1
|
Deng Q, Parker E, Duan R, Yang L. Preconditioning and Posttreatment Strategies in Neonatal Hypoxic-Ischemic Encephalopathy: Recent Advances and Clinical Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04896-4. [PMID: 40178781 DOI: 10.1007/s12035-025-04896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by impaired cerebral blood flow and brain hypoxia, resulting in high morbidity and mortality rates. While therapeutic hypothermia remains the standard treatment and has been shown to reduce mortality to some extent, its therapeutic efficacy is limited, and it applies only to a select group of neonates who meet stringent inclusion criteria. Advances in our understanding of the pathophysiology of HIE have led to the identification of several promising neuroprotective strategies designed to mitigate or prevent the neurological damage induced by hypoxia-ischemia. Among these, preconditioning has emerged as a potent neuroprotective approach, enhancing cellular resilience to subsequent injury and potentially reducing treatment complexity and healthcare costs. Preconditioning/pretreatment and posttreatment offer significant promise in attenuating the neurological damage associated with HIE. Thus, exploring early intervention strategies for neonatal HIE, focusing on the comparative mechanisms and therapeutic targets of preconditioning and postconditioning, is critical to developing more effective treatment modalities. This review summarizes the current understanding of the pathophysiological mechanisms underlying neonatal HIE and its prevention and treatment strategies, providing new perspectives and a theoretical foundation for future neuroprotective interventions.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, GD, China
| | - Emily Parker
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, GD, China.
| |
Collapse
|
2
|
McDouall A, Zhou KQ, Wassink G, Davies A, Bennet L, Gunn AJ, Davidson JO. Lack of additional benefit from slow rewarming after therapeutic hypothermia for ischaemic brain injury in near-term fetal sheep. J Physiol 2024; 602:7085-7101. [PMID: 39530479 DOI: 10.1113/jp287453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The optimal rate of rewarming after therapeutic hypothermia is unclear. Slow rewarming may reduce cardiovascular instability and rebound seizures, but there is little controlled evidence to support this. The present study aimed to determine whether slow rewarming can improve neuroprotection after 72 h of hypothermia. Fetal sheep (0.85 gestation) received sham occlusion (n = 8) or 30 min of global cerebral ischaemia followed by normothermia (n = 7), or hypothermia from 3 to 72 h with either fast, spontaneous rewarming within 1 h (n = 8) or slow rewarming at 0.5°C h-1 over 10 h (n = 8). Hypothermia improved EEG and spectral edge recovery, with no significant difference between fast and slow rewarming. Hypothermia reduced the number of seizures, with no significant difference in seizure activity between fast and slow rewarming. Hypothermia improved neuronal survival in the cortex, CA1, CA3, CA4 and dentate gyrus regions of the hippocampus, with no significant difference between fast and slow rewarming. Hypothermia attenuated microglia counts in the cortex, with no significant difference between fast and slow rewarming. The rate of rewarming after a clinically relevant duration of hypothermia did not affect neurophysiological recovery, neuronal survival or attenuation of microglia after global cerebral ischaemia in term-equivalent fetal sheep. KEY POINTS: The rate of rewarming after 72 h of hypothermia did not affect recovery of EEG or spectral edge. There was no difference in the occurrence of seizures as a result of the rate of rewarming after hypothermia. The rate of rewarming after 72 h of hypothermia did not affect neuronal survival in the cortex or hippocampus.
Collapse
Affiliation(s)
- Alice McDouall
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Anthony Davies
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
Alart JA, Álvarez A, Catalan A, Herrero de la Parte B, Alonso-Alconada D. Dimethyl Fumarate Strongly Ameliorates Gray and White Matter Brain Injury and Modulates Glial Activation after Severe Hypoxia-Ischemia in Neonatal Rats. Antioxidants (Basel) 2024; 13:1122. [PMID: 39334781 PMCID: PMC11428775 DOI: 10.3390/antiox13091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neonatal hypoxia-ischemia is a major cause of infant death and disability. The only clinically accepted treatment is therapeutic hypothermia; however, cooling is less effective in the most severely encephalopathic infants. Here, we wanted to test the neuroprotective effect of the antioxidant dimethyl fumarate after severe hypoxia-ischemia in neonatal rats. We used a modified Rice-Vannucci model to generate severe hypoxic-ischemic brain damage in day 7 postnatal rats, which were randomized into four experimental groups: Sham, Sham + DMF, non-treated HI, and HI + DMF. We analyzed brain tissue loss, global and regional (cortex and hippocampus) neuropathological scores, white matter injury, and microglial and astroglial reactivity. Compared to non-treated HI animals, HI + DMF pups showed a reduced brain area loss (p = 0.0031), an improved neuropathological score (p = 0.0016), reduced white matter injuries by preserving myelin tracts (p < 0.001), and diminished astroglial (p < 0.001) and microglial (p < 0.01) activation. After severe hypoxia-ischemia in neonatal rats, DMF induced a strong neuroprotective response, reducing cerebral infarction, gray and white matter damage, and astroglial and microglial activation. Although further molecular studies are needed and its translation to human babies would need to evaluate the molecule in piglets or lambs, DMF may be a potential treatment against neonatal encephalopathy.
Collapse
Affiliation(s)
- Jon Ander Alart
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ana Catalan
- Psychiatry Department, OSI Bilbao-Basurto, Basurto University Hospital, 48013 Bilbao, Spain
- Neuroscience Department, University of the Basque Country (UPV/EHU), 48013 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, 28007 Madrid, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
5
|
Asif S, Shaukat M, Khalil K, Javed H, Safwan M, Alam K, Fatima S, Chohan P, Muhammad Hanif H, Mahmmoud Fadelallah Eljack M, Bin Zafar MD, Hasanain M. Hypoglycemia and hyperglycemia in neonatal encephalopathy: A narrative review. Medicine (Baltimore) 2024; 103:e39488. [PMID: 39252249 PMCID: PMC11383499 DOI: 10.1097/md.0000000000039488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Neonatal encephalopathy (NE) is a serious condition with various neurological dysfunctions in newborns. Disruptions in glucose metabolism, including both hypoglycemia and hyperglycemia, are common in NE and can significantly impact outcomes. Hypoglycemia, defined as blood glucose below 45 mg/dL, is associated with increased mortality, neurodevelopmental disabilities, and brain lesions on MRI. Conversely, hyperglycemia, above 120 to 150 mg/dL, has also been linked to heightened mortality, hearing impairment, and multiorgan dysfunction. Both aberrant glucose states appear to worsen prognosis compared to normoglycemic infants. Therapeutic hypothermia is the standard of care for NE that provides neuroprotection by reducing metabolic demands and inflammation. Adjunct therapies like glucagon and continuous glucose monitoring show promise in managing dysglycemia and improving outcomes. Glucagon can enhance cerebral blood flow and glucose supply, while continuous glucose monitoring enables real-time monitoring and personalized interventions. Maintaining balanced blood sugar levels is critical in managing NE. Early detection and intervention of dysglycemia are crucial to improve outcomes in neonates with encephalopathy. Further research is needed to optimize glycemic management strategies and explore the potential benefits of interventions like glucagon therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Khadija Alam
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | | | | | | | | | | | |
Collapse
|
6
|
Chalak LF, Davidson JO, Gunn AJ. Reverse Therapy: Impact of Hyperthermia and Rewarming on Newborn Outcomes. Clin Perinatol 2024; 51:565-572. [PMID: 39095096 DOI: 10.1016/j.clp.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Therapeutic hypothermia is now well established to improve neurodevelopmental outcomes after hypoxic-ischemic encephalopathy (HIE). Although the overall principles of treatment are now well established, many smaller questions are unclear. The potential impact of reversal of hypothermia therapy and the effect of high temperatures on recovery of the neurovascular unit after therapeutic hypothermia for HIE has received relatively little attention. This article will address the effects of hypoxia-ischemia and rewarming and increased temperatures on the neurovascular unit in preclinical and clinical models.
Collapse
Affiliation(s)
- Lina F Chalak
- Department of Pediatrics, Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand; Department of Paediatrics, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
McDouall A, Zhou KQ, Davies A, Wassink G, Jones TLM, Bennet L, Gunn AJ, Davidson JO. Slow rewarming after hypothermia does not ameliorate white matter injury after hypoxia-ischemia in near-term fetal sheep. Pediatr Res 2024:10.1038/s41390-024-03332-y. [PMID: 39103629 DOI: 10.1038/s41390-024-03332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 05/18/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The optimal rate to rewarm infants after therapeutic hypothermia is unclear. In this study we examined whether slow rewarming after 72 h of hypothermia would attenuate white matter injury. METHODS Near-term fetal sheep received sham occlusion (n = 8) or cerebral ischemia for 30 min, followed by normothermia (n = 7) or hypothermia from 3-72 h, with either spontaneous fast rewarming (n = 8) within 1 h, or slow rewarming at ~0.5 °C/h (n = 8) over 10 h. Fetuses were euthanized 7 days later. RESULTS Ischemia was associated with loss of total and mature oligodendrocytes, reduced expression of myelin proteins and induction of microglia and astrocytes, compared with sham controls (P < 0.05). Both hypothermia protocols were associated with a significant increase in numbers of total and mature oligodendrocytes, area fraction of myelin proteins and reduced numbers of microglia and astrocytes, compared with ischemia-normothermia (P < 0.05). There was no difference in the number of oligodendrocytes, microglia or astrocytes or expression of myelin proteins between fast and slow rewarming after hypothermia. CONCLUSION The rate of rewarming after a clinically relevant duration of hypothermia had no apparent effect on white matter protection by hypothermia after cerebral ischemia in near-term fetal sheep. IMPACT Persistent white matter injury is a major contributor to long-term disability after neonatal encephalopathy despite treatment with therapeutic hypothermia. The optimal rate to rewarm infants after therapeutic hypothermia is unclear; current protocols were developed on a precautionary basis. We now show that slow rewarming at 0.5 °C/h did not improve histological white matter injury compared with rapid spontaneous rewarming after a clinically established duration of hypothermia in near-term fetal sheep.
Collapse
Affiliation(s)
- Alice McDouall
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Anthony Davies
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Timothy L M Jones
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Molloy EJ, El-Dib M, Soul J, Juul S, Gunn AJ, Bender M, Gonzalez F, Bearer C, Wu Y, Robertson NJ, Cotton M, Branagan A, Hurley T, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Wintermark P, Bonifacio SL. Neuroprotective therapies in the NICU in preterm infants: present and future (Neonatal Neurocritical Care Series). Pediatr Res 2024; 95:1224-1236. [PMID: 38114609 PMCID: PMC11035150 DOI: 10.1038/s41390-023-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.
- Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatrics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Manon Bender
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California, San Francisco, California, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yvonne Wu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mike Cotton
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
- Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland
| | - Sidhartha Tan
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, Rhode Island, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, California, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK
- Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Pia Wintermark
- Division of Neonatology, Montreal Children's Hospital, Montreal, Quebec, Canada
- McGill University Health Centre - Research Institute, Montreal, Quebec, Canada
| | - Sonia Lomeli Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Tepe T, Satar M, Ozdemir M, Yildizdas HY, Ozlü F, Erdogan S, Toyran T, Akillioglu K, Köse S, Avci C. Long-term effect of indomethacin on a rat model of neonatal hypoxia ischemic encephalopathy through behavioral tests. Int J Dev Neurosci 2024; 84:22-34. [PMID: 37842754 DOI: 10.1002/jdn.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Many medical experts prescribe indomethacin because of its anti-inflammatory, analgesic, tocolytic, and duct closure effects. This article presents an evaluation of the enduring impact of indomethacin on neonatal rats with hypoxic-ischemic (HI) insults, employing behavioral tests as a method of assessment. METHODS The experiment was conducted on male Wistar-Albino rats weighing 10 to 15 g, aged between seven and 10 days. The rats were divided into three groups using a random allocation method as follows: hypoxic ischemic encephalopathy (HIE) group, HIE treated with indomethacin group (INDO), and Sham group. A left common carotid artery ligation and hypoxia model was applied in both the HIE and INDO groups. The INDO group was treated with 4 mg/kg intraperitoneal indomethacin every 24 h for 3 days, while the Sham and HIE groups were given dimethylsulfoxide (DMSO). After 72 h, five rats from each group were sacrificed and brain tissue samples were stained with 2,3,5-Triphenyltetrazolium chloride (TCC) for infarct-volume measurement. Seven rats from each group were taken to the behavioral laboratory in the sixth postnatal week (PND42) and six from each group were sacrificed for the Evans blue (EB) experiment for blood-brain barrier (BBB) integrity evaluation. The open field (OF) test and Morris water maze (MWM) tests were performed. After behavioral tests, brain tissue were obtained and stained with TCC to assess the infarct volume. RESULTS The significant increase in the time spent in the central area and the frequency of crossing to the center in the INDO group compared with the HIE group indicated that indomethacin decreased anxiety-like behavior (p < 0.001, p < 0.05). However, the MWM test revealed that indomethacin did not positively affect learning and memory performance (p > 0.05). Additionally, indomethacin significantly reduced infarct volume and neuropathological grading in adolescence (p < 0.05), although not statistically significant in the early period. Moreover, the EB experiment demonstrated that indomethacin effectively increased BBB integrity (p < 0.05). CONCLUSIONS In this study, we have shown for the first time that indomethacin treatment can reduce levels of anxiety-like behavior and enhance levels of exploratory behavior in a neonatal rat model with HIE. It is necessary to determine whether nonsteroidal anti-inflammatory agents, such as indomethacin, should be used for adjuvant therapy in newborns with HIE.
Collapse
Affiliation(s)
- Tugay Tepe
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mehmet Satar
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mustafa Ozdemir
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Hacer Yapicioglu Yildizdas
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ferda Ozlü
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seyda Erdogan
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Tugba Toyran
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seda Köse
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Cagri Avci
- Department of Virology, Cukurova University Faculty of Veterinary Medicine, Adana, Turkey
| |
Collapse
|
10
|
Malhotra A, Thebaud B, Paton MCB, Fleiss B, Papagianis P, Baker E, Bennet L, Yawno T, Elwood N, Campbell B, Chand K, Zhou L, Penny T, Nguyen T, Pepe S, Gunn AJ, McDonald CA. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022). Pediatr Res 2023; 94:1631-1638. [PMID: 37380752 PMCID: PMC10624618 DOI: 10.1038/s41390-023-02707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.
Collapse
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| | - Bernard Thebaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
| | - Madison C B Paton
- Cerebral Palsy Alliance Research Institute; Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paris Papagianis
- Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Elizabeth Baker
- Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Laura Bennet
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ngaire Elwood
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Belinda Campbell
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kirat Chand
- Perinatal Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Salvatore Pepe
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Korf JM, McCullough LD, Caretti V. A narrative review on treatment strategies for neonatal hypoxic ischemic encephalopathy. Transl Pediatr 2023; 12:1552-1571. [PMID: 37692539 PMCID: PMC10485647 DOI: 10.21037/tp-23-253] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Objective Hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability worldwide. Therapeutic hypothermia (TH) represents a significant achievement in the translation of scientific research to clinical application, but it is currently the only neuroprotective treatment for HIE. This review aims to revisit the use of TH for HIE and its longitudinal impact on patient outcomes to readers new to the field of HIE. We discuss how emerging therapies address the broader pathophysiology of injury progression in the neonatal brain days to years after HIE. Methods We included full articles and book chapters published in English on PubMed with references to "hypoxic ischemic encephalopathy", "birth asphyxia", "therapeutic hypothermia", or "neonatal encephalopathy". We limited our review to outcomes on term infants and to new therapeutics that are in the second phase of clinical trials. Key Content and Findings Despite the use of TH for HIE, mortality remains high. Analysis of longitudinal studies reveals a high incidence of ongoing disability even with the implementation of TH. New therapeutics addressing the secondary phase and the less understood tertiary phase of brain injury are in clinical trials as adjunctive treatments to TH to support additional neurological repair and regeneration. Conclusions TH successfully improves outcomes after HIE, and it continues to be optimized. Larger studies are needed to understand its use in mild cases of HIE and if certain factors, such as sex, affect long term outcomes. TH primarily acts in the initial phases of injury, while new pharmaceutical therapies target additional injury pathways into the tertiary phases of injury. This may allow for more effective approaches to treatment and improvement of long-term functional outcomes after HIE.
Collapse
Affiliation(s)
- Janelle M. Korf
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Viola Caretti
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, USA
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Perez-Pouchoulen M, Jaiyesimi A, Bardhi K, Waddell J, Banerjee A. Hypothermia increases cold-inducible protein expression and improves cerebellar-dependent learning after hypoxia ischemia in the neonatal rat. Pediatr Res 2023; 94:539-546. [PMID: 36810641 PMCID: PMC10403381 DOI: 10.1038/s41390-023-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy remains a significant cause of developmental disability.1,2 The standard of care for term infants is hypothermia, which has multifactorial effects.3-5 Therapeutic hypothermia upregulates the cold-inducible protein RNA binding motif 3 (RBM3) that is highly expressed in developing and proliferative regions of the brain.6,7 The neuroprotective effects of RBM3 in adults are mediated by its ability to promote the translation of mRNAs such as reticulon 3 (RTN3).8 METHODS: Hypoxia ischemia or control procedure was conducted in Sprague Dawley rat pups on postnatal day 10 (PND10). Pups were immediately assigned to normothermia or hypothermia at the end of the hypoxia. In adulthood, cerebellum-dependent learning was tested using the conditioned eyeblink reflex. The volume of the cerebellum and the magnitude of cerebral injury were measured. A second study quantified RBM3 and RTN3 protein levels in the cerebellum and hippocampus collected during hypothermia. RESULTS Hypothermia reduced cerebral tissue loss and protected cerebellar volume. Hypothermia also improved learning of the conditioned eyeblink response. RBM3 and RTN3 protein expression were increased in the cerebellum and hippocampus of rat pups subjected to hypothermia on PND10. CONCLUSIONS Hypothermia was neuroprotective in male and female pups and reversed subtle changes in the cerebellum after hypoxic ischemic. IMPACT Hypoxic ischemic produced tissue loss and a learning deficit in the cerebellum. Hypothermia reversed both the tissue loss and learning deficit. Hypothermia increased cold-responsive protein expression in the cerebellum and hippocampus. Our results confirm cerebellar volume loss contralateral to the carotid artery ligation and injured cerebral hemisphere, suggesting crossed-cerebellar diaschisis in this model. Understanding the endogenous response to hypothermia might improve adjuvant interventions and expand the clinical utility of this intervention.
Collapse
Affiliation(s)
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keti Bardhi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Sutin J, Vyas R, Feldman HA, Ferradal S, Hsiao CH, Zampolli L, Pierce LJ, Nelson CA, Morton SU, Hay S, El-Dib M, Soul JS, Lin PY, Grant PE. Association of cerebral metabolic rate following therapeutic hypothermia with 18-month neurodevelopmental outcomes after neonatal hypoxic ischemic encephalopathy. EBioMedicine 2023; 94:104673. [PMID: 37392599 PMCID: PMC10338207 DOI: 10.1016/j.ebiom.2023.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Therapeutic hypothermia (TH) is standard of care for moderate to severe neonatal hypoxic ischemic encephalopathy (HIE) but many survivors still suffer lifelong disabilities and benefits of TH for mild HIE are under active debate. Development of objective diagnostics, with sensitivity to mild HIE, are needed to select, guide, and assess response to treatment. The objective of this study was to determine if cerebral oxygen metabolism (CMRO2) in the days after TH is associated with 18-month neurodevelopmental outcomes as the first step in evaluating CMRO2's potential as a diagnostic for HIE. Secondary objectives were to compare associations with clinical exams and characterise the relationship between CMRO2 and temperature during TH. METHODS This was a prospective, multicentre, observational, cohort study of neonates clinically diagnosed with HIE and treated with TH recruited from the tertiary neonatal intensive care units (NICUs) of Boston Children's Hospital, Brigham and Women's Hospital, and Beth Israel Deaconess Medical Center between December 2015 and October 2019 with follow-up to 18 months. In total, 329 neonates ≥34 weeks gestational age admitted with perinatal asphyxia and suspected HIE were identified. 179 were approached, 103 enrolled, 73 received TH, and 64 were included. CMRO2 was measured at the NICU bedside by frequency-domain near-infrared and diffuse correlation spectroscopies (FDNIRS-DCS) during the late phases of hypothermia (C), rewarming (RW) and after return to normothermia (NT). Additional variables were body temperature and clinical neonatal encephalopathy (NE) scores, as well as findings from magnetic resonance imaging (MRI) and spectroscopy (MRS). Primary outcome was the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) at 18 months, normed (SD) to 100 (15). FINDINGS Data quality for 58 neonates was sufficient for analysis. CMRO2 changed by 14.4% per °C (95% CI, 14.2-14.6) relative to its baseline at NT while cerebral tissue oxygen extraction fraction (cFTOE) changed by only 2.2% per °C (95% CI, 2.1-2.4) for net changes from C to NT of 91% and 8%, respectively. Follow-up data for 2 were incomplete, 33 declined and 1 died, leaving 22 participants (mean [SD] postnatal age, 19.1 [1.2] month; 11 female) with mild to moderate HIE (median [IQR] NE score, 4 [3-6]) and 21 (95%) with BSID-III scores >85 at 18 months. CMRO2 at NT was positively associated with cognitive and motor composite scores (β (SE) = 4.49 (1.55) and 2.77 (1.00) BSID-III points per 10-10 moL/dl × mm2/s, P = 0.009 and P = 0.01 respectively; linear regression); none of the other measures were associated with the neurodevelopmental outcomes. INTERPRETATION Point of care measures of CMRO2 in the NICU during C and RW showed dramatic changes and potential to assess individual response to TH. CMRO2 following TH outperformed conventional clinical evaluations (NE score, cFTOE, and MRI/MRS) at predicting cognitive and motor outcomes at 18 months for mild to moderate HIE, providing a promising objective, physiologically-based diagnostic for HIE. FUNDING This clinical study was funded by an NIH grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States (R01HD076258).
