1
|
Canepari M, Ross WN. Spatial and temporal aspects of neuronal calcium and sodium signals measured with low-affinity fluorescent indicators. Pflugers Arch 2024; 476:39-48. [PMID: 37798555 DOI: 10.1007/s00424-023-02865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Low-affinity fluorescent indicators for Ca2+ or Na+ allow measuring the dynamics of intracellular concentration of these ions with little perturbation from physiological conditions because they are weak buffers. When using synthetic indicators, which are small molecules with fast kinetics, it is also possible to extract spatial and temporal information on the sources of ion transients, their localization, and their disposition. This review examines these important aspects from the biophysical point of view, and how they have been recently exploited in neurophysiological studies. We first analyze the environment where Ca2+ and Na+ indicators are inserted, highlighting the interpretation of the two different signals. Then, we address the information that can be obtained by analyzing the rising phase and the falling phase of the Ca2+ and Na+ transients evoked by different stimuli, focusing on the kinetics of ionic currents and on the spatial interpretation of these measurements, especially on events in axons and dendritic spines. Finally, we suggest how Ca2+ or Na+ imaging using low-affinity synthetic fluorescent indicators can be exploited in future fundamental or applied research.
Collapse
Affiliation(s)
- Marco Canepari
- LIPhy, CNRS, Univ. Grenoble Alpes, F-38000, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France.
- Institut National de la Santé et Recherche Médicale, Paris, France.
| | - William N Ross
- Department of Physiology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
2
|
Justs KA, Sempertegui S, Riboul DV, Oliva CD, Durbin RJ, Crill S, Stawarski M, Su C, Renden RB, Fily Y, Macleod GT. Mitochondrial phosphagen kinases support the volatile power demands of motor nerve terminals. J Physiol 2023; 601:5705-5732. [PMID: 37942946 PMCID: PMC10841428 DOI: 10.1113/jp284872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.
Collapse
Affiliation(s)
- Karlis A. Justs
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sergio Sempertegui
- Department of Physics, College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Danielle V. Riboul
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ryan J. Durbin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Michal Stawarski
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Chenchen Su
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Robert B. Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Meyer DJ, Díaz-García CM, Nathwani N, Rahman M, Yellen G. The Na +/K + pump dominates control of glycolysis in hippocampal dentate granule cells. eLife 2022; 11:e81645. [PMID: 36222651 PMCID: PMC9592084 DOI: 10.7554/elife.81645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular ATP that is consumed to perform energetically expensive tasks must be replenished by new ATP through the activation of metabolism. Neuronal stimulation, an energetically demanding process, transiently activates aerobic glycolysis, but the precise mechanism underlying this glycolysis activation has not been determined. We previously showed that neuronal glycolysis is correlated with Ca2+ influx, but is not activated by feedforward Ca2+ signaling (Díaz-García et al., 2021a). Since ATP-powered Na+ and Ca2+ pumping activities are increased following stimulation to restore ion gradients and are estimated to consume most neuronal ATP, we aimed to determine if they are coupled to neuronal glycolysis activation. By using two-photon imaging of fluorescent biosensors and dyes in dentate granule cell somas of acute mouse hippocampal slices, we observed that production of cytoplasmic NADH, a byproduct of glycolysis, is strongly coupled to changes in intracellular Na+, while intracellular Ca2+ could only increase NADH production if both forward Na+/Ca2+ exchange and Na+/K+ pump activity were intact. Additionally, antidromic stimulation-induced intracellular [Na+] increases were reduced >50% by blocking Ca2+ entry. These results indicate that neuronal glycolysis activation is predominantly a response to an increase in activity of the Na+/K+ pump, which is strongly potentiated by Na+ influx through the Na+/Ca2+ exchanger during extrusion of Ca2+ following stimulation.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
4
|
Abstract
The energy cost of information processing is thought to be chiefly neuronal, with a minor fraction attributed to glial cells. However, there is compelling evidence that astrocytes capture synaptic K+ using their Na+/K+ ATPase, and not solely through Kir4.1 channels as was once thought. When this active buffering is taken into account, the cost of astrocytes rises by >200%. Gram-per-gram, astrocytes turn out to be as expensive as neurons. This conclusion is supported by 3D reconstruction of the neuropil showing similar mitochondrial densities in neurons and astrocytes, by cell-specific transcriptomics and proteomics, and by the rates of the tricarboxylic acid cycle. Possible consequences for reactive astrogliosis and brain disease are discussed.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos - CECs, Valdivia, Chile
| |
Collapse
|
5
|
