptive immunity. Although histamine is normally associated with pathological conditions or allergic and anaphylactic reactions, it may contribute beneficially to the normal changes that occur within skeletal muscle during the recovery from exercise. We show that the human response to exercise includes an altered expression of thousands of protein-coding genes, and much of this response appears to be driven by histamine. Histamine may be an important molecular transducer contributing to many of the adaptations that accompany chronic exercise training. ABSTRACT Histamine is a primordial signalling molecule, capable of activating cells in an autocrine or paracrine fashion via specific cell surface receptors. In humans, aerobic exercise is followed by a post-exercise activation of histamine H1 and H2 receptors localized to the previously exercised muscle. This could trigger a broad range of cellular adaptations in response to exercise. Thus, we exploited RNA sequencing to explore the effects of H1 and H2 receptor blockade on the exercise transcriptome in human skeletal muscle tissue harvested from the vastus lateralis. We found that exercise exerts a profound influence on the human transcriptome, causing the differential expression of more than 3000 protein-coding genes. The influence of histamine blockade post-exercise was notable for 795 genes that were differentially expressed between the control and blockade condition, which represents >25% of the number responding to exercise. The broad histamine footprint on the human exercise transcriptome crosses many cellular functions, including inflammation, vascular function, metabolism, and cellular maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam J Struck
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | | | | | | | | |
Collapse
|
26
|
Cunha FA, Midgley AW, Soares PP, Farinatti PT. Postexercise hypotension after maximal short-term incremental exercise depends on exercise modality. Appl Physiol Nutr Metab 2015; 40:605-14. [DOI: 10.1139/apnm-2014-0354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated postexercise hypotension (PEH) after maximal cardiopulmonary exercise testing (CPET) performed using different exercise modalities. Twenty healthy men (aged 23 ± 3 years) performed 3 maximal CPETs (cycling, walking, and running), separated by 72 h in a randomized, counter-balanced order. Systolic (SBP) and diastolic blood pressure (DBP), heart rate, cardiac output, systemic vascular resistance (SVR), autonomic function (spontaneous baroreflex sensitivity (BRS) and heart rate variability (HRV)), and energy expenditure (EE) were assessed during a 60-min nonexercise control session and for 60 min immediately after each CPET. Total exercise volume (EE during CPET plus 60 min recovery) was significantly higher in running versus cycling and walking CPETs (P ≤ 0.001). Compared with control, only SBP after running CPET was significantly reduced (Δ = −6 ± 8 mm Hg; P < 0.001). Heart rate and cardiac output were significantly increased (P < 0.001) and SVR significantly decreased (P < 0.001) postexercise. BRS and HRV decreased after all CPETs (P < 0.001), whereas sympatho-vagal balance (low- and high-frequency (LF:HF) ratio) increased significantly after all exercise conditions, especially after running CPET (P < 0.001). Changes in SVR, BRS, sympathetic activity (low-frequency component of HRV), and LF:HF ratio were negatively correlated to variations in SBP (range −0.69 to −0.91; P < 0.001) and DBP (range −0.58 to −0.93; P ≤ 0.002). These findings suggest that exercise mode or the total exercise volume are major determinants of PEH magnitude in healthy men. Because of the running CPET, the PEH was primarily related to a decrease in SVR and to an increase in sympatho-vagal balance, which might be a reflex response to peripheral vasodilatation after exercise.