Collapse
Affiliation(s)
- Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Henry A Feldman
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Department of Pediatrics, Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Silvina Ferradal
- Department of Intelligent Systems Engineering, Indiana University Bloomington, 107 S Indiana Ave., Bloomington, IN 47405, USA
| | - Chuan-Heng Hsiao
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Lucca Zampolli
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Lara J Pierce
- Department of Psychology, York University, 198 York Blvd., North York, ON M3J 2S5, Canada
| | - Charles A Nelson
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Sarah U Morton
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Susanne Hay
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Department of Neonatology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | - Mohamed El-Dib
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | - Janet S Soul
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Patricia E Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
14
|
Mietzsch U, Flibotte JJ, Law JB, Puia-Dumitrescu M, Juul SE, Wood TR. Temperature dysregulation during therapeutic hypothermia predicts long-term outcome in neonates with HIE. J Cereb Blood Flow Metab 2023; 43:1180-1193. [PMID: 36883364 PMCID: PMC10291460 DOI: 10.1177/0271678x231162174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Few reliable or easily obtainable biomarkers to predict long-term outcome in infants with hypoxic-ischemic encephalopathy (HIE) have been identified. We previously showed that mattress temperature (MT), as proxy for disturbed temperature regulation during therapeutic hypothermia (TH), predicts injury on early MRI and holds promise as physiologic biomarker. To determine whether MT in neonates treated with TH for moderate-severe HIE is associated with long-term outcome at 18-22 months, we performed a secondary analysis of the Optimizing Cooling trial using MT data from 167 infants treated at a core temperature of 33.5°C. Median MTs from four time-epochs (0-6 h, 6-24 h, 24-48 h, and 48-72 h of TH) were used to predict death or moderate-severe neurodevelopmental impairment (NDI), using epoch-specific derived and validated MT cutoffs. Median MT of infants who died or survived with NDI was consistently 1.5-3.0°C higher throughout TH. Infants requiring a median MT above the derived cut-offs had a significantly increased odds of death or NDI, most notably at 0-6 h (aOR 17.0, 95%CI 4.3-67.4). By contrast, infants who remained below cut-offs across all epochs had 100% NDI-free survival. MTs in neonates with moderate-severe HIE during TH are highly predictive of long-term outcome and can be used as physiologic biomarker.
Collapse
Affiliation(s)
- Ulrike Mietzsch
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - John J Flibotte
- Division of Neonatology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Janessa B Law
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Mihai Puia-Dumitrescu
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sandra E Juul
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Thomas R Wood
- Division of Neonatology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Sheldon RA, Windsor C, Lu F, Stewart NR, Jiang X, Ferriero DM. Hypothermia Treatment after Hypoxia-Ischemia in Glutathione Peroxidase-1 Overexpressing Mice. Dev Neurosci 2023; 46:98-111. [PMID: 37231852 PMCID: PMC10667569 DOI: 10.1159/000531204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The developing brain is uniquely susceptible to oxidative stress, and endogenous antioxidant mechanisms are not sufficient to prevent injury from a hypoxic-ischemic challenge. Glutathione peroxidase (GPX1) activity reduces hypoxic-ischemic injury. Therapeutic hypothermia (HT) also reduces hypoxic-ischemic injury, in the rodent and the human brain, but the benefit is limited. Here, we combined GPX1 overexpression with HT in a P9 mouse model of hypoxia-ischemia (HI) to test the effectiveness of both treatments together. Histological analysis showed that wild-type (WT) mice with HT were less injured than WT with normothermia. In the GPX1-tg mice, however, despite a lower median score in the HT-treated mice, there was no significant difference between HT and normothermia. GPX1 protein expression was higher in the cortex of all transgenic groups at 30 min and 24 h, as well as in WT 30 min after HI, with and without HT. GPX1 was higher in the hippocampus of all transgenic groups and WT with HI and normothermia, at 24 h, but not at 30 min. Spectrin 150 was higher in all groups with HI, while spectrin 120 was higher in HI groups only at 24 h. There was reduced ERK1/2 activation in both WT and GPX1-tg HI at 30 min. Thus, with a relatively moderate insult, we see a benefit with cooling in the WT but not the GPX1-tg mouse brain. The fact that we see no benefit with increased GPx1 here in the P9 model (unlike in the P7 model) may indicate that oxidative stress in these older mice is elevated to an extent that increased GPx1 is insufficient for reducing injury. The lack of benefit of overexpressing GPX1 in conjunction with HT after HI indicates that pathways triggered by GPX1 overexpression may interfere with the neuroprotective mechanisms provided by HT.
Collapse
Affiliation(s)
- R. Ann Sheldon
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Institute, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Christine Windsor
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Fuxin Lu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Institute, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas R. Stewart
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Institute, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Institute, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Donna M. Ferriero
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Institute, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- UCSF Benioff Children’s Hospital, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Narayanamurthy R, Armstrong EA, Yang JLJ, Yager JY, Unsworth LD. Administration of selective brain hypothermia using a simple cooling device in neonatal rats. J Neurosci Methods 2023; 390:109838. [PMID: 36933705 DOI: 10.1016/j.jneumeth.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The interruption of oxygen and blood supply to the newborn brain around the time of birth is a risk factor for hypoxic-ischemic encephalopathy and may lead to infant mortality or lifelong neurological impairments. Currently, therapeutic hypothermia, the cooling of the infant's head or entire body, is the only treatment to curb the extent of brain damage. NEW METHOD In this study, we designed a focal brain cooling device that circulates cooled water at a steady state temperature of 19 ± 1 °C through a coil of tubing fitted onto the neonatal rat's head. We tested its ability to selectively decrease brain temperature and offer neuroprotection in a neonatal rat model of hypoxic-ischemic brain injury. RESULTS Our method cooled the brain to 30-33 °C in conscious pups, while keeping the core body temperature approximately 3.2 °C warmer. Furthermore, the application of the cooling device to the neonatal rat model demonstrated a reduction in brain volume loss compared to pups maintained at normothermia and achieved a level of brain tissue protection the same as that of whole-body cooling. COMPARISON WITH EXISTING METHODS Prevailing methods of selective brain hypothermia are designed for adult animal models rather than for immature animals such as the rat as a conventional model of developmental brain pathology. Contrary to existing methods, our method of cooling does not require surgical manipulation or anaesthesia. CONCLUSION Our simple, economical, and effective method of selective brain cooling is a useful tool for rodent studies in neonatal brain injury and adaptive therapeutic interventions.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Edward A Armstrong
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada.
| |
Collapse
|
17
|
Lear CA, Georgieva A, Beacom MJ, Wassink G, Dhillon SK, Lear BA, Mills OJ, Westgate JA, Bennet L, Gunn AJ. Fetal heart rate responses in chronic hypoxaemia with superimposed repeated hypoxaemia consistent with early labour: a controlled study in fetal sheep. BJOG 2023. [PMID: 36808862 DOI: 10.1111/1471-0528.17425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
OBJECTIVE Deceleration area (DA) and capacity (DC) of the fetal heart rate can help predict risk of intrapartum fetal compromise. However, their predictive value in higher risk pregnancies is unclear. We investigated whether they can predict the onset of hypotension during brief hypoxaemia repeated at a rate consistent with early labour in fetal sheep with pre-existing hypoxaemia. DESIGN Prospective, controlled study. SETTING Laboratory. SAMPLE Chronically instrumented, unanaesthetised near-term fetal sheep. METHODS One-minute complete umbilical cord occlusions (UCOs) were performed every 5 minutes in fetal sheep with baseline pa O2 <17 mmHg (hypoxaemic, n = 8) and >17 mmHg (normoxic, n = 11) for 4 hours or until arterial pressure fell <20 mmHg. MAIN OUTCOME MEASURES DA, DC and arterial pressure. RESULTS Normoxic fetuses showed effective cardiovascular adaptation without hypotension and mild acidaemia (lowest arterial pressure 40.7 ± 2.8 mmHg, pH 7.35 ± 0.03). Hypoxaemic fetuses developed hypotension (lowest arterial pressure 20.8 ± 1.9 mmHg, P < 0.001) and acidaemia (final pH 7.07 ± 0.05). In hypoxaemic fetuses, decelerations showed faster falls in FHR over the first 40 seconds of UCOs but the final deceleration depth was not different to normoxic fetuses. DC was modestly higher in hypoxaemic fetuses during the penultimate (P = 0.04) and final (P = 0.012) 20 minutes of UCOs. DA was not different between groups. CONCLUSION Chronically hypoxaemic fetuses had early onset of cardiovascular compromise during labour-like brief repeated UCOs. DA was unable to identify developing hypotension in this setting, while DC only showed modest differences between groups. These findings highlight that DA and DC thresholds need to be adjusted for antenatal risk factors, potentially limiting their clinical utility.