Eitelmann S, Stephan J, Everaerts K, Durry S, Pape N, Gerkau NJ, Rose CR. Changes in Astroglial K + upon Brief Periods of Energy Deprivation in the Mouse Neocortex. Int J Mol Sci 2022; 23:ijms23094836. [PMID: 35563238 PMCID: PMC9102782 DOI: 10.3390/ijms23094836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Malfunction of astrocytic K+ regulation contributes to the breakdown of extracellular K+ homeostasis during ischemia and spreading depolarization events. Studying astroglial K+ changes is, however, hampered by a lack of suitable techniques. Here, we combined results from fluorescence imaging, ion-selective microelectrodes, and patch-clamp recordings in murine neocortical slices with the calculation of astrocytic [K+]. Brief chemical ischemia caused a reversible ATP reduction and a transient depolarization of astrocytes. Moreover, astrocytic [Na+] increased by 24 mM and extracellular [Na+] decreased. Extracellular [K+] increased, followed by an undershoot during recovery. Feeding these data into the Goldman-Hodgkin-Katz equation revealed a baseline astroglial [K+] of 146 mM, an initial K+ loss by 43 mM upon chemical ischemia, and a transient K+ overshoot of 16 mM during recovery. It also disclosed a biphasic mismatch in astrocytic Na+/K+ balance, which was initially ameliorated, but later aggravated by accompanying changes in pH and bicarbonate, respectively. Altogether, our study predicts a loss of K+ from astrocytes upon chemical ischemia followed by a net gain. The overshooting K+ uptake will promote low extracellular K+ during recovery, likely exerting a neuroprotective effect. The resulting late cation/anion imbalance requires additional efflux of cations and/or influx of anions, the latter eventually driving delayed astrocyte swelling.
Collapse
|
6
|
Meyer J, Gerkau NJ, Kafitz KW, Patting M, Jolmes F, Henneberger C, Rose CR. Rapid Fluorescence Lifetime Imaging Reveals That TRPV4 Channels Promote Dysregulation of Neuronal Na + in Ischemia. J Neurosci 2022; 42:552-566. [PMID: 34872928 PMCID: PMC8805620 DOI: 10.1523/jneurosci.0819-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Fluorescence imaging is an indispensable method for analysis of diverse cellular and molecular processes, enabling, for example, detection of ions, second messengers, or metabolites. Intensity-based approaches, however, are prone to artifacts introduced by changes in fluorophore concentrations. This drawback can be overcome by fluorescence lifetime imaging (FLIM) based on time-correlated single-photon counting. FLIM often necessitates long photon collection times, resulting in strong temporal binning of dynamic processes. Recently, rapidFLIM was introduced, exploiting ultra-low dead-time photodetectors together with rapid electronics. Here, we demonstrate the applicability of rapidFLIM, combined with new and improved correction schemes, for spatiotemporal fluorescence lifetime imaging of low-emission fluorophores in a biological system. Using tissue slices of hippocampi of mice of either sex, loaded with the Na+ indicator ING2, we show that improved rapidFLIM enables quantitative, dynamic imaging of neuronal Na+ signals at a full-frame temporal resolution of 0.5 Hz. Induction of transient chemical ischemia resulted in unexpectedly large Na+ influx, accompanied by considerable cell swelling. Both Na+ loading and cell swelling were dampened on inhibition of TRPV4 channels. Together, rapidFLIM enabled the spatiotemporal visualization and quantification of neuronal Na+ transients at unprecedented speed and independent from changes in cell volume. Moreover, our experiments identified TRPV4 channels as hitherto unappreciated contributors to neuronal Na+ loading on metabolic failure, suggesting this pathway as a possible target to ameliorate excitotoxic damage. Finally, rapidFLIM will allow faster and more sensitive detection of a wide range of dynamic signals with other FLIM probes, most notably those with intrinsic low-photon emission.SIGNIFICANCE STATEMENT FLIM is an indispensable method for analysis of cellular processes. FLIM often necessitates long photon collection periods, requiring the sacrifice of temporal resolution at the expense of spatial information. Here, we demonstrate the applicability of the recently introduced rapidFLIM for quantitative, dynamic imaging with low-emission fluorophores in brain slices. RapidFLIM, combined with improved correction schemes, enabled intensity-independent recording of neuronal Na+ transients at unprecedented full-frame rates of 0.5 Hz. It also allowed quantitative imaging independent from changes in cell volume, revealing a surprisingly strong and hitherto uncovered contribution of TRPV4 channels to Na+ loading on energy failure. Collectively, our study thus provides a novel, unexpected insight into the mechanisms that are responsible for Na+ changes on energy depletion.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, England
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Ona Jodar T, Lage-Rupprecht V, Abraham NM, Rose CR, Egger V. Local Postsynaptic Signaling on Slow Time Scales in Reciprocal Olfactory Bulb Granule Cell Spines Matches Asynchronous Release. Front Synaptic Neurosci 2020; 12:551691. [PMID: 33304264 PMCID: PMC7701096 DOI: 10.3389/fnsyn.2020.551691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output. To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2 +- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1 / 2_Δ[Ca2 +]i ∼500 ms and t1 / 2_Δ[Na+]i ∼1,000 ms. We also analyzed the kinetics of already existing data of postsynaptic spine Ca2 +-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.
