1
|
Fisher JT, Ciuha U, Denise P, McDonnell AC, Normand H, Mekjavic IB. The combined effects of artificial gravity, temperature, and hypoxia on haemodynamic responses and limb blood flow. Eur J Appl Physiol 2025:10.1007/s00421-025-05773-7. [PMID: 40172601 DOI: 10.1007/s00421-025-05773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
Under simultaneous environmental and gravitational stressors, integrated vascular responses maintain homeostatic balance via coordinated baro- and thermo-regulatory action. The effect of temperature and hypoxia at an elevated gravitational vector on the interaction of these systems was examined. Ten male participants experienced either cool (18.4 °C) or warm (29.1 °C) ambient temperatures in normoxia (partial pressure of oxygen, PIO2 = 133 mmHg) or hypoxia (PIO2 = 92 mmHg). Cardiovascular (heart rate, HR; arterial pressure, MAP; cardiac output, CO; stroke volume, SV; skin blood flow, SkBF) and thermoregulatory (skin temperature; core temperature) responses were monitored during standing (NG), and supine centrifugation at ground reaction forces (GRF) measured with a force platform at 1GRF and 2GRF. At 2GRF, warm and hypoxic conditions reduced the test duration by 16%. No differences were observed between NG and 1GRF in any variable; however, 2GRF significantly raised HR by 29.3% and MAP by 12.6%, and lowered SV by 22.2%. Warm condition significantly increased HR, and significantly decreased MAP and SV compared to the cool condition, by 17.8%, 6.1%, and 5.8%, respectively. Hypoxia had no effect on any variable. Arm SkBF significantly decreased by 33.3% with increasing artificial gravity, whereas leg SkBF increased by 38.7%. Higher ambient temperatures had no effect on leg SkBF, but significantly increased arm SkBF by 38.7%. Human tolerance to passive centrifugation is significantly lower at 2GRF, and further affected by the ambient conditions. Haemodynamic and leg SkBF responses in higher temperature and Gz conditions were frequently unable to prevent pre-syncopal symptoms. Finally, arm SkBF was modulated by both baroreflex and thermoregulation, and the baroreflex alone in leg SkBF.
Collapse
Affiliation(s)
- Jason T Fisher
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Pierre Denise
- Université de Caen Normandie, Inserm, Cyceron, CHU de Caen, COMETE U1075, Caen, France
| | - Adam C McDonnell
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Hervé Normand
- Université de Caen Normandie, Inserm, Cyceron, CHU de Caen, COMETE U1075, Caen, France
| | - Igor B Mekjavic
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
3
|
Sorrentino RG, Avila‐Mirèles E, Babič J, Supej M, Mekjavic IB, McDonnell AC. Comparison of joint kinematics between upright front squat exercise and horizontal squat exercise performed on a short arm human centrifugation. Physiol Rep 2024; 12:e16034. [PMID: 38949844 PMCID: PMC11216087 DOI: 10.14814/phy2.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 07/02/2024] Open
Abstract
This study compared the joint kinematics between the front squat (FS) conducted in the upright (natural gravity) position and in the supine position on a short arm human centrifuge (SAHC). Male participants (N = 12) with no prior experience exercising on a centrifuge completed a FS in the upright position before (PRE) and after (POST) a FS exercise conducted on the SAHC while exposed to artificial gravity (AG). Participants completed, in randomized order, three sets of six repetitions with a load equal to body weight or 1.25 × body weight for upright squats, and 1 g and 1.25 g at the center of gravity (COG) for AG. During the terrestrial squats, the load was applied with a barbell. Knee (left/right) and hip (left/right) flexion angles were recorded with a set of inertial measurement units. AG decreased the maximum flexion angle (MAX) of knees and hips as well as the range of motion (ROM), both at 1 and 1.25 g. Minor adaptation was observed between the first and the last repetition performed in AG. AG affects the ability to FS in naïve participants by reducing MAX, MIN and ROM of the knees and hip.