Collapse
Affiliation(s)
- C A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - G Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - S K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - B A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - O J Mills
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - J A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
18
|
Yang P, Davidson JO, Zhou KQ, Wilson R, Wassink G, Prasad JD, Bennet L, Gunn AJ, Dean JM. Therapeutic Hypothermia Attenuates Cortical Interneuron Loss after Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2023; 24:ijms24043706. [PMID: 36835117 PMCID: PMC9962824 DOI: 10.3390/ijms24043706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Therapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI. Near-term fetal sheep received sham ischemia or cerebral ischemia for 30 min, followed by cerebral hypothermia from 3 h after ischemia end and continued up to 48 h, 72 h, or 120 h recovery. Sheep were euthanized after 7 days for histology. Hypothermia up to 48 h recovery resulted in moderate neuroprotection of glutamate decarboxylase (GAD)+ and parvalbumin+ interneurons but did not improve survival of calbindin+ cells. Hypothermia up to 72 h recovery was associated with significantly increased survival of all three interneuron phenotypes compared with sham controls. By contrast, while hypothermia up to 120 h recovery did not further improve (or impair) GAD+ or parvalbumin+ neuronal survival compared with hypothermia up to 72 h, it was associated with decreased survival of calbindin+ interneurons. Finally, protection of parvalbumin+ and GAD+ interneurons, but not calbindin+ interneurons, with hypothermia was associated with improved recovery of electroencephalographic (EEG) power and frequency by day 7 after HI. The present study demonstrates differential effects of increasing the duration of hypothermia on interneuron survival after HI in near-term fetal sheep. These findings may contribute to the apparent preclinical and clinical lack of benefit of very prolonged hypothermia.
Collapse
|
19
|
Davidson JO, Battin MR, Gunn AJ. Implications of the HELIX trial for treating infants with hypoxic-ischaemic encephalopathy in low-to-middle-income countries. Arch Dis Child Fetal Neonatal Ed 2023; 108:83-84. [PMID: 35190398 DOI: 10.1136/archdischild-2021-323743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Malcolm R Battin
- Department of Neonatology, Auckland City Hospital, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
20
|
Paz AA, González-Candia A. Potential pharmacological target of tight junctions to improve the BBB permeability in neonatal Hypoxic-Ischemic encephalopathy Diseases. Biochem Pharmacol 2023; 207:115356. [PMID: 36455671 DOI: 10.1016/j.bcp.2022.115356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.
Collapse
Affiliation(s)
- Adolfo A Paz
- Institute of Health Sciences, University O'Higgins, Rancagua, Chile
| | | |
Collapse
|
21
|
Adeyemo T, Jaiyesimi A, Bumgardner JG, Lohr C, Banerjee A, McKenna MC, Waddell J. Choline Improves Neonatal Hypoxia-Ischemia Induced Changes in Male but Not Female Rats. Int J Mol Sci 2022; 23:13983. [PMID: 36430459 PMCID: PMC9694200 DOI: 10.3390/ijms232213983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Choline is an essential nutrient with many roles in brain development and function. Supplementation of choline in early development can have long-lasting benefits. Our experiments aimed to determine the efficacy of choline supplementation in a postnatal day (PND) 10 rat model of neonatal hypoxia ischemia (HI) at term using both male and female rat pups. Choline (100 mg/kg) or saline administration was initiated the day after birth and given daily for 10 or 14 consecutive days. We determined choline's effects on neurite outgrowth of sex-specific cultured cerebellar granule cells after HI with and without choline. The magnitude of tissue loss in the cerebrum was determined at 72 h after HI and in adult rats. The efficacy of choline supplementation in improving motor ability and learning, tested using eyeblink conditioning, were assessed in young adult male and female rats. Overall, we find that choline improves neurite outgrowth, short-term histological measures and learning ability in males. Surprisingly, choline did not benefit females, and appears to exacerbate HI-induced changes.
Collapse
Affiliation(s)
- Tayo Adeyemo
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Ayodele Jaiyesimi
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Jill G. Bumgardner
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Charity Lohr
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Mary C. McKenna
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Neonatal hypoxia ischemia redistributes L1 cell adhesion molecule into rat cerebellar lipid rafts. Pediatr Res 2022; 92:1325-1331. [PMID: 35152267 PMCID: PMC9372221 DOI: 10.1038/s41390-022-01974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a devastating disease with lifelong disabilities. Hypothermia is currently the only treatment. At term, the neonatal cerebellum may be particularly vulnerable to the effects of HIE. At this time, many developmental processes depend on lipid raft function. These microdomains of the plasma membrane are critical for cellular signaling and axon extension. We hypothesized that HIE alters the protein content of lipid rafts in the cerebellum. METHODS Postnatal day (PN) 10 animals, considered human term equivalent, underwent hypoxic-ischemic (HI) injury by a right carotid artery ligation followed by hypoxia. For some animals, LPS was administered on PN7, and hypothermia (HT) was conducted for 4 h post-hypoxia. Lipid rafts were isolated from the right and left cerebella. The percent of total L1 cell adhesion molecule in lipid rafts was determined 4 and 72 h after hypoxia. RESULTS No sex differences were found. HI alone caused significant increases in the percent of L1 in lipid rafts which persisted until 72 h in the right but not the left cerebellum. A small but significant effect of LPS was detected in the left cerebellum 72 h after HI. Hypothermia had no effect. CONCLUSIONS Lipid rafts may be a new target for interventions of HIE. IMPACT This article investigates the effect of neonatal exposure to hypoxic-ischemic encephalopathy (HIE) on the distribution of membrane proteins in the cerebellum. This article explores the effectiveness of hypothermia as a prevention for the harmful effects of HIE on membrane protein distribution. This article shows an area of potential detriment secondary to HIE that persists with current treatments, and explores ideas for new treatments.
Collapse
|
23
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
24
|
Beretta S, Versace A, Fiore G, Piola M, Martini B, Bigiogera V, Coppadoro L, Mariani J, Tinti L, Pirovano S, Monza L, Carone D, Riva M, Padovano G, Galbiati G, Santangelo F, Rasponi M, Padelli F, Giachetti I, Aquino D, Diamanti S, Librizzi L, Bruzzone MG, De Curtis M, Giussani C, Sganzerla EP, Ferrarese C. Selective Cerebrospinal Fluid Hypothermia: Bioengineering Development and In Vivo Study of an Intraventricular Cooling Device (V-COOL). Neurotherapeutics 2022; 19:1942-1950. [PMID: 36129603 PMCID: PMC9723013 DOI: 10.1007/s13311-022-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Hypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42). Cerebral cortical temperature, rectal temperature, and intracranial pressure were monitored at increasing flow rate (0.2 to 0.8 mL/min) and duration of application (10 to 60 min). Survival, neurological outcome, and MRI volumetric analysis of the ventricular system were assessed during the first 24 h. The V-COOL prototyping was designed to minimize extra-cranial heat transfer and intra-cranial pressure load. In vivo application of the V-COOL device produced a flow rate-dependent decrease in cerebral cortical temperature, without affecting systemic temperature. The target degree of cerebral cooling (- 3.0 °C) was obtained in 4.48 min at the flow rate of 0.4 mL/min, without significant changes in intracranial pressure. Survival and neurological outcome at 24 h showed no significant difference compared to sham-treated rats. MRI study showed a transient dilation of the ventricular system (+ 38%) in a subset of animals. The V-COOL technology provides an effective, rapid, selective, and safe cerebral cooling to a clinically relevant degree of - 3.0 °C.
Collapse
Affiliation(s)
- Simone Beretta
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy.
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy.
| | - Alessandro Versace
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Gianfranco Fiore
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Marco Piola
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Beatrice Martini
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Vittorio Bigiogera
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Lorenzo Coppadoro
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Jacopo Mariani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Lorenzo Tinti
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Silvia Pirovano
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Laura Monza
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Davide Carone
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Matteo Riva
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giada Padovano
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Gilda Galbiati
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Francesco Santangelo
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Marco Rasponi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Giachetti
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Susanna Diamanti
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Laura Librizzi
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco De Curtis
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Giussani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Erik P Sganzerla
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Ferrarese
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| |
Collapse
|
25
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
26
|
Levison SW, Rocha-Ferreira E, Kim BH, Hagberg H, Fleiss B, Gressens P, Dobrowolski R. Mechanisms of Tertiary Neurodegeneration after Neonatal Hypoxic-Ischemic Brain Damage. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2022; 5:28. [PMID: 37601279 PMCID: PMC10438849 DOI: 10.21037/pm-20-104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Neonatal encephalopathy linked to hypoxia-ischemia (H-I) which is regarded as the most important neurological problem of the newborn, can lead to a spectrum of adverse neurodevelopmental outcomes such as cerebral palsy, epilepsy, hyperactivity, cognitive impairment and learning difficulties. There have been numerous reviews that have focused on the epidemiology, diagnosis and treatment of neonatal H-I; however, a topic that is less often considered is the extent to which the injury might worsen over time, which is the focus of this review. Similarly, there have been numerous reviews that have focused on mechanisms that contribute to the acute or subacute injury; however, there is a tertiary phase of recovery that can be defined by cellular and molecular changes that occur many weeks and months after brain injury and this topic has not been the focus of any review for over a decade. Therefore, in this article we review both the clinical and pre-clinical data that show that tertiary neurodegeneration is a significant contributor to the final outcome, especially after mild to moderate injuries. We discuss the contributing roles of apoptosis, necroptosis, autophagy, protein homeostasis, inflammation, microgliosis and astrogliosis. We also review the limited number of studies that have shown that significant neuroprotection and preservation of neurological function can be achieved administering drugs during the period of tertiary neurodegeneration. As the tertiary phase of neurodegeneration is a stage when interventions are eminently feasible, it is our hope that this review will stimulate a new focus on this stage of recovery towards the goal of producing new treatment options for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Steven W. Levison
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Eridan Rocha-Ferreira
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian H. Kim
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
- School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH, UK
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
27
|
Persistent cortical and white matter inflammation after therapeutic hypothermia for ischemia in near-term fetal sheep. J Neuroinflammation 2022; 19:139. [PMID: 35690757 PMCID: PMC9188214 DOI: 10.1186/s12974-022-02499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Background Therapeutic hypothermia significantly improves outcomes after moderate–severe hypoxic-ischemic encephalopathy (HIE), but it is partially effective. Although hypothermia is consistently associated with reduced microgliosis, it is still unclear whether it normalizes microglial morphology and phenotype. Methods Near-term fetal sheep (n = 24) were randomized to sham control, ischemia-normothermia, or ischemia-hypothermia. Brain sections were immunohistochemically labeled to assess neurons, microglia and their interactions with neurons, astrocytes, myelination, and gitter cells (microglia with cytoplasmic lipid granules) 7 days after cerebral ischemia. Lesions were defined as areas with complete loss of cells. RNAscope® was used to assess microglial phenotype markers CD86 and CD206. Results Ischemia-normothermia was associated with severe loss of neurons and myelin (p < 0.05), with extensive lesions, astrogliosis and microgliosis with a high proportion of gitter cells (p < 0.05). Microglial wrapping of neurons was present in both the ischemia groups. Hypothermia improved neuronal survival, suppressed lesions, gitter cells and gliosis (p < 0.05), and attenuated the reduction of myelin area fraction. The “M1” marker CD86 and “M2” marker CD206 were upregulated after ischemia. Hypothermia partially suppressed CD86 in the cortex only (p < 0.05), but did not affect CD206. Conclusions Hypothermia prevented lesions after cerebral ischemia, but only partially suppressed microglial wrapping and M1 marker expression. These data support the hypothesis that persistent upregulation of injurious microglial activity may contribute to partial neuroprotection after hypothermia, and that immunomodulation after rewarming may be an important therapeutic target.