Collapse
Affiliation(s)
- Tiffany Ona Jodar
- Regensburg University, Regensburg, Germany
- Institut D’Investigacions Biomèdiques, Barcelona, Spain
| | - Vanessa Lage-Rupprecht
- Regensburg University, Regensburg, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, St. Augustin, Germany
| | | | | | | |
Collapse
|
8
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 2020; 45:1328-1334. [DOI: 10.1007/s11064-020-03005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
10
|
Spontaneous Ultraslow Na + Fluctuations in the Neonatal Mouse Brain. Cells 2019; 9:cells9010102. [PMID: 31906100 PMCID: PMC7016939 DOI: 10.3390/cells9010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.
Collapse
|
11
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
12
|
Gerkau NJ, Lerchundi R, Nelson JSE, Lantermann M, Meyer J, Hirrlinger J, Rose CR. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. J Physiol 2019; 597:5687-5705. [PMID: 31549401 DOI: 10.1113/jp278658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Employing quantitative Na+ -imaging and Förster resonance energy transfer-based imaging with ATeam1.03YEMK (ATeam), we studied the relation between activity-induced Na+ influx and intracellular ATP in CA1 pyramidal neurons of the mouse hippocampus. Calibration of ATeam in situ enabled a quantitative estimate of changes in intracellular ATP concentrations. Different paradigms of stimulation that induced global Na+ influx into the entire neuron resulted in decreases in [ATP] in the range of 0.1-0.6 mm in somata and dendrites, while Na+ influx that was locally restricted to parts of dendrites did not evoke a detectable change in dendritic [ATP]. Our data suggest that global Na+ transients require global cellular activation of the Na+ /K+ -ATPase resulting in a consumption of ATP that transiently overrides its production. For recovery from locally restricted Na+ influx, ATP production as well as fast intracellular diffusion of ATP and Na+ might prevent a local drop in [ATP]. ABSTRACT Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+ ]i ) is mainly mediated by the Na+ /K+ -ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+ ]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i ) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+ ]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3-0.4 mm in both compartments. Global [Na+ ]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i . Our results suggest that ATP consumption by the NKA following global [Na+ ]i transients temporarily overrides its availability, causing a decrease in [ATP]i . Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i , suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Joel S E Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Marina Lantermann
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, 37075, Goettingen, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| |
Collapse
|
13
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
14
|
Heterogeneity of Activity-Induced Sodium Transients between Astrocytes of the Mouse Hippocampus and Neocortex: Mechanisms and Consequences. J Neurosci 2019; 39:2620-2634. [PMID: 30737311 DOI: 10.1523/jneurosci.2029-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by ∼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.
