1
|
Inocencio IM, Kaur N, Tran NT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs is enhanced following sildenafil and inhaled nitric oxide administration. Front Physiol 2023; 14:1101647. [PMID: 36760535 PMCID: PMC9905131 DOI: 10.3389/fphys.2023.1101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response. NO modulators, such as inhaled nitric oxide (iNO) and sildenafil, induce vasodilation and are used clinically to treat pulmonary hypertension in preterm neonates. However, their impact on NVC in the preterm brain are unknown. We aimed to characterise the cerebral functional haemodynamic response in the preterm brain exposed to NO modulators. We hypothesized that iNO and sildenafil in clinical dosages would increase the baseline cerebral perfusion and the cerebral haemodynamic response to neural activation. Methods: Preterm lambs (126-7 days' gestation) were delivered and mechanically ventilated. The cerebral functional haemodynamic response was measured using near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulations of 1.8, 4.8, and 7.8 s durations in control preterm lambs (n = 11), and following 4.8 and 7.8 s stimulations in preterm lambs receiving either sildenafil citrate (n = 6, 1.33 mcg/kg/hr) or iNO (n = 8, 20 ppm). Results: Following 1.8, 4.8, and 7.8 s stimulations, ∆oxyHb in the contralateral cortex increased (positive functional response) in 7/11 (64%), 7/11 (64%), and 4/11 (36%) control lambs respectively (p < 0.05). Remaining lambs showed decreased ΔoxyHb (negative functional response). Following 4.8 s stimulations, more lambs receiving sildenafil or iNO (83% and 100% respectively) showed positive functional response compared to the controls (p < 0.05). No significant difference between the three groups was observed at 7.8 s stimulations. Conclusion: In the preterm brain, prolonged somatosensory stimulations increased the incidence of negative functional responses with decreased cerebral oxygenation, suggesting that cerebral oxygen delivery may not match the oxygen demand. Sildenafil and iNO increased the incidence of positive functional responses, potentially enhancing NVC, and cerebral oxygenation.
Collapse
Affiliation(s)
- Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Navneet Kaur
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Nhi T. Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Flora Y. Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia,Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia,*Correspondence: Flora Y. Wong,
| |
Collapse
|
2
|
The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced following intrauterine inflammation and dopamine infusion. Exp Neurol 2022; 352:114049. [DOI: 10.1016/j.expneurol.2022.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022]
|
3
|
Inocencio IM, Tran NT, Nakamura S, Khor SJ, Wiersma M, Stoecker K, Maksimenko A, Polglase GR, Walker DW, Pearson JT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs and 7-10-day old lambs born at term: Direct synchrotron microangiography assessment. J Cereb Blood Flow Metab 2022; 42:315-328. [PMID: 34551607 PMCID: PMC9122524 DOI: 10.1177/0271678x211045848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurovascular coupling has been well-defined in the adult brain, but variable and inconsistent responses have been observed in the neonatal brain. The mechanisms that underlie functional haemodynamic responses in the developing brain are unknown. Synchrotron radiation (SR) microangiography enables in vivo high-resolution imaging of the cerebral vasculature. We exploited SR microangiography to investigate the microvascular changes underlying the cerebral haemodynamic response in preterm (n = 7) and 7-10-day old term lambs (n = 4), following median nerve stimulation of 1.8, 4.8 and 7.8 sec durations.Increasing durations of somatosensory stimulation significantly increased the number of cortical microvessels of ≤200 µm diameter in 7-10-day old term lambs (p < 0.05) but not preterm lambs where, in contrast, stimulation increased the diameter of cerebral microvessels with a baseline diameter of ≤200 µm. Preterm lambs demonstrated positive functional responses with increased oxyhaemoglobin measured by near infrared spectroscopy, while 7-10-day old term lambs demonstrated both positive and negative responses. Our findings suggest the vascular mechanisms underlying the functional haemodynamic response differ between the preterm and 7-10-day old term brain. The preterm brain depends on vasodilatation of microvessels without recruitment of additional vessels, suggesting a limited capacity to mount higher cerebral haemodynamic responses when faced with prolonged or stronger neural stimulation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,*Co-first authors who contributed equally to this work
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.,*Co-first authors who contributed equally to this work
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Katja Stoecker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - Anton Maksimenko
- Imaging and Medical Beamline, Australian Synchrotron, ANSTO, Melbourne, Australia
| | - Graeme R Polglase
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Centre, Osaka, Japan.,Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| |
Collapse
|
4
|