Collapse
Affiliation(s)
- Riccardo G. Sorrentino
- Department of Automatics, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Edwin Avila‐Mirèles
- Department of Automatics, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Universal Robots, Research and Development DepartmentOdenseDenmark
| | - Jan Babič
- Department of Automatics, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| | - Matej Supej
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | - Igor B. Mekjavic
- Department of Automatics, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| | - Adam C. McDonnell
- Department of Automatics, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
4
|
Jeong D, Lee E, Sung J, Kang S. Relationship between sleep quality and gravitational Tolerance. Sleep Breath 2024; 28:1223-1229. [PMID: 38308752 DOI: 10.1007/s11325-023-02987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The purpose of this study was to investigate the relationship between sleep quality and gravitational tolerance because sleep could directly affect physiological variables of the human body. METHODS For the present study, 157 male Korea Air Force Academy cadets were recruited. They were assigned into a gravity (G)-tolerance test pass group (GP, n = 87) and a G-tolerance test fail group (GF, n = 70). All participants were assessed for G-tolerance test and Pittsburgh Sleep Quality Index (PSQI), a self-report questionnaire. Physical fitness test was performed based on the physical fitness test of the Ministry of National Defense of Korea. RESULTS Independent t-test showed that PSQI global score (p < 0.001), PSQI sleep quality (p < 0.001), PSQI sleep onset latency (p = 0.009), PSQI sleep disturbance (p < 0.001), and PSQI daytime dysfunction (p < 0.001) were significantly different between the two groups. Participants with PSQI score less than 5 were more likely to have a longer G-tolerance test time (OR = 4.705, 95% CI = 2.00-11.05). Additionally, associations between those with PSQI score less than 5 (OR = 4.567, 95% CI = 1.94-10.74) were after adjusting (< 30 s and ≥ 30 s) for covariates. A negative correlation was found between G-tolerance test time and PSQI global score (p < 0.001). Negative correlations were found among 3 km running, push-up (p < 0.001), and sit-up (p < 0.001). A positive correlation was found between push-up and sit-up (p < 0.001). CONCLUSION In conclusion, participants with good sleep quality were 4.705 times more likely to have longer G-tolerance test time. Thus, it is important for aircraft pilots to manage their sleep quality. Pre-pilots should also improve their sleep quality to pass the G-tolerance test.
Collapse
Affiliation(s)
- Deokhwa Jeong
- Department of Smart Health Science and Technology, Graduate School, Kangwon National University, Gangwon-Do, Republic of Korea
- Department of Aero Fitness, Republic of Korea Air Force Academy, Chungcheongbuk-Do, Republic of Korea
| | - Eunjae Lee
- Waseda Institute for Sport Sciences, Waseda University, Saitama, Japan
- Institute of Sports and Arts Convergence (ISAC), Inha University, Incheon, Republic of Korea
| | - Junyoung Sung
- Department of Aero Fitness, Republic of Korea Air Force Academy, Chungcheongbuk-Do, Republic of Korea
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Gangwon-Do, Republic of Korea.
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University, Gangwon-Do, Republic of Korea.