Collapse
|
15
|
Larsen BR, Stoica A, MacAulay N. Developmental maturation of activity-induced K + and pH transients and the associated extracellular space dynamics in the rat hippocampus. J Physiol 2019; 597:583-597. [PMID: 30357826 PMCID: PMC6332761 DOI: 10.1113/jp276768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal activity induces fluctuation in extracellular space volume, [K+ ]o and pHo , the management of which influences neuronal function The neighbour astrocytes buffer the K+ and pH and swell during the process, causing shrinkage of the extracellular space In the present study, we report the developmental rise of the homeostatic control of the extracellular space dynamics, for which regulation becomes tighter with maturation and thus is proposed to ensure efficient synaptic transmission in the mature animals The extracellular space dynamics of volume, [K+ ]o and pHo evolve independently with developmental maturation and, although all of them are inextricably tied to neuronal activity, they do not couple directly. ABSTRACT Neuronal activity in the mammalian central nervous system associates with transient extracellular space (ECS) dynamics involving elevated K+ and pH and shrinkage of the ECS. These ECS properties affect membrane potentials, neurotransmitter concentrations and protein function and are thus anticipated to be under tight regulatory control. It remains unresolved to what extent these ECS dynamics are developmentally regulated as synaptic precision arises and whether they are directly or indirectly coupled. To resolve the development of homeostatic control of [K+ ]o , pH, and ECS and their interaction, we utilized ion-sensitive microelectrodes in electrically stimulated rat hippocampal slices from rats of different developmental stages (postnatal days 3-28). With the employed stimulation paradigm, the stimulus-evoked peak [K+ ]o and pHo transients were stable across age groups, until normalized to neuronal activity (field potential amplitude), in which case the K+ and pH shifted significantly more in the younger animals. By contrast, ECS dynamics increased with age until normalized to the field potential, and thus correlated with neuronal activity. With age, the animals not only managed the peak [K+ ]o better, but also displayed swifter post-stimulus removal of [K+ ]o , in correlation with the increased expression of the α1-3 isoforms of the Na+ /K+ -ATPase, and a swifter return of ECS volume. The different ECS dynamics approached a near-identical temporal pattern in the more mature animals. In conclusion, although these phenomena are inextricably tied to neuronal activity, our data suggest that they do not couple directly.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anca Stoica
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nanna MacAulay
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
16
|
Abstract
The use of fluorescent chemical indicator dyes enables the dynamic and quantitative imaging of intracellular sodium concentrations and activity-related sodium transients in astrocytes.Here we describe different approaches for the loading of cellular networks or single astrocytes with sodium-sensitive indicators in brain tissue. Fluorescence signals can then be detected and analyzed with conventional camera-based, wide-field imaging or by employing high-resolution multi-photon microscopy. We furthermore explain strategies for the induction of local and global sodium transients in astrocytes. Finally, we illustrate how fluorescence signals derived from such imaging experiments can be converted into absolute changes of sodium concentration in astrocytes based on an in situ calibration procedure.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
17
|
Naumann G, Lippmann K, Eilers J. Photophysical properties of Na + -indicator dyes suitable for quantitative two-photon fluorescence-lifetime measurements. J Microsc 2018; 272:136-144. [PMID: 30191999 DOI: 10.1111/jmi.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Two-photon microscopy (2PM) offers great potential in fluorescence imaging of intracellular Na+ dynamics of live cells. A severe drawback, however, is that quantitative ratioing of fluorescence intensities at different wavelengths [possible in one-photon imaging with the classical Na+ -indicator dye sodium-binding benzofuran isophtalate (SBFI)] is not practical in 2PM. We aimed at establishing 2PM-based time-correlated fluorescence lifetime measurements as an alternative method for quantifying Na+ dynamics. We compared the photophysical properties of the four Na+ -sensitive fluorescent indicator dyes SBFI, CoroNa Green, Sodium Green and Asante NaTRIUM Green-2 (ANG-2) in cuvette calibrations. All four dyes showed Na+ -dependent intensity changes, with ANG-2 having the most favourable properties for 2PM. All dyes but SBFI showed significant changes in their fluorescence lifetime upon Na+ binding, again with ANG-2 being the most promising dye. We found that, unfortunately, the fluorescence lifetime of ANG-2 is not only affected by Na+ but also by protons, K+ and dye impurities, rendering a quantitative description of the individual lifetime components impractical. However, a simplified calibration procedure, based on a published approach for Ca2+ imaging, allowed relating lifetimes to Na+ concentration. Using ANG-2 and the simplified calibration will allow quantitative two-photon Na+ imaging with millimolar sensitivity. LAY DESCRIPTION Dynamic changes of ion concentrations, which play crucial roles in cellular physiology, can be monitored with appropriate fluorescent indicator dyes. For intracellular sodium ions (Na+ ), certain dyes even allow quantitative measurements with standard microscopic techniques. However, for two-photon microscopy, which allows resolving cells deep in intact tissue, imaging solutions that are fully quantitative are lacking. For the four commercially available Na+ dyes 'SBFI', 'CoroNa Green', 'Sodium Green', and 'Asante NaTRIUM Green-2' (ANG2) we analyzed whether their fluorescent lifetime (LT), i.e., the nanosecond decay of emission of photons after a pulsed excitation, could serve as a quantitative measure of intracellular Na+ . Pulsed excitation in the femtosecond range is an inherent feature of two-photon microscopy and, in combination with fast, single-photon counting microscopes, allows for easy-to-implement LT microscopy. We found that Sodium Green and ANG2 showed strong Na+ -dependent changes in the fluorescence LT, while SBFI showed no, and CoroNa Green only small changes. ANG2, as the brightest dye, was further characterized regarding effects of protons and potassium ions (K+ ), both also present in cells at significant concentrations, on the fluorescence LT. We found that the LT of ANG2 is affected in a predictable manner by Na+ , K+ , and protons. However, our data reveal that the commercial dye must also contain impurities with unexpected Na+ - and K+ -binding characteristics, rendering a quantitative description of the individual lifetime components impractical. We, therefore, adapted a simplified calibration procedure, based on a published approach for Ca2+ imaging, that allows relating the average lifetime to Na+ concentration. With this simplified calibration procedure, ANG2 is well suited for quantitative two-photon Na+ imaging with millimolar sensitivity.