Collapse
|
28
|
Leifsdottir K, Thelin EP, Lassarén P, Siljehav V, Nilsson P, Eksborg S, Herlenius E. Proteomic profiles in cerebrospinal fluid predicted death and disability in term infants with perinatal asphyxia: A pilot study. Acta Paediatr 2022; 111:961-970. [PMID: 35106835 PMCID: PMC9305740 DOI: 10.1111/apa.16277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Aim Perinatal asphyxia, resulting in hypoxic‐ischaemic encephalopathy (HIE), has been associated with high mortality rates and severe lifelong neurodevelopmental disabilities. Our aim was to study the association between the proteomic profile in cerebrospinal fluid (CSF) and the degree of HIE and long‐term outcomes. Methods We prospectively enrolled 18‐term born infants with HIE and 10‐term born controls between 2000 and 2004 from the Karolinska University Hospital. An antibody suspension bead array and FlexMap3D analysis was used to characterise 178 unique brain‐derived and inflammation associated proteins in their CSF. Results Increased CSF concentrations of several brain‐specific proteins were observed in the proteome of HIE patients compared with the controls. An upregulation of neuroinflammatory pathways was also noted and this was confirmed by pathway analysis. Principal component analysis revealed a gradient from favourable to unfavourable HIE grades and outcomes. The proteins that provided strong predictors were structural proteins, including myelin basic protein and alpha‐II spectrin. The functional proteins included energy‐related proteins like neuron‐specific enolase and synaptic regulatory proteins. Increased CSF levels of 51 proteins correlated with adverse outcomes in infants with HIE. Conclusion Brain‐specific proteins and neuroinflammatory mediators in CSF may predict HIE degrees and outcomes after perinatal asphyxia.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neurology Karolinska University Hospital Stockholm Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Veronica Siljehav
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Peter Nilsson
- Department of Protein Science KTH Royal Institute of Technology SciLifeLab Stockholm Sweden
| | - Staffan Eksborg
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric Herlenius
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
29
|
Plinia trunciflora Extract Administration Prevents HI-Induced Oxidative Stress, Inflammatory Response, Behavioral Impairments, and Tissue Damage in Rats. Nutrients 2022; 14:nu14020395. [PMID: 35057576 PMCID: PMC8779767 DOI: 10.3390/nu14020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The disruption of redox homeostasis and neuroinflammation are key mechanisms in the pathogenesis of brain hypoxia–ischemia (HI); medicinal plants have been studied as a therapeutic strategy, generally associated with the prevention of oxidative stress and inflammatory response. This study evaluates the neuroprotective role of the Plinia trunciflora fruit extract (PTE) in neonatal rats submitted to experimental HI. The HI insult provoked a marked increase in the lipoperoxidation levels and glutathione peroxidase (GPx) activity, accompanied by a decrease in the brain concentration of glutathione (GSH). Interestingly, PTE was able to prevent most of the HI-induced pro-oxidant effects. It was also observed that HI increased the levels of interleukin-1β in the hippocampus, and that PTE-treatment prevented this effect. Furthermore, PTE was able to prevent neuronal loss and astrocyte reactivity induced by HI, as demonstrated by NeuN and GFAP staining, respectively. PTE also attenuated the anxiety-like behavior and prevented the spatial memory impairment caused by HI. Finally, PTE prevented neural tissue loss in the brain hemisphere, the hippocampus, cerebral cortex, and the striatum ipsilateral to the HI. Taken together our results provide good evidence that the PTE extract has the potential to be investigated as an adjunctive therapy in the treatment of brain insult caused by neonatal hypoxia–ischemia.
Collapse
|
30
|
Torre Monmany N, Maya Gallego S, Esclapés Giménez T, Sardà Sánchez M, Rodríguez Losada O, Martínez Planas A, Oller Fradera O, Alarcón A, Esteban E. Challenges in the application of non-servocontrolled therapeutic hypothermia during neonatal transport in Catalonia. An Pediatr (Barc) 2021; 95:459-466. [PMID: 34844879 DOI: 10.1016/j.anpede.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Therapeutic hypothermia (TH) improves survival and neurological prognosis in hypoxic-ischemic encephalopathic (HIE) babies, being better the sooner TH is implemented. HIE babies are born more frequently in a non-cooling centre and need to be referred. METHODS Prospective-observational study (April 18 2018 - November 19 2019). Newborns (≥34 weeks of gestational age (GA) and >1800 g) with moderate/severe HIE on non-servocontrolled therapeutic hypothermia by the two neonatal transport teams in Catalonia. RESULTS 51 newborns. The median stabilisation and transport time were 68 min (p25-75, 45-85 min) and 30 min (p25-75, 15-45 min), respectively. The mean age at arrival at the receiving unit was 4 h and 18 min (SD 96.6). The incubator was set off in 43 (84%), iced-packs 11 (21.5%) and both (11, 21.5%). Target temperature was reached in 19 (37.3%) babies. There were no differences in the overcooling in relation to the measures applied. The transport duration was not related with temperature stabilisation or target temperature reachiness. CONCLUSIONS Rectal temperature monitorisation is compulsory for the stabilisation and the application of non-servocontrolled hypothermia during transport. There is still time for improving in the administration of this treatment during transport. Servo-controlled hypothermia would be a better alternative to improve the management of HIE babies.
Collapse
Affiliation(s)
- Nuria Torre Monmany
- Neonatal and Paediatric Transport Unit. Sant Joan de Déu Hospital, Esplugues de Llobregat. Spain; Neonatal unit, Parc Taulí Hospital, Sabadell, Spain; Aerial Paediatric and Neonatal Transport Unit, Parc Taulí Hospital, Sabadell, Spain.
| | - Sara Maya Gallego
- Neonatal and Paediatric Transport Unit. Sant Joan de Déu Hospital, Esplugues de Llobregat. Spain
| | - Teresa Esclapés Giménez
- Neonatal and Paediatric Transport Unit, Vall Hebrón Hospital, Barcelona, Spain; Neonatology Unit, Vall Hebrón Hospital, Barcelona, Spain
| | - Marta Sardà Sánchez
- Neonatal and Paediatric Transport Unit. Sant Joan de Déu Hospital, Esplugues de Llobregat. Spain; Neonatal unit, Parc Taulí Hospital, Sabadell, Spain; Aerial Paediatric and Neonatal Transport Unit, Parc Taulí Hospital, Sabadell, Spain
| | | | - Aina Martínez Planas
- Neonatal and Paediatric Transport Unit. Sant Joan de Déu Hospital, Esplugues de Llobregat. Spain; Paediatric hospitalization unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Olga Oller Fradera
- Neonatal and Paediatric Transport Unit, Vall Hebrón Hospital, Barcelona, Spain; Paediatric Intensive Care Unit, Vall Hebrón Hospital, Barcelona, Spain
| | - Ana Alarcón
- Neonatology Unit, Sant Joan de Déu Hospital, Esplugues de Llobregat, Spain; Sant Joan de Déu research unit, Barcelona university, Esplugues de Llobregat, Spain
| | - Elisabeth Esteban
- Neonatal and Paediatric Transport Unit. Sant Joan de Déu Hospital, Esplugues de Llobregat. Spain; Paediatric Intensive Care Unit, Sant Joan de Déu Hospital, Esplugues de Llobregat, Spain
| |
Collapse
|
31
|
Davidson JO, Gonzalez F, Gressens P, Gunn AJ. Update on mechanisms of the pathophysiology of neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101267. [PMID: 34274259 DOI: 10.1016/j.siny.2021.101267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapeutic hypothermia is now well established to significantly improve survival without disability after neonatal encephalopathy (NE). To further improve outcomes, we need to better understand the mechanisms of brain injury. The central finding, which offers the potential for neuroprotective and neurorestorative interventions, is that brain damage after perinatal hypoxia-ischemia evolves slowly over time. Although brain cells may die during profound hypoxia-ischemia, even after surprisingly severe insults many cells show transient recovery of oxidative metabolism during a "latent" phase characterized by actively suppressed neural metabolism and activity. Critically, after moderate to severe hypoxia-ischemia, this transient recovery is followed after ~6 h by a phase of secondary deterioration, with delayed seizures, failure of mitochondrial function, cytotoxic edema, and cell death over ~72 h. This is followed by a tertiary phase of remodeling and recovery. This review discusses the mechanisms of injury that occur during the primary, latent, secondary and tertiary phases of injury and potential treatments that target one or more of these phases. By analogy with therapeutic hypothermia, treatment as early as possible in the latent phase is likely to have the greatest potential to prevent injury ("neuroprotection"). In the secondary phase of injury, anticonvulsants can attenuate seizures, but show limited neuroprotection. Encouragingly, there is now increasing preclinical evidence that late, neurorestorative interventions have potential to improve long-term outcomes.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Fernando Gonzalez
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
32
|
Liddle LJ, Kalisvaart ACJ, Abrahart AH, Almekhlafi M, Demchuk A, Colbourne F. Targeting focal ischemic and hemorrhagic stroke neuroprotection: Current prospects for local hypothermia. J Neurochem 2021; 160:128-144. [PMID: 34496050 DOI: 10.1111/jnc.15508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic hypothermia (TH) has applications dating back millennia. In modern history, however, TH saw its importation into medical practice where investigations have demonstrated that TH is efficacious in ischemic insults, notably cardiac arrest and hypoxic-ischemic encephalopathy. As well, studies have been undertaken to investigate whether TH can provide benefit in focal stroke (i.e., focal ischemia and intracerebral hemorrhage). However, clinical studies have encountered various challenges with induction and maintenance of post-stroke TH. Most clinical studies have attempted to use body-wide cooling protocols, commonly hindered by side effects that can worsen post-stroke outcomes. Some of the complications and difficulties with systemic TH can be circumvented by using local hypothermia (LH) methods. Additional advantages include the potential for lower target temperatures to be achieved and faster TH induction rates with LH. This systematic review summarizes the body of clinical and preclinical LH focal stroke studies and raises key points to consider for future LH research. We conclude with an overview of LH neuroprotective mechanisms and a comparison of LH mechanisms with those observed with systemic TH. Overall, whereas many LH studies have been conducted preclinically in the context of focal ischemia, insufficient work has been done in intracerebral hemorrhage. Furthermore, key translational studies have yet to be done in either stroke subtype (e.g., varied models and time-to-treat, studies considering aged animals or animals with co-morbidities). Few clinical LH investigations have been performed and the optimal LH parameters to achieve neuroprotection are unknown.