| |
Collapse
|
5
|
Frett T, Lecheler L, Arz M, Pustowalow W, Petrat G, Mommsen F, Breuer J, Schmitz MT, Green DA, Jordan J. Acute cardiovascular and muscular response to rowing ergometer exercise in artificial gravity - a pilot trial. NPJ Microgravity 2024; 10:57. [PMID: 38782970 PMCID: PMC11116499 DOI: 10.1038/s41526-024-00402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Prolonged immobilization and spaceflight cause cardiovascular and musculoskeletal deconditioning. Combining artificial gravity through short-arm centrifugation with rowing exercise may serve as a countermeasure. We aimed to compare the tolerability, muscle force production, cardiovascular response, and power output of rowing on a short-arm centrifuge and under terrestrial gravity. Twelve rowing athletes (4 women, aged 27.2 ± 7.4 years, height 179 ± 0.1 cm, mass 73.7 ± 9.4 kg) participated in two rowing sessions, spaced at least six weeks apart. One session used a short-arm centrifuge with +0.5 Gz, while the other inclined the rowing ergometer by 26.6° to mimic centrifugal loading. Participants started self-paced rowing at 30 W, increasing by 15 W every three minutes until exhaustion. We measured rowing performance, heart rate, blood pressure, ground reaction forces, leg muscle activation, and blood lactate concentration. Rowing on the centrifuge was well-tolerated without adverse events. No significant differences in heart rate, blood pressure, or blood lactate concentration were observed between conditions. Inclined rowing under artificial gravity resulted in lower power output (-33%, p < 0.001) compared to natural gravity, but produced higher mean and peak ground reaction forces (p < 0.0001) and increased leg muscle activation. Muscle activation and ground reaction forces varied with rotational direction. Rowing in artificial gravity shows promise as a strategy against cardiovascular and muscular deconditioning during long-term spaceflight, but further investigation is required to understand its long-term effects.
Collapse
Affiliation(s)
- Timo Frett
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.
| | - Leo Lecheler
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Michael Arz
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Willi Pustowalow
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Guido Petrat
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Florian Mommsen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Jan Breuer
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marie-Therese Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King's College London, London, UK
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Reliability of bioreactance-derived hemodynamic monitoring during simulated sustained gravitational transitions induced by short-arm human centrifugation. Med Eng Phys 2022; 107:103868. [DOI: 10.1016/j.medengphy.2022.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
7
|
Frett T, Lecheler L, Speer M, Marcos D, Pesta D, Tegtbur U, Schmitz MT, Jordan J, Green DA. Comparison of trunk muscle exercises in supine position during short arm centrifugation with 1 g at centre of mass and upright in 1 g. Front Physiol 2022; 13:955312. [PMID: 36060705 PMCID: PMC9428406 DOI: 10.3389/fphys.2022.955312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Spaceflight is associated with reduced antigravitational muscle activity, which results in trunk muscle atrophy and may contribute to post-flight postural and spinal instability. Exercise in artificial gravity (AG) performed via short-arm human centrifugation (SAHC) is a promising multi-organ countermeasure, especially to mitigate microgravity-induced postural muscle atrophy. Here, we compared trunk muscular activity (mm. rectus abdominis, ext. obliques and multifidi), cardiovascular response and tolerability of trunk muscle exercises performed during centrifugation with 1 g at individual center of mass on a SAHC against standard upright exercising. We recorded heart rate, blood pressure, surface trunk muscle activity, motion sickness and rating of perceived exertion (BORG) of 12 participants (8 male/4 female, 34 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg). Heart rate was significantly increased (p < 0.001) during exercises without differences in conditions. Systolic blood pressure was higher (p < 0.001) during centrifugation with a delayed rise during exercises in upright condition. Diastolic blood pressure was lower in upright (p = 0.018) compared to counter-clockwise but not to clockwise centrifugation. Target muscle activation were comparable between conditions, although activity of multifidi was lower (clockwise: p = 0.003, counter-clockwise: p < 0.001) and rectus abdominis were higher (clockwise: p = 0.0023, counter-clockwise: < 0.001) during centrifugation in one exercise type. No sessions were terminated, BORG scoring reflected a relevant training intensity and no significant increase in motion sickness was reported during centrifugation. Thus, exercising trunk muscles during centrifugation generates comparable targeted muscular and heart rate response and appears to be well tolerated. Differences in blood pressure were relatively minor and not indicative of haemodynamic challenge. SAHC-based muscle training is a candidate to reduce microgravity-induced inter-vertebral disc pathology and trunk muscle atrophy. However, further optimization is required prior to performance of a training study for individuals with trunk muscle atrophy/dysfunction.