Inocencio IM, Tran NT, Khor SJ, Wiersma M, Nakamura S, Walker DW, Wong FY. The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced with dopamine or dobutamine infusion. Exp Neurol 2021; 341:113687. [PMID: 33713656 DOI: 10.1016/j.expneurol.2021.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown. We aimed to characterise the cerebral haemodynamic functional response after somatosensory stimulation in the preterm newborn brain, with and without dopamine or dobutamine treatment. METHODS We studied the cerebral haemodynamic functional response in 13 anaesthetised preterm lambs, using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) following left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. The 4.8 and 7.8 s stimulations were repeated during dopamine or dobutamine infusion. RESULTS Stimulation always produced a somatosensory evoked response. Majority of preterm lambs demonstrated positive functional responses (i.e. increased ΔoxyHb) in the contralateral cortex following stimulus trains of all durations. Dopamine increased baseline oxyHb and total Hb, whereas dobutamine increased baseline deoxyHb. Both dopamine and dobutamine reduced the evoked ΔoxyHb responses to 4.8 and 7.8 s stimulations. CONCLUSIONS Somatosensory stimulation increases cerebral oxygenation in the preterm brain, consistent with increased cerebral blood flow due to neurovascular coupling. Notably, our results show that dopamine/dobutamine reduces oxygen delivery relative to consumption in the preterm brain during somatosensory stimulations, suggesting there may be a risk of intermittent localised tissue hypoxia which has clear implications for clinical practice and warrants further investigation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; Monash Newborn, Monash Medical Centre, Melbourne, Australia.
| |
Collapse
|
5
|
Nitzan M, Nitzan I, Arieli Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. SENSORS 2020; 20:s20174844. [PMID: 32867184 PMCID: PMC7506757 DOI: 10.3390/s20174844] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Adequate oxygen delivery to a tissue depends on sufficient oxygen content in arterial blood and blood flow to the tissue. Oximetry is a technique for the assessment of blood oxygenation by measurements of light transmission through the blood, which is based on the different absorption spectra of oxygenated and deoxygenated hemoglobin. Oxygen saturation in arterial blood provides information on the adequacy of respiration and is routinely measured in clinical settings, utilizing pulse oximetry. Oxygen saturation, in venous blood (SvO2) and in the entire blood in a tissue (StO2), is related to the blood supply to the tissue, and several oximetric techniques have been developed for their assessment. SvO2 can be measured non-invasively in the fingers, making use of modified pulse oximetry, and in the retina, using the modified Beer–Lambert Law. StO2 is measured in peripheral muscle and cerebral tissue by means of various modes of near infrared spectroscopy (NIRS), utilizing the relative transparency of infrared light in muscle and cerebral tissue. The primary problem of oximetry is the discrimination between absorption by hemoglobin and scattering by tissue elements in the attenuation measurement, and the various techniques developed for isolating the absorption effect are presented in the current review, with their limitations.
Collapse
Affiliation(s)
- Meir Nitzan
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
- Correspondence:
| | - Itamar Nitzan
- Monash Newborn, Monash Children’s Hospital, Melbourne 3168, Australia;
- Department of Neonatology, Shaare Zedek Medical Center, Shmuel Bait St 12, Jerusalem 9103102, Israel
| | - Yoel Arieli
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
| |
Collapse
|
6
|
Yoon K, Lee W, Lee JE, Xu L, Croce P, Foley L, Yoo SS. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One 2019; 14:e0224311. [PMID: 31648261 PMCID: PMC6812789 DOI: 10.1371/journal.pone.0224311] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Low-intensity focused ultrasound (FUS) has significant potential as a non-invasive brain stimulation modality and novel technique for functional brain mapping, particularly with its advantage of greater spatial selectivity and depth penetration compared to existing non-invasive brain stimulation techniques. As previous studies, primarily carried out in small animals, have demonstrated that sonication parameters affect the stimulation efficiency, further investigation in large animals is necessary to translate this technique into clinical practice. In the present study, we examined the effects of sonication parameters on the transient modification of excitability of cortical and thalamic areas in an ovine model. Guided by anatomical and functional neuroimaging data specific to each animal, 250 kHz FUS was transcranially applied to the primary sensorimotor area associated with the right hind limb and its thalamic projection in sheep (n = 10) across multiple sessions using various combinations of sonication parameters. The degree of effect from FUS was assessed through electrophysiological responses, through analysis of electromyogram and electroencephalographic somatosensory evoked potentials for evaluation of excitatory and suppressive effects, respectively. We found that the modulatory effects were transient and reversible, with specific sonication parameters outperforming others in modulating regional brain activity. Magnetic resonance imaging and histological analysis conducted at different time points after the final sonication session, as well as behavioral observations, showed that repeated exposure to FUS did not damage the underlying brain tissue. Our results suggest that FUS-mediated, non-invasive, region-specific bimodal neuromodulation can be safely achieved in an ovine model, indicating its potential for translation into human studies.