Collapse
Affiliation(s)
- Lane J Liddle
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ashley H Abrahart
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Frederick Colbourne
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Torre Monmany N, Maya Gallego S, Esclapés Giménez T, Sardà Sánchez M, Rodríguez Losada O, Martínez Planas A, Oller Fradera O, Alarcón A, Esteban E. [Challenges in the application of non-servocontrolled therapeutic hypothermia during neonatal transport in Catalonia]. An Pediatr (Barc) 2021; 95:S1695-4033(21)00243-5. [PMID: 34462230 DOI: 10.1016/j.anpedi.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Therapeutic hypothermia (TH) improves survival and neurological prognosis in hypoxic-ischemic encephalopathic (HIE) babies, being better the sooner TH is implemented. HIE babies are born more frequently in a non-cooling centre and need to be referred. METHODS Prospective-observational study (April 18-November 19). Newborns (≥34 weeks of gestational age (GA) and >1800g) with moderate/severe HIE on non-servocontrolled therapeutic hypothermia by the two neonatal transport teams in Catalonia. RESULTS 51 newborns. The median stabilisation and transport time were 68min (p25-75, 45-85min) and 30min (p25-75, 15-45min), respectively. The mean age at arrival at the receiving unit was 4h and 18min (SD 96.6). The incubator was set off in 43 (84%), iced-packs 11 (21.5%) and both (11, 21.5%). Target temperature was reached in 19 (37.3%) babies. There was no differences in the overcooling in relation to the measures applied. The transport duration was not related with temperature stabilisation or target temperature reachiness. CONCLUSIONS Rectal temperature monitorisation is compulsory for the stabilisation and the application of non-servocontrolled hypothermia during transport. There is still time for improving in the administration of this treatment during transport. Servo-controlled hypothermia would be a better alternative to improve the management of HIE babies.
Collapse
Affiliation(s)
- Nuria Torre Monmany
- Unidad de Transporte Pediátrico y Neonatal, Hospital Sant Joan de Déu, Esplugues de Llobregat, España; Unidad de Neonatología, Hospital Parc Taulí, Sabadell, España; Unidad de Transporte Aéreo Pediátrico y Neonatal, Hospital Parc Taulí, Sabadell, España.
| | - Sara Maya Gallego
- Unidad de Transporte Pediátrico y Neonatal, Hospital Sant Joan de Déu, Esplugues de Llobregat, España
| | - Teresa Esclapés Giménez
- Unidad de Transporte Pediátrico y Neonatal, Hospital Vall d'Hebrón, Barcelona, España; Unidad de Neonatología, Hospital Vall d'Hebrón, Barcelona, España
| | - Marta Sardà Sánchez
- Unidad de Transporte Pediátrico y Neonatal, Hospital Sant Joan de Déu, Esplugues de Llobregat, España; Unidad de Neonatología, Hospital Parc Taulí, Sabadell, España; Unidad de Transporte Aéreo Pediátrico y Neonatal, Hospital Parc Taulí, Sabadell, España
| | | | - Aina Martínez Planas
- Unidad de Transporte Pediátrico y Neonatal, Hospital Sant Joan de Déu, Esplugues de Llobregat, España; Unidad de Hospitalización de Pediatría, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona. España
| | - Olga Oller Fradera
- Unidad de Transporte Pediátrico y Neonatal, Hospital Vall d'Hebrón, Barcelona, España; Unidad de Cuidados Intensivos Pediátricos, Hospital Universitario Vall d'Hebrón, Barcelona, España
| | - Ana Alarcón
- Unidad de Neonatología, Hospital Sant Joan de Déu, Esplugues de Llobregat, España; Institut de Recerca de Sant Joan de Déu, Universitat de Barcelona, Esplugues de Llobregat, España
| | - Elisabeth Esteban
- Unidad de Transporte Pediátrico y Neonatal, Hospital Sant Joan de Déu, Esplugues de Llobregat, España; Unidad de Cuidados Intensivos Pediátricos, Hospital Sant Joan de Déu, Esplugues de Llobregat, España
| |
Collapse
|
34
|
Wassink G, Davidson JO, Crisostomo A, Zhou KQ, Galinsky R, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Recombinant erythropoietin does not augment hypothermic white matter protection after global cerebral ischaemia in near-term fetal sheep. Brain Commun 2021; 3:fcab172. [PMID: 34409290 PMCID: PMC8364665 DOI: 10.1093/braincomms/fcab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Therapeutic hypothermia for hypoxic-ischaemic encephalopathy provides partial white matter protection. Recombinant erythropoietin reduces demyelination after hypoxia-ischaemia, but it is unclear whether adjunct erythropoietin treatment can further improve outcomes after therapeutic hypothermia. Term-equivalent fetal sheep received sham-ischaemia (n = 9) or cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of recombinant erythropoietin (ischaemia-Epo, n = 8; 5000 IU/kg bolus dose, then 833.3 IU/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or recombinant erythropoietin plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post-ischaemia. Foetal brains were harvested at 7 days after cerebral ischaemia. Ischaemia was associated with marked loss of total Olig2-positive oligodendrocytes with reduced density of myelin and linearity of the white matter tracts (P < 0.01), and microglial induction and increased caspase-3-positive apoptosis. Cerebral hypothermia improved the total number of oligodendrocytes and restored myelin basic protein (P < 0.01), whereas recombinant erythropoietin partially improved myelin basic protein density and tract linearity. Both interventions suppressed microgliosis and caspase-3 (P < 0.05). Co-treatment improved 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-myelin density compared to hypothermia, but had no other additive effect. These findings suggest that although hypothermia and recombinant erythropoietin independently protect white matter after severe hypoxia-ischaemia, they have partially overlapping anti-inflammatory and anti-apoptotic effects, with little additive benefit of combination therapy.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alyssa Crisostomo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | | | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Aridas JD, Yawno T, Sutherland AE, Nitsos I, Wong FY, Hunt RW, Ditchfield M, Fahey MC, Malhotra A, Wallace EM, Gunn AJ, Jenkin G, Miller SL. Melatonin augments the neuroprotective effects of hypothermia in lambs following perinatal asphyxia. J Pineal Res 2021; 71:e12744. [PMID: 34032315 DOI: 10.1111/jpi.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Therapeutic hypothermia (TH) is standard care in high-resource birth settings for infants with neonatal encephalopathy. TH is partially effective and adjuvant therapies are needed. Here, we examined whether the antioxidant melatonin (MLT) provides additive benefit with TH, compared to TH alone or MLT alone, to improve recovery from acute encephalopathy in newborn lambs. Immediately before cesarean section delivery, we induced asphyxia in fetal sheep via umbilical cord occlusion until mean arterial blood pressure fell from 55 ± 3 mm Hg in sham controls to 18-20 mm Hg (10.1 ± 1.5 minutes). Lambs were delivered and randomized to control, control + MLT (60 mg iv, from 30 minutes to 24 hours), asphyxia, asphyxia + TH (whole-body cooling to 35.1 ± 0.8°C vs. 38.3 ± 0.17°C in sham controls, from 4-28 hours), asphyxia + MLT, and asphyxia + TH + MLT. At 72 hours, magnetic resonance spectroscopy (MRS) was undertaken, and then brains were collected for neuropathology assessment. Asphyxia induced abnormal brain metabolism on MRS with increased Lactate:NAA (P = .003) and reduced NAA:Choline (P = .005), induced apoptotic and necrotic cell death across gray and white matter brain regions (P < .05), and increased neuroinflammation and oxidative stress (P < .05). TH and MLT were independently associated with region-specific reductions in oxidative stress, inflammation, and cell death, compared to asphyxia alone. There was an interaction between TH and MLT such that the NAA:Choline ratio was not significantly different after asphyxia + TH + MLT compared to sham controls but had a greater overall reduction in neuropathology than either treatment alone. This study demonstrates that, in newborn lambs, combined TH + MLT for neonatal encephalopathy provides significantly greater neuroprotection than either alone. These results will guide the development of further trials for neonatal encephalopathy.