Collapse
Affiliation(s)
- Timo Frett
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- *Correspondence: Timo Frett,
| | - Leopold Lecheler
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | | | | | - Dominik Pesta
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uwe Tegtbur
- Hannover Medical School, Institutes of Sports Medicine, Hannover, Germany
| | - Marie-Therese Schmitz
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Informatics and Epidemiology, Institute of Medical Biometry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jens Jordan
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King’s College London, London, United Kingdom
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| |
Collapse
|
8
|
Hussain S, Raza Z, Giacomini G, Goswami N. Support Vector Machine-Based Classification of Vasovagal Syncope Using Head-Up Tilt Test. BIOLOGY 2021; 10:1029. [PMID: 34681130 PMCID: PMC8533587 DOI: 10.3390/biology10101029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Syncope is the medical condition of loss of consciousness triggered by the momentary cessation of blood flow to the brain. Machine learning techniques have been established to be very effective way to address such problems, where a class label is predicted for given input data. This work presents a Support Vector Machine (SVM) based classification of neuro-mediated syncope evaluated using train-test-split and K-fold cross-validation methods using the patient's physiological data collected through the Head-up Tilt Test in pure clinical settings. The performance of the model has been analyzed over standard statistical performance indices. The experimental results prove the effectiveness of using SVM-based classification for the proactive diagnosis of syncope.
Collapse
Affiliation(s)
- Shahadat Hussain
- School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Zahid Raza
- School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | | | - Nandu Goswami
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8036 Graz, Austria;
- Alma Mater Europaea, 17 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Goswami N, Singh A, Deepak KK. Developing a "dry lab" activity using lower body negative pressure to teach physiology. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:445-453. [PMID: 34124953 DOI: 10.1152/advan.00123.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
In this paper we assessed how lower body negative pressure (LBNP) can be used to teach students the physiological effects of central hypovolemia in the absence of the LBNP and/or a medical monitor using a "dry lab" activity using LBNP data that have been previously collected. This activity was performed using published LBNP papers, with which students could explore LBNP as an important tool to study physiological responses to central hypovolemia as well as consider issues in performing an LBNP experiment and interpreting experimental results. The activity was performed at the All India Institute of Medical Sciences, New Delhi, with 31 graduate students and 4 teachers of physiology. Both students and teachers were provided with a set of questionnaires that inquired about aspects related to the structure of the activity and how this activity integrated research and knowledge, as well as aspects related to motivation of the students and teachers to perform the activity. Our results from student and teacher surveys suggest that a "dry lab" activity using LBNP to teach physiology can be an important tool to expose students to the basics of systems physiology as well as to provide useful insights into how research is performed. Providing insight into research includes formulating a research question and then designing (including taking into account confounding variables), implementing, conducting, and interpreting research studies. Finally, developing such an activity using LBNP can also serve as a basis for developing research capacities and interests of students even early in their medical studies.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akanksha Singh
- Department of Physiology, Autonomic Function Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Department of Physiology, Autonomic Function Laboratory, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Kourtidou-Papadeli C, Frantzidis CA, Gilou S, Plomariti CE, Nday CM, Karnaras D, Bakas L, Bamidis PD, Vernikos J. Gravity Threshold and Dose Response Relationships: Health Benefits Using a Short Arm Human Centrifuge. Front Physiol 2021; 12:644661. [PMID: 34045973 PMCID: PMC8144521 DOI: 10.3389/fphys.2021.644661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Increasing the level of gravity passively on a centrifuge, should be equal to or even more beneficial not only to astronauts living in a microgravity environment but also to patients confined to bed. Gravity therapy (GT) may have beneficial effects on numerous conditions, such as immobility due to neuromuscular disorders, balance disorders, stroke, sports injuries. However, the appropriate configuration for administering the Gz load remains to be determined. Methods To address these issues, we studied graded G-loads from 0.5 to 2.0g in 24 young healthy, male and female participants, trained on a short arm human centrifuge (SAHC) combined with mild activity