Collapse
Affiliation(s)
- Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Linda Xu
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Hendrikx D, Smits A, Lavanga M, De Wel O, Thewissen L, Jansen K, Caicedo A, Van Huffel S, Naulaers G. Measurement of Neurovascular Coupling in Neonates. Front Physiol 2019; 10:65. [PMID: 30833901 PMCID: PMC6387909 DOI: 10.3389/fphys.2019.00065] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Neurovascular coupling refers to the mechanism that links the transient neural activity to the subsequent change in cerebral blood flow, which is regulated by both chemical signals and mechanical effects. Recent studies suggest that neurovascular coupling in neonates and preterm born infants is different compared to adults. The hemodynamic response after a stimulus is later and less pronounced and the stimulus might even result in a negative (hypoxic) signal. In addition, studies both in animals and neonates confirm the presence of a short hypoxic period after a stimulus in preterm infants. In clinical practice, different methodologies exist to study neurovascular coupling. The combination of functional magnetic resonance imaging or functional near-infrared spectroscopy (brain hemodynamics) with EEG (brain function) is most commonly used in neonates. Especially near-infrared spectroscopy is of interest, since it is a non-invasive method that can be integrated easily in clinical care and is able to provide results concerning longer periods of time. Therefore, near-infrared spectroscopy can be used to develop a continuous non-invasive measurement system, that could be used to study neonates in different clinical settings, or neonates with different pathologies. The main challenge for the development of a continuous marker for neurovascular coupling is how the coupling between the signals can be described. In practice, a wide range of signal interaction measures exist. Moreover, biomedical signals often operate on different time scales. In a more general setting, other variables also have to be taken into account, such as oxygen saturation, carbon dioxide and blood pressure in order to describe neurovascular coupling in a concise manner. Recently, new mathematical techniques were developed to give an answer to these questions. This review discusses these recent developments.
Collapse
Affiliation(s)
- Dries Hendrikx
- Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- imec, Leuven, Belgium
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Mario Lavanga
- Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- imec, Leuven, Belgium
| | - Ofelie De Wel
- Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- imec, Leuven, Belgium
| | - Liesbeth Thewissen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Alexander Caicedo
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Sabine Van Huffel
- Department of Electrical Engineering, KU Leuven, Leuven, Belgium
- imec, Leuven, Belgium
| | - Gunnar Naulaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Fleiss B, Wong F, Brownfoot F, Shearer IK, Baud O, Walker DW, Gressens P, Tolcos M. Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Front Endocrinol (Lausanne) 2019; 10:188. [PMID: 30984110 PMCID: PMC6449431 DOI: 10.3389/fendo.2019.00188] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- *Correspondence: Bobbi Fleiss
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - Fiona Brownfoot
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
| | - Isabelle K. Shearer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Olivier Baud
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Division of Neonatal Intensive Care, University Hospitals of Geneva, Children's Hospital, University of Geneva, Geneva, Switzerland
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- PremUP, Paris, France
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Kim M, Hong J, Shin HJ. Double-pulse laser illumination method for measuring fast cerebral blood flow velocities in the deep brain using a fiber-bundle-based endomicroscopy system. BIOMEDICAL OPTICS EXPRESS 2018; 9:2699-2715. [PMID: 30258684 PMCID: PMC6154180 DOI: 10.1364/boe.9.002699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
We present a new fiber-bundle-based endomicroscopy system to measure the fast cerebral blood flow (CBF) velocity in blood vessels located between the surface and the deep brain of living animals. The CBF velocity is obtained by measuring the displacement of the partially overlapped red blood cell images directly, using double-pulse 532-nm laser illumination. The proposed method could measure CBF in blood vessels with diameters ranging from 4 μm to 42 μm and could measure CBF velocities up to 3.2 μm/ms for different vessel diameters at a depth of 2.1 mm from the brain surface in a living mouse.
