1
|
de Ruiter CJ, Baak LM, Westerling Y, Wilmes E. A simple on-field fast knee-flexion test to assess acute knee flexor fatigue. Eur J Appl Physiol 2025:10.1007/s00421-025-05732-2. [PMID: 40252094 DOI: 10.1007/s00421-025-05732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 04/21/2025]
Abstract
PURPOSE In a practical setting, outside the laboratory, acute muscle fatigue may be underestimated because substantial recovery occurs during the elapsed time between the end of exercise and fatigue assessment. We introduce a simple field test to assess knee flexor contractile function quickly after exercise cessation. METHODS Fourteen young amateur football players performed maximally fast knee flexions (FKFs) in the prone position with their dominant leg, before (pre) and 20 s after finishing a series of fourteen fatiguing 40 m sprints (post) and again following 6 min recovery (rec). Peak angular acceleration (PAA) about the knee joint was measured with a small inertial measurement unit (IMU) firmly attached to the shin. RESULTS Although participants only practiced the FKFs for 1 min in the warm-up, the reliability of PPA was good with coefficients of variation of 3.0% (pre), 2.7% (post), and 3.6% (rec). Sprint time increased from 5.96 ± 0.40 s to 6.55 ± 0.37 s (p < 0.001, f = 0.89), PAA decreased from 107.1 ± 11.5 rad.s-2 to 94.1 ± 11.7 rad.s-2 (p < 0.001, f = 0.50) and following recovery (p < 0.05) values were 6.15 ± 0.39 s and 103.1 ± 10.7 rad.s-2, respectively. The percentage decrease in PAA during FKFs was linearly related (r2 = 0.48, p = 0.01) to the percentage increase in 40 m sprint time. In addition, PAA (pre) was related to the time of the first sprint (r2 = 0.33, p = 0.03). CONCLUSION The proposed FKF test is reliable and can easily be executed to evaluate acute knee flexor muscle fatigue on the field. The presented relations between (changes in) sprint performance and peak knee angular accelerations during isolated fast knee flexions are promising but need confirmation in larger-scaled studies.
Collapse
Affiliation(s)
- Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| | - Lucas M Baak
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Yfke Westerling
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Erik Wilmes
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- FIFA Medical Centre of Excellence, Royal Netherlands Football Association, Woudenbergseweg 56-58, 3707 HX, Zeist, The Netherlands
| |
Collapse
|
2
|
Cairns SP, Lindinger MI. Lactic acidosis: implications for human exercise performance. Eur J Appl Physiol 2025:10.1007/s00421-025-05750-0. [PMID: 40088272 DOI: 10.1007/s00421-025-05750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
During high-intensity exercise a lactic-acidosis occurs with raised myoplasmic and plasma concentrations of lactate- and protons ([lactate-], [H+] or pH). We critically evaluate whether this causes/contributes to fatigue during human exercise. Increases of [lactate-] per se (to 25 mM in plasma, 50 mM intracellularly) exert little detrimental effect on muscle performance while ingestion/infusion of lactate- can be ergogenic. An exercise-induced intracellular acidosis at the whole-muscle level (pHi falls from 7.1-7.0 to 6.9-6.3), incorporates small changes in slow-twitch fibres (pHi ~ 6.9) and large changes in fast-twitch fibres (pHi ~ 6.2). The relationship between peak force/power and acidosis during fatiguing contractions varies across exercise regimes implying that acidosis is not the sole cause of fatigue. Concomitant changes of other putative fatigue factors include phosphate metabolites, glycogen, ions and reactive oxygen species. Acidosis to pHi 6.7-6.6 at physiological temperatures (during recovery from exercise or induced in non-fatigued muscle), has minimal effect on force/power. Acidosis to pHi ~ 6.5-6.2 per se reduces maximum force (~12%), slows shortening velocity (~5%), and lowers peak power (~22%) in non-fatigued