exercise within 40–59% MHR, provided by an onboard bicycle ergometer. Hemodynamic parameters, as cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were analyzed, as well as blood gas analysis. A one-way repeated measures ANOVA and pairwise comparisons were conducted with a level of significance p < 0.05. Results Significant changes in heart rate variability (HRV) and its spectral components (Class, Fmax, and VHF) were found in all g loads when compared to standing (p < 0.001), except in 1.7 and 2.0g. There were significant changes in CO, cardiac index (CI), and cardiac power (CP) (p < 0.001), and in MAP (p = 0.003) at different artificial gravity (AG) levels. Dose-response curves were determined based on statistically significant changes in cardiovascular parameters, as well as in identifying the optimal G level for training, as well as the optimal G level for training. There were statistically significant gender differences in Cardiac Output/CO (p = 0.002) and Cardiac Power/CP (p = 0.016) during the AG training as compared to standing. More specifically, these cardiovascular parameters were significantly higher for male than female participants. Also, there was a statistically significant (p = 0.022) gender by experimental condition interaction, since the high-frequency parameter of the heart rate variability was attenuated during AG training as compared to standing but only for the female participants (p = 0.004). Conclusion The comprehensive cardiovascular evaluation of the response to a range of graded AG loads, as compared to standing, in male and female subjects provides the dose-response framework that enables us to explore and validate the usefulness of the centrifuge as a medical device. It further allows its use in precisely selecting personalized gravity therapy (GT) as needed for treatment or rehabilitation of individuals confined to bed.
Collapse
Affiliation(s)
- Chrysoula Kourtidou-Papadeli
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Aeromedical Center of Thessaloniki, Thessaloniki, Greece
| | - Christos A Frantzidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Sotiria Gilou
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina E Plomariti
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christiane M Nday
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Lefteris Bakas
- Laboratory of Aerospace and Rehabilitation Applications "Joan Vernikos" Arogi Rehabilitation Center, Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Joan Vernikos
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Thirdage llc, Culpeper, VA, United States
| |
Collapse
|
11
|
Scott JPR, Kramer A, Petersen N, Green DA. The Role of Long-Term Head-Down Bed Rest in Understanding Inter-Individual Variation in Response to the Spaceflight Environment: A Perspective Review. Front Physiol 2021; 12:614619. [PMID: 33643065 PMCID: PMC7904881 DOI: 10.3389/fphys.2021.614619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Exposure to the spaceflight environment results in profound multi-system physiological adaptations in which there appears to be substantial inter-individual variability (IV) between crewmembers. However, performance of countermeasure exercise renders it impossible to separate the effects of the spaceflight environment alone from those associated with exercise, whilst differences in exercise programs, spaceflight operations constraints, and environmental factors further complicate the interpretation of IV. In contrast, long-term head-down bed rest (HDBR) studies isolate (by means of a control group) the effects of mechanical unloading from those associated with countermeasures and control many of the factors that may contribute to IV. In this perspective, we review the available evidence of IV in response to the spaceflight environment and discuss factors that complicate its interpretation. We present individual data from two 60-d HDBR studies that demonstrate that, despite the highly standardized experimental conditions, marked quantitative differences still exist in the response of the cardiorespiratory and musculoskeletal systems between individuals. We also discuss the statistical concept of “true” and “false” individual differences and its potential application to HDBR data. We contend that it is currently not possible to evaluate IV in response to the spaceflight environment and countermeasure exercise. However, with highly standardized experimental conditions and the presence of a control group, HDBR is suitable for the investigation of IV in the physiological responses to gravitational unloading and countermeasures. Such investigations may provide valuable insights into the potential role of IV in adaptations to the spaceflight environment and the effectiveness of current and future countermeasures.
Collapse
Affiliation(s)
- Jonathan P R Scott
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Andreas Kramer
- Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Nora Petersen
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - David A Green
- Space Medicine Team, ISS Operations and Astronaut Group, Directorate of Human and Robotic Exploration, European Space Agency, Cologne, Germany.,KBR GmbH, Cologne, Germany.,Centre of Human and Applied Physiology, King's College London, London, United Kingdom
| |
Collapse
|