Collapse
Affiliation(s)
- Minkyung Kim
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Biomedical Engineering, KIST School, UST, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Jinki Hong
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Biomedical Engineering, KIST School, UST, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Hyun-joon Shin
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Biomedical Engineering, KIST School, UST, Korea University of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
10
|
Nakamura S, Walker DW, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in neonatal lambs. J Physiol 2017. [PMID: 28643877 DOI: 10.1113/jp274244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cerebral haemodynamic response to neural stimulation has been extensively studied in adults, but little is known about cerebral haemodynamic response in the fetal and neonatal brain. The present study describes the cerebral haemodynamic response measured by near infrared spectroscopy to somatosensory stimulation in newborn lambs, in comparison to recent findings in fetal sheep. The cerebral haemodynamic responses in the newborn lamb brain can involve an increase in oxyhaemoglobin (oxyHb), or a decrease of oxyHb suggestive of reduced perfusion and oxygenation. Positive correlations between changes in oxyHb and mean arterial blood pressure were found in newborn but not fetal sheep, which suggests the result is unlikely to be due to immature autoregulation alone. In contrast to adult studies, hypercapnia increased the changes in cerebral blood flow and oxyHb in most of the lambs in response to somatosensory stimulation. ABSTRACT The neurovascular coupling response has been defined for the adult brain, but in the neonate non-invasive measurement of local cerebral perfusion using near infrared spectroscopy or blood oxygen level-dependent functional magnetic resonance imaging have yielded variable and inconsistent results, including negative responses suggesting decreased perfusion and localized tissue tissue hypoxia. Also, the impact of permissive hypercapnia (P aC O2 > 50 mmHg) in the management of neonates on cerebrovascular responses to somatosensory input is unknown. Using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) in eight anaesthetized newborn lambs, we studied the cerebral haemodynamic functional response to left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. Stimulation always produced a somatosensory evoked response, and superficial cortical perfusion measured by laser Doppler flowmetry predominantly increased following median nerve stimulation. However, with 1.8 s stimulation, oxyHb responses in the contralateral hemisphere were either positive (i.e. increased oxyHb), negative, or absent; and with 4.8 and 7.8 s stimulations, both positive and negative responses were observed. Hypercapnia increased baseline oxyHb and total Hb consistent with cerebral vasodilatation, and six of seven lambs tested showed increased Δtotal Hb responses after the 7.8 s stimulation, among which four lambs also showed increased ΔoxyHb responses. In two of three lambs, the negative ΔoxyHb response became a positive pattern during hypercapnia. These results show that instead of functional hyperaemia, somatosensory stimulation can evoke negative (decreased oxyHb, total Hb) functional responses in the neonatal brain suggestive of decreased local perfusion and vasoconstriction, and that hypercapnia produces both baseline hyperperfusion and increased functional hyperaemia.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.,The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Flora Y Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Clayton, Melbourne, Victoria, 3168, Australia.,Monash Newborn, Monash Medical Centre, Clayton, Melbourne, Victoria, 3168, Australia
| |
Collapse
|
11
|
Kim M, Hong J, Kim J, Shin HJ. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. BIOMEDICAL OPTICS EXPRESS 2017; 8:2781-2795. [PMID: 28663906 PMCID: PMC5480429 DOI: 10.1364/boe.8.002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 05/26/2023]
Abstract
We report a fiber optics-based intravital fluorescence imaging platform that includes epi-fluorescence microscopy and laser patterned-light stimulation system. The platform can perform real-time fluorescence imaging with a lateral resolution of ~4.9 μm while directly inserted into the intact mouse brain, optically stimulate vasoconstriction during real-time imaging, and avoid vessel damage in the penetration path of imaging probe. Using 473-nm patterned-light stimulation, we successfully modulated the vasoconstriction of a single targeted 37-μm-diameter blood vessel located more than 4.7 mm below the brain surface of a live SM22-ChR2 mouse. This platform may permit the hemodynamic studies associated with deeper brain neurovascular disorders.
Collapse
Affiliation(s)
- Minkyung Kim
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jinki Hong
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Jinsik Kim
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Hyun-joon Shin
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
12
|
Galinsky R. Cerebral economics: shedding light on supply and demand in the developing brain. J Physiol 2017; 595:1011-1012. [PMID: 28122394 DOI: 10.1113/jp273690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand and The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| |
Collapse
|