Collapse
Affiliation(s)
- Felipe A. Cunha
- Medical Sciences Graduate Program, Faculty of Medical Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Physical Activity and Health Promotion Laboratory, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Adrian W. Midgley
- Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, England
| | - Pedro P. Soares
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Paulo T.V. Farinatti
- Physical Activity and Health Promotion Laboratory, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Physical Activity Sciences Graduate Program, Salgado de Oliveira University, Niterói, Brazil
| |
Collapse
|
27
|
Romero SA, Ely MR, Sieck DC, Luttrell MJ, Buck TM, Kono JM, Branscum AJ, Halliwill JR. Effect of antioxidants on histamine receptor activation and sustained postexercise vasodilatation in humans. Exp Physiol 2015; 100:435-49. [PMID: 25664905 DOI: 10.1113/ep085030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/02/2015] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is exercise-induced oxidative stress the upstream exercise-related signalling mechanism that leads to sustained postexercise vasodilatation via activation of H1 and H2 histamine receptors? What is the main finding and its importance? Systemic administration of the antioxidant ascorbate inhibits sustained postexercise vasodilatation to the same extent as seen previously with H1 and H2 histamine receptor blockade following small muscle-mass exercise. However, ascorbate has a unique ability to catalyse the degradation of histamine. We also found that systemic infusion of the antioxidant N-acetylcysteine had no effect on sustained postexercise vasodilatation, suggesting that exercise-induced oxidative stress does not contribute to sustained postexercise vasodilatation. An acute bout of aerobic exercise elicits a sustained postexercise vasodilatation that is mediated by histamine H1 and H2 receptor activation. However, the upstream signalling pathway that leads to postexercise histamine receptor activation is unknown. We tested the hypothesis that the potent antioxidant ascorbate would inhibit this histaminergic vasodilatation following exercise. Subjects performed 1 h of unilateral dynamic knee extension at 60% of peak power in three conditions: (i) control; (ii) i.v. ascorbate infusion; and (iii) ascorbate infusion plus oral H1 /H2 histamine receptor blockade. Femoral artery blood flow was measured (using Doppler ultrasound) before exercise and for 2 h postexercise. Femoral vascular conductance was calculated as flow/pressure. Postexercise vascular conductance was greater for control conditions (3.4 ± 0.1 ml min(-1) mmHg(-1) ) compared with ascorbate (2.7 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05) and ascorbate plus H1 /H2 blockade (2.8 ± 0.1 ml min(-1) mmHg(-1) ; P < 0.05), which did not differ from one another (P = 0.9). Given that ascorbate may catalyse the degradation of histamine in vivo, we conducted a follow-up study, in which subjects performed exercise in two conditions: (i) control; and (ii) i.v. N-acetylcysteine infusion. Postexercise vascular conductance was similar for control (4.0 ± 0.1 ml min(-1) mmHg(-1) ) and N-acetylcysteine conditions (4.0 ± 0.1 ml min(-1) mmHg(-1) ; P = 0.8). Thus, the results in the initial study were due to the degradation of histamine in skeletal muscle by ascorbate, because the histaminergic vasodilatation was unaffected by N-acetylcysteine. Overall, exercise-induced oxidative stress does not appear to contribute to sustained postexercise vasodilatation.
Collapse
Affiliation(s)
- Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403-1240, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Buck TM, Romero SA, Ely MR, Sieck DC, Abdala PM, Halliwill JR. Neurovascular control following small muscle-mass exercise in humans. Physiol Rep 2015; 3:3/2/e12289. [PMID: 25649250 PMCID: PMC4393198 DOI: 10.14814/phy2.12289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sustained postexercise vasodilation, which may be mediated at both a neural and vascular level, is seen in previously active skeletal muscle vascular beds following both large and small muscle-mass exercise. Blunted sympathetic vascular transduction and a downward resetting of the arterial baroreflex contribute to this vasodilation after cycling (large muscle-mass exercise), but it is unknown if these responses also contribute to sustained vasodilation following small muscle-mass exercise. This study aimed to determine if baroreflex sensitivity is altered, the baroreflex is reset, or if sympathetic vascular transduction is blunted following small muscle-mass exercise. Eleven healthy, college-aged subjects (five males, six females) completed one-leg dynamic knee-extension exercise for 1 h at 60% of peak power output. While cardiovagal baroreflex sensitivity was increased ∼23% postexercise relative to preexercise (P < 0.05), vascular and integrated baroreflex sensitivity were not altered following exercise (P = 0.31 and P = 0.48). The baroreflex did not exhibit resetting (P > 0.69), and there was no evidence of changes in vascular transduction following exercise (P = 0.73). In conclusion, and in contrast to large muscle-mass exercise, it appears that small muscle-mass exercise produces a sustained postexercise vasodilation that is largely independent of central changes in the baroreflex.
Collapse
Affiliation(s)
- Tahisha M Buck
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Steven A Romero
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Pedro M Abdala
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
29
|
Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol 2013; 114:561-78. [PMID: 24197081 DOI: 10.1007/s00421-013-2761-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/19/2023]
Abstract
Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise.