Collapse
Affiliation(s)
- G Naumann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - K Lippmann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - J Eilers
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| |
Collapse
|
18
|
Zylbertal A, Yarom Y, Wagner S. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study. Front Comput Neurosci 2017; 11:85. [PMID: 28970791 PMCID: PMC5609115 DOI: 10.3389/fncom.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 12/02/2022] Open
Abstract
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel
| |
Collapse
|
19
|
Papanikolaou M, Lewis A, Butt AM. Store-operated calcium entry is essential for glial calcium signalling in CNS white matter. Brain Struct Funct 2017; 222:2993-3005. [PMID: 28247021 PMCID: PMC5585307 DOI: 10.1007/s00429-017-1380-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/27/2017] [Indexed: 11/06/2022]
Abstract
‘Calcium signalling’ is the ubiquitous response of glial cells to multiple extracellular stimuli. The primary mechanism of glial calcium signalling is by release of calcium from intracellular stores of the endoplasmic reticulum (ER). Replenishment of ER Ca2+ stores relies on store-operated calcium entry (SOCE). However, despite the importance of calcium signalling in glial cells, little is known about their mechanisms of SOCE. Here, we investigated SOCE in glia of the mouse optic nerve, a typical CNS white matter tract that comprises bundles of myelinated axons and the oligodendrocytes and astrocytes that support them. Using quantitative RT-PCR, we identified Orai1 channels, both Stim1 and Stim2, and the transient receptor potential M3 channel (TRPM3) as the primary channels for SOCE in the optic nerve, and their expression in both astrocytes and oligodendrocytes was demonstrated by immunolabelling of optic nerve sections and cultures. The functional importance of SOCE was demonstrated by fluo-4 calcium imaging on isolated intact optic nerves and optic nerve cultures. Removal of extracellular calcium ([Ca2+]o) resulted in a marked depletion of glial cytosolic calcium ([Ca2+]i), which recovered rapidly on restoration of [Ca2+]o via SOCE. 2-aminoethoxydiphenylborane (2APB) significantly decreased SOCE and severely attenuated ATP-mediated calcium signalling. The results provide evidence that Orai/Stim and TRPM3 are important components of the ‘calcium toolkit’ that underpins SOCE and the sustainability of calcium signalling in white matter glia.
Collapse
Affiliation(s)
- M Papanikolaou
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - A Lewis
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - A M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
20
|
Ona-Jodar T, Gerkau NJ, Sara Aghvami S, Rose CR, Egger V. Two-Photon Na + Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites. Front Cell Neurosci 2017; 11:50. [PMID: 28293175 PMCID: PMC5329072 DOI: 10.3389/fncel.2017.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/14/2017] [Indexed: 12/05/2022] Open
Abstract
Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer specific temporal processing capabilities to bulbar principal cell-GC subnetworks. In conclusion, we show that Na+ imaging provides a valuable tool for characterizing AP invasion of MC axons and GC dendrites and spines.
Collapse
Affiliation(s)
- Tiffany Ona-Jodar
- Neurophysiology, Institute of Zoology, Universität Regensburg Regensburg, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - S Sara Aghvami
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany; School of Electrical and Computer Engineering, University of TehranTehran, Iran; School of Cognitive Science, Institute for Research in Fundamental ScienceTehran, Iran
| | - Christine R Rose
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität RegensburgRegensburg, Germany; Regensburg Center of Neuroscience, Universität RegensburgRegensburg, Germany
| |
Collapse
|
21
|
Gerkau NJ, Rakers C, Petzold GC, Rose CR. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J Neurosci Res 2017; 95:2275-2285. [PMID: 28150887 DOI: 10.1002/jnr.23995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|