Collapse
Affiliation(s)
- James Ds Aridas
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
| | - Tamara Yawno
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Amy E Sutherland
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
| | - Ilias Nitsos
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Flora Y Wong
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Rod W Hunt
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
- Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | | | - Michael C Fahey
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Atul Malhotra
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Paediatrics, Monash University, Clayton, Vic., Australia
- Monash Children's Hospital, Monash Health, Clayton, Vic., Australia
| | - Euan M Wallace
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Alistair J Gunn
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Graham Jenkin
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| | - Suzanne L Miller
- Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Vic., Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
36
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
37
|
Falsaperla R, Scalia B, Giugno A, Pavone P, Motta M, Caccamo M, Ruggieri M. Treating the symptom or treating the disease in neonatal seizures: a systematic review of the literature. Ital J Pediatr 2021; 47:85. [PMID: 33827647 PMCID: PMC8028713 DOI: 10.1186/s13052-021-01027-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Aim The existing treatment options for neonatal seizures have expanded over the last few decades, but no consensus has been reached regarding the optimal therapeutic protocols. We systematically reviewed the available literature examining neonatal seizure treatments to clarify which drugs are the most effective for the treatment of specific neurologic disorders in newborns. Method We reviewed all available, published, literature, identified using PubMed (published between August 1949 and November 2020), that focused on the pharmacological treatment of electroencephalogram (EEG)-confirmed neonatal seizures. Results Our search identified 427 articles, of which 67 were included in this review. Current knowledge allowed us to highlight the good clinical and electrographic responses of genetic early-onset epilepsies to sodium channel blockers and the overall good response to levetiracetam, whose administration has also been demonstrated to be safe in both full-term and preterm newborns. Interpretation Our work contributes by confirming the limited availability of evidence that can be used to guide the use of anticonvulsants to treat newborns in clinical practice and examining the efficacy and potentially harmful side effects of currently available drugs when used to treat the developing newborn brain; therefore, our work might also serve as a clinical reference for future studies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Bruna Scalia
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy.
| | - Andrea Giugno
- Post graduate programme in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Piero Pavone
- Unit of Clinical Pediatrics, A.O.U. "Policlinico", P.O. "G. Rodolico", University of Catania, Catania, Italy
| | - Milena Motta
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martina Caccamo
- Neonatal Intensive Care Unit, A.O.U. San Marco-Policlinico, University of Catania, Via Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine Section of Pediatrics and Child Neuropsychiatry, A.O.U. San Marco- Policlinico, University of Catania, Catania, Italy
| |
Collapse
|
38
|
Shimaoka H, Shiina T, Suzuki H, Horii Y, Horii K, Shimizu Y. Successful induction of deep hypothermia by isoflurane anesthesia and cooling in a non-hibernator, the rat. J Physiol Sci 2021; 71:10. [PMID: 33784982 PMCID: PMC10717611 DOI: 10.1186/s12576-021-00794-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to establish a novel method for inducing deep hypothermia in rats. Cooling rats anesthetized with isoflurane caused a time-dependent decrease in rectal temperature, but cardiac arrest occurred before their body temperature reached 20 °C when isoflurane inhalation was continued during the cooling process. Stopping inhalation of isoflurane when the rectal temperature reached 22.5 °C successfully induced deep hypothermia, although stopping the inhalation at 27.5 °C resulted in spontaneous recovery of rectal temperature. The hypothermic condition was able to be maintained for up to 6 h. A large number of c-Fos-positive cells were detected in the hypothalamus during hypothermia. Both the maintenance of and recovery from hypothermia caused organ injury, but the damage was transient and recovered within 1 week. These findings indicate that the established procedure is appropriate for inducing deep hypothermia without accompanying serious organ injury in rats.
Collapse
Affiliation(s)
- Hiroki Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Hayato Suzuki
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, 1-1 Yanagido, Gifu, 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
39
|
Lear BA, Lear CA, Davidson JO, Sae-Jiw J, Lloyd JM, Gunn AJ, Bennet L. Tertiary cystic white matter injury as a potential phenomenon after hypoxia-ischaemia in preterm f sheep. Brain Commun 2021; 3:fcab024. [PMID: 33937767 PMCID: PMC8072523 DOI: 10.1093/braincomms/fcab024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
White matter injury, including both diffuse and cystic elements, remains highly associated with neurodevelopmental disability and cerebral palsy in preterm infants, yet its pathogenesis and evolution are still poorly understood and there is no established treatment. We examined the long-term evolution of white matter injury in chronically instrumented preterm fetal sheep (0.7 gestation) after 25 min of complete umbilical cord occlusion or sham occlusion. Fetal brains were processed for histology after 3 days (n = 9, sham n = 9), 7 days (n = 8, sham n = 8), 14 days (n = 9, sham n = 8) and 21 days (n = 9, sham n = 9) of recovery. At 3 and 7 days recovery, umbilical cord occlusion was associated with diffuse white matter injury, with loss of total and mature oligodendrocytes and reduced myelination in both the parietal and temporal lobes. At 14 days after umbilical cord occlusion, extensive microglial and astrocytic activation were observed in the temporal lobe. At 21 days recovery a spectrum of severe white matter degeneration was observed, including white matter atrophy, ventriculomegaly and overt cystic white matter lesions. The most severe injury was observed in the temporal lobe after 21 days recovery, including the majority of cystic lesions, persistent oligodendrocyte maturational arrest and impaired myelination. The spatial distribution of delayed white matter degeneration at 21 days recovery was closely related to the location of dense microglial aggregates at earlier time-points, implicating a role for exuberant inflammation originating from microglial aggregates in the pathogenesis of cystic white matter injury. The delayed appearance of cystic injury is consistent with continuing tertiary evolution of necrotic cell death. This slow evolution raises the tantalizing possibility that there may a relatively long therapeutic window to mitigate the development of cystic white matter injury. Delayed anti-inflammatory treatments may therefore represent a promising strategy to reduce neurodevelopmental disability in the preterm infants.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Jialin Sae-Jiw
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Johanna M Lloyd
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
41
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
42
|
Lear CA, Kasai M, Drury PP, Davidson JO, Miyagi E, Bennet L, Gunn AJ. Plasma vasopressin levels are closely associated with fetal hypotension and neuronal injury after hypoxia-ischemia in near-term fetal sheep. Pediatr Res 2020; 88:857-864. [PMID: 32179873 DOI: 10.1038/s41390-020-0845-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sensitive biomarkers are needed to rapidly identify high-risk infants after hypoxia-ischemia for neuroprotective treatment. Hypotension is a key determinant of hypoxic-ischemic neural injury, and a potent stimulus of humoral pressors including angiotensin-II and arginine vasopressin. We therefore aimed to quantify the relationship between vasopressin and angiotensin-II levels in the latent phase after hypoxia-ischemia induced by umbilical cord occlusion (UCO) with both the severity of preceding hypotension and subsequent neuronal injury. METHODS Chronically instrumented near-term fetal sheep underwent sham-UCO or UCO for either 15 min or until mean arterial pressure was <8 mmHg. Neuronal injury was assessed after 72 h recovery. RESULTS Umbilical cord occlusion was associated with severe hypotension that recovered after UCO; two fetuses developed profound secondary hypotension within 6 h and died. Vasopressin levels but not angiotensin-II were significantly elevated 1-3 h after UCO and were closely associated with the severity of hypotension during UCO and the subsequent severity of neuronal loss in the parasagittal and lateral cortex, caudate nucleus and putamen. The Youden cut-point for vasopressin at 1 h was 180.0 pmol/L, with sensitivity 100% and specificity 92.3% for severe neuronal injury or death. CONCLUSION Vasopressin levels shortly after moderate-severe hypoxia-ischemia may be a useful early biomarker to guide the timely implementation of neuroprotective treatment. IMPACT It can be difficuIt to rapidly identify infants who might benefit from therapeutic hypothermia. We investigated whether increases in plasma pressor hormones early after hypoxia-ischemia were biomarkers for neonatal hypoxic-ischemic encephalopathy using near-term fetal sheep. Arginine vasopressin levels were elevated at 1-3 h after hypoxia-ischemia and were predictive of the severity of preceding hypotension and subsequent risk of severe neuronal injury or death after hypoxia-ischemia. Arginine vasopressin may help identify neonates at high risk of hypoxic-ischemic encephalopathy early within the therapeutic window for hypothermia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Etsuko Miyagi
- The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Davidson JO, van den Heuij LG, Fraser M, Wassink G, Miller SL, Lim R, Wallace EM, Jenkin G, Gunn AJ, Bennet L. Window of opportunity for human amnion epithelial stem cells to attenuate astrogliosis after umbilical cord occlusion in preterm fetal sheep. Stem Cells Transl Med 2020; 10:427-440. [PMID: 33103374 PMCID: PMC7900589 DOI: 10.1002/sctm.20-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that administration of many types of stem cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic injury, including in the perinatal brain. However, the therapeutic window for single dose treatment is not known. We compared the effects of early and delayed intracerebroventricular administration of hAECs in fetal sheep at 0.7 gestation on brain injury induced by 25 minutes of complete umbilical cord occlusion (UCO) or sham occlusion. Fetuses received either 1 × 106 hAECs or vehicle alone, as an infusion over 1 hour, either 2 or 24 hours after UCO. Fetuses were killed for brain histology at 7 days post-UCO. hAEC infusion at both 2 and 24 hours had dramatic anti-inflammatory and anti-gliotic effects, including significantly attenuating the increase in microglia after UCO in the white and gray matter and the number of astrocytes in the white matter. Both protocols partially improved myelination, but had no effect on total or immature/mature numbers of oligodendrocytes. Neuronal survival in the hippocampus was increased by hAEC infusion at either 2 or 24 hours, whereas only hAECs at 24 hours were associated with improved neuronal survival in the striatum and thalamus. Neither protocol improved recovery of electroencephalographic (EEG) power. These data suggest that a single infusion of hAECs is anti-inflammatory, anti-gliotic, and neuroprotective in preterm fetal sheep when given up to 24 hours after hypoxia-ischemia, but was associated with limited white matter protection after 7 days recovery and no improvement in the recovery of EEG power.