Collapse
|
30
|
Pellinger TK, Dumke BR, Halliwill JR. Effect of H1- and H2-histamine receptor blockade on postexercise insulin sensitivity. Physiol Rep 2013; 1:e00033. [PMID: 24303118 PMCID: PMC3831928 DOI: 10.1002/phy2.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/01/2013] [Accepted: 06/19/2013] [Indexed: 11/09/2022] Open
Abstract
Following a bout of dynamic exercise, humans experience sustained postexercise vasodilatation in the previously exercised skeletal muscle which is mediated by activation of histamine (H1 and H2) receptors. Skeletal muscle glucose uptake is also enhanced following dynamic exercise. Our aim was to determine if blunting the vasodilatation during recovery from exercise would have an adverse effect on blood glucose regulation. Thus, we tested the hypothesis that insulin sensitivity following exercise would be reduced with H1- and H2-receptor blockade versus control (no blockade). We studied 20 healthy young subjects (12 exercise; eight nonexercise sham) on randomized control and H1- and H2-receptor blockade (fexofenadine and ranitidine) days. Following 60 min of upright cycling at 60% VO2 peak or nonexercise sham, subjects consumed an oral glucose tolerance beverage (1.0 g/kg). Blood glucose was determined from "arterialized" blood samples (heated hand vein). Postexercise whole-body insulin sensitivity (Matsuda insulin sensitivity index) was reduced 25% with H1- and H2-receptor blockade (P < 0.05), whereas insulin sensitivity was not affected by histamine receptor blockade in the sham trials. These results indicate that insulin sensitivity following exercise is blunted by H1- and H2-receptor blockade and suggest that postexercise H1- and H2-receptor-mediated skeletal muscle vasodilatation benefits glucose regulation in healthy humans.
Collapse
Affiliation(s)
- Thomas K Pellinger
- Department of Human Physiology, University of Oregon Eugene, Oregon, 97403-1240
| | | | | |
Collapse
|
31
|
Pearson J, Kalsi KK, Stöhr EJ, Low DA, Barker H, Ali L, González-Alonso J. Haemodynamic responses to dehydration in the resting and exercising human leg. Eur J Appl Physiol 2013; 113:1499-509. [PMID: 23288036 DOI: 10.1007/s00421-012-2579-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Dehydration and hyperthermia reduces leg blood flow (LBF), cardiac output ([Formula: see text]) and arterial pressure during whole-body exercise. It is unknown whether the reductions in blood flow are associated with dehydration-induced alterations in arterial blood oxygen content (C aO2) and O2-dependent signalling. This study investigated the impact of dehydration and concomitant alterations in C aO2 upon LBF and [Formula: see text]. Haemodynamics, arterial and femoral venous blood parameters and plasma [ATP] were measured at rest and during one-legged knee-extensor exercise in 7 males in four conditions: (1) control, (2) mild dehydration, (3) moderate dehydration, and (4) rehydration. Relative to control, C aO2 and LBF increased with dehydration at rest and during exercise (C aO2: from 199 ± 1 to 208 ± 2, and 202 ± 2 to 210 ± 2 ml L(-1) and LBF: from 0.38 ± 0.04 to 0.77 ± 0.09, and 1.64 ± 0.09 to 1.88 ± 0.1 L min(-1), respectively). Similarly, [Formula: see text] was unchanged or increased with dehydration at rest and during exercise, whereas arterial and leg perfusion pressures declined. Following rehydration, C aO2 declined (to 193 ± 2 mL L(-1)) but LBF remained elevated. Alterations in LBF were unrelated to C aO2 (r (2) = 0.13-0.27, P = 0.48-0.64) and plasma [ATP]. These findings suggest dehydration and concomitant alterations in C aO2 do not compromise LBF despite reductions in plasma [ATP]. While an additive or synergistic effect cannot be excluded, reductions in LBF during exercise with dehydration may not necessarily be associated with alterations in C aO2 and/or intravascular [ATP].
Collapse
Affiliation(s)
- James Pearson
- Centre for Sports Medicine and Human Performance, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK
| | | | | | | | | | | | | |
Collapse
|