Collapse
Affiliation(s)
- Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Lotte G van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mhoyra Fraser
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Zhou KQ, Davidson JO, Bennet L, Gunn AJ. Combination treatments with therapeutic hypothermia for hypoxic-ischemic neuroprotection. Dev Med Child Neurol 2020; 62:1131-1137. [PMID: 32614467 DOI: 10.1111/dmcn.14610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Therapeutic hypothermia is now proven to reduce death or disability in term and near-term born infants with moderate to severe hypoxic-ischemic encephalopathy. Nevertheless, many infants still survive with disability, despite treatment with hypothermia. Recent preclinical and clinical studies suggest that current protocols for therapeutic hypothermia are near-optimal. The obvious strategy, in addition to improving early initiation of therapeutic hypothermia after birth, is to combine hypothermia with other neuroprotective agents. We review evidence that the mechanisms of action of many promising agents overlap with the anti-excitotoxic, anti-apoptotic, and anti-inflammatory mechanisms of hypothermia, leading to a lack of benefit from combination treatment. Moreover, even apparently beneficial combinations have failed to translate in clinical trials. These considerations highlight the need for preclinical studies to test clinically realistic protocols of timing and duration of treatment, before committing to large randomized controlled trials.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Livingston JM, Syeda T, Christie T, Gilbert EA, Morshead CM. Subacute metformin treatment reduces inflammation and improves functional outcome following neonatal hypoxia ischemia. Brain Behav Immun Health 2020; 7:100119. [PMID: 34589876 PMCID: PMC8474427 DOI: 10.1016/j.bbih.2020.100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/03/2023] Open
Abstract
Hypoxia-ischemia (HI) injury is a leading cause of neonatal death and long-term disability, and existing treatment options for HI offer only modest benefit. Early intervention with the drug metformin has been shown to promote functional improvement in numerous rodent models of injury and has pleiotropic cellular effects in the brain. We have previously shown that 1 week of metformin treatment initiated 24 h after HI in neonatal mice resulted in improved motor and cognitive performance, activation of endogenous neural precursor cells (NPCs), and increased oligodendrogenesis. While promising, a limitation to this work is that immediate pharmacological intervention is not always possible in the clinic. Herein, we investigated whether delaying metformin treatment to begin in the subacute phase post-HI would still effectively promote recovery. Male and female C57/BL6 mice received HI injury postnatally, and metformin treatment began 7 days post-HI for up to 4 weeks. Motor and cognitive performance was assessed across time using behavioural tests (cylinder, foot fault, puzzle box). We found that metformin improved motor and cognitive behaviour, decreased inflammation, and increased oligodendrocytes in the motor cortex. Our present findings demonstrate that a clinically relevant subacute metformin treatment paradigm affords the potential to treat neonatal HI, and that improved outcomes occur through modulation of the inflammatory response and oligodendrogenesis. Subacute metformin treatment improves functional recovery after neonatal hypoxia ischemia. Metformin reduces the number of microglia present in the brain early after injury. Metformin increases the number of oligodendrocytes present in the chronic post-injury phase. Metformin treatment has therapeutic potential in the treatment of hypoxic ischemic brain damage.
Collapse
Affiliation(s)
- Jessica M. Livingston
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E, Canada
| | - Tasfia Syeda
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E, Canada
| | - Taryn Christie
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E, Canada
| | - Emily A.B. Gilbert
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E, Canada
| | - Cindi M. Morshead
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S3E, Canada
- Institute of Medical Science, University of Toronto, Toronto, M5S1A8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S3E1, Canada
- Corresponding author. Faculty of Medicine, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
46
|
Zhou KQ, Draghi V, Lear CA, Dean JM, Ashton JL, Hou Y, Bennet L, Gunn AJ, Davidson JO. Protection of axonal integrity with 48 or 72 h of cerebral hypothermia in near-term fetal sheep. Pediatr Res 2020; 88:48-56. [PMID: 31234193 DOI: 10.1038/s41390-019-0475-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Therapeutic hypothermia is partially protective for neonatal hypoxic-ischemic encephalopathy (HIE). Damage to the white matter tracts is highly associated with adverse outcomes after HIE, but the effectiveness and optimal duration of hypothermia to attenuate axonal injury are unclear. METHODS Near-term fetal sheep were randomized to sham control or cerebral ischemia for 30 min with normothermia or cerebral hypothermia from 3 to either 48 or 72 h. Sheep were killed after 7 days. SMI-312-labeled axons and myelin basic protein were quantified in the intragyral white matter of the first and second parasagittal gyri. RESULTS Ischemia was associated with reduced axonal and myelin area fraction (p < 0.05); loss of axonal and myelin linearity (p < 0.05); and thin, sparse axons, with spheroids, compared to dense, linear morphology in sham controls and associated with induction of microglia in an amoeboid morphology. Both ischemia-48 h hypothermia and ischemia-72 h hypothermia improved axonal area fraction and linearity (p < 0.05), although abnormal morphological features were seen in a subset. Microglial induction was partially suppressed by ischemia-48 h hypothermia, with a ramified morphology. CONCLUSIONS These data suggest that therapeutic hypothermia can alleviate post-ischemic axonopathy, in part by suppressing secondary inflammation.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Vittoria Draghi
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jesse L Ashton
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Laura Bennet
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | - Joanne O Davidson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Cho KH, Davidson JO, Dean JM, Bennet L, Gunn AJ. Cooling and immunomodulation for treating hypoxic-ischemic brain injury. Pediatr Int 2020; 62:770-778. [PMID: 32119180 DOI: 10.1111/ped.14215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Therapeutic hypothermia is now well established to partially reduce disability in term and near-term infants with moderate-severe hypoxic-ischemic encephalopathy. Preclinical and clinical studies have confirmed that current protocols for therapeutic hypothermia are near optimal. The challenge is now to identify complementary therapies that can further improve outcomes, in combination with therapeutic hypothermia. Overall, anti-excitatory and anti-apoptotic agents have shown variable or even no benefit in combination with hypothermia, suggesting overlapping mechanisms of neuroprotection. Inflammation appears to play a critical role in the pathogenesis of injury in the neonatal brain, and thus, there is potential for drugs with immunomodulatory properties that target inflammation to be used as a therapy in neonates. In this review, we examine the evidence for neuroprotection with immunomodulation after hypoxia-ischemia. For example, stem cell therapy can reduce inflammation, increase cell survival, and promote cell maturation and repair. There are also encouraging preclinical data from small animals suggesting that stem cell therapy can augment hypothermic neuroprotection. However, there is conflicting evidence, and rigorous testing in translational animal models is now needed.
Collapse
Affiliation(s)
- Kenta Ht Cho
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Pospelov AS, Puskarjov M, Kaila K, Voipio J. Endogenous brain-sparing responses in brain pH and PO 2 in a rodent model of birth asphyxia. Acta Physiol (Oxf) 2020; 229:e13467. [PMID: 32174009 DOI: 10.1111/apha.13467] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To study brain-sparing physiological responses in a rodent model of birth asphyxia which reproduces the asphyxia-defining systemic hypoxia and hypercapnia. METHODS Steady or intermittent asphyxia was induced for 15-45 minutes in anaesthetized 6- and 11-days old rats and neonatal guinea pigs using gases containing 5% or 9% O2 plus 20% CO2 (in N2 ). Hypoxia and hypercapnia were induced with low O2 and high CO2 respectively. Oxygen partial pressure (PO2 ) and pH were measured with microsensors within the brain and subcutaneous ("body") tissue. Blood lactate was measured after asphyxia. RESULTS Brain and body PO2 fell to apparent zero with little recovery during 5% O2 asphyxia and 5% or 9% O2 hypoxia, and increased more than twofold during 20% CO2 hypercapnia. Unlike body PO2 , brain PO2 recovered rapidly to control after a transient fall (rat), or was slightly higher than control (guinea pig) during 9% O2 asphyxia. Asphyxia (5% O2 ) induced a respiratory acidosis paralleled by a progressive metabolic (lact)acidosis that was much smaller within than outside the brain. Hypoxia (5% O2 ) produced a brain-confined alkalosis. Hypercapnia outlasting asphyxia suppressed pH recovery and prolonged the post-asphyxia PO2 overshoot. All pH changes were accompanied by consistent shifts in the blood-brain barrier potential. CONCLUSION Regardless of brain maturation stage, hypercapnia can restore brain PO2 and protect the brain against metabolic acidosis despite compromised oxygen availability during asphyxia. This effect extends to the recovery phase if normocapnia is restored slowly, and it is absent during hypoxia, demonstrating that exposure to hypoxia does not mimic asphyxia.
Collapse
Affiliation(s)
- Alexey S. Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Martin Puskarjov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
- Neuroscience Center (HiLIFE) University of Helsinki Helsinki Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences University of Helsinki Helsinki Finland
| |
Collapse
|
49
|
When is a potential new neuroprotective treatment ready for translation? Pediatr Res 2020; 87:620-621. [PMID: 31706257 DOI: 10.1038/s41390-019-0673-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023]
|
50
|
Wassink G, Davidson JO, Fraser M, Yuill CA, Bennet L, Gunn AJ. Non-additive effects of adjunct erythropoietin therapy with therapeutic hypothermia after global cerebral ischaemia in near-term fetal sheep. J Physiol 2020; 598:999-1015. [PMID: 31912503 DOI: 10.1113/jp279131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether the combination of high-dose rEpo therapy with therapeutic hypothermia can further improve outcomes. Hypothermia and rEpo independently improved neuronal survival, with greater improvement with hypothermia, and similarly reduced numbers of caspase-3 positive cells and reactive microglia after 7 days recovery. Hypothermia, but not rEpo, was associated with markedly improved EEG power, whereas both interventions improved recovery of EEG frequency. There was no significant improvement in any outcome after combined rEpo and hypothermia compared with hypothermia alone, and of concern, the combination was associated with increased numbers of cortical caspase-3-positive cells compared with ischaemia-hypothermia. These data suggest that the mechanisms of neuroprotection with hypothermia and rEpo overlap and, thus, high-dose rEpo infusion does not appear to be an effective adjunct therapy for therapeutic hypothermia. ABSTRACT Therapeutic hypothermia for hypoxic-ischaemic encephalopathy (HIE) provides incomplete neuroprotection. Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether adjunct rEpo therapy with therapeutic hypothermia can further improve outcomes. Near-term fetal sheep received sham-ischaemia (n = 9) or global cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of rEpo (ischaemia-Epo, n = 8; 5000 U/kg loading dose, then 833.3 U/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or rEpo plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post ischaemia. Fetal brains were collected 7 days after cerebral ischaemia. Cerebral ischaemia was associated with severe neuronal loss and microglial induction in the parasagittal cortex and subcortical regions. Hypothermia reduced overall neuronal loss, cortical caspase-3 and reactive microglia in the striatum and cortex, with greater recovery of electroencephalographic (EEG) power and spectral edge (SEF) from 48 h onwards. rEpo independently improved neuronal survival in the parasagittal cortex, hippocampal CA4 and thalamus, and reduced cortical caspase-3 and activated microglia in striatal and cortical areas, with greater SEF from 120 h onwards. However, ischaemia-Epo-hypothermia did not further improve outcomes compared with ischaemia-hypothermia and was associated with increased numbers of cortical caspase-3-positive cells. These findings suggest that although delayed, prolonged treatment with both hypothermia and rEpo are independently neuroprotective, they have overlapping anti-inflammatory and anti-apoptotic mechanisms, such that the delayed, high-dose rEpo infusion for 3 days did not materially augment neuroprotection with therapeutic hypothermia.
Collapse
Affiliation(s)
- Guido Wassink
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Mhoyra Fraser
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Caroline A Yuill
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand
| |
Collapse
|