muscles/individuals. A pre-exercise induced-acidosis with ammonium chloride impairs exercise performance in humans and accelerates the decline of force/power (15-40% initial) in animal muscles stimulated repeatedly in situ. Raised [H+]i and diprotonated inorganic phosphate ([H2PO4-]i) act on myofilament proteins to reduce maximum cross-bridge activity, Ca2+-sensitivity, and myosin ATPase activity. Acidosis/[lactate-]o attenuates detrimental effects of large K+-disturbances on action potentials and force in non-fatigued muscle. We propose that depressive effects of acidosis and [H2PO4-]i on myofilament function dominate over the protective effects of acidosis/lactate- on action potentials during fatigue. Raised extracellular [H+]/[lactate-] do not usually cause central fatigue but do contribute to elevated perceived exertion and fatigue sensations by activating group III/IV muscle afferents. Modulation of H+/lactate- regulation (via extracellular H+-buffers, monocarboxylate transporters, carbonic anhydrase, carnosine) supports a role for intracellular acidosis in fatigue. In conclusion, current evidence advocates that severe acidosis in fast-twitch fibres can contribute to force/power fatigue during intense human exercise.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sport and Recreation Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1020, New Zealand.
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
| | - Michael I Lindinger
- Research and Development, The Nutraceutical Alliance Inc, Guelph, ON, L8N 3Z5, Canada
| |
Collapse
|
3
|
Korzeniewski B. Biochemical origin of (near-) linear curvature constant (W')- V ˙ O 2 slow component ( Δ V ˙ O 2 sc ) and critical power (CP)- V ˙ O 2 transition time (t 0.63) relationship in skeletal muscle. Eur J Appl Physiol 2025; 125:455-468. [PMID: 39312007 DOI: 10.1007/s00421-024-05612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 02/16/2025]
Abstract
PURPOSE The biochemical background of the (near-)linear direct relationship between the curvature constant (W') of the power-duration curve and the magnitude ( Δ V ˙ O 2sc ) of the slow component of theV ˙ O 2 on-kinetics (V ˙ O 2sc ) as well as reverse relationship between critical power (CP) and the characteristic transition time (t0.63, analogous to τp) of the primary phase II of theV ˙ O 2 on-kinetics encountered in experimental studies is studied. METHODS A computer model of the bioenergetic system in skeletal muscle, involving the each-step-activation mechanism of work transitions and Pi double-threshold mechanism of muscle fatigue, is used. RESULTS The activity (rate constant) (kadd) of the additional ATP usage, underlying the slow component, determines to a large extent the (near-)linear direct W'- Δ V ˙ O 2sc relationship, as an increase in kadd increases markedly both W' and Δ V ˙ O 2sc . t0.63 is a derivative of the changes in metabolite (M = PCr or Cr or Pi) concentrations between rest and the steady-state of the phase II M on-kinetics after the onset of exercise. The oxidative phosphorylation (OXPHOS) activity (kOX) mostly determines the (near)-linear inverse CP-t0.63 relationship, as an increase in kOX markedly decreases ΔM and t0.63, and elevates CP. CONCLUSIONS TheV ˙ O 2 on-kinetics (e.g.,V ˙ O 2sc or t0.63) cannot cause anything in the system, as it is an emergent property of the system functioning on the biochemical level. Physiological variables: muscleV ˙ O 2sc and W' as well as t0.63 and CP, and relationships between them, are determined by biochemical parameters, mainly kadd and kOX, respectively.
Collapse
|
4
|
Zhao H, Kurokawa T, Tajima M, Liu Z, Okada J. Can Perceived Exertion and Velocity Loss Serve as Indirect Indicators of Muscle Fatigue During Explosive Back Squat Exercise? J Funct Morphol Kinesiol 2024; 9:238. [PMID: 39584891 PMCID: PMC11587135 DOI: 10.3390/jfmk9040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Muscle fatigue is inevitable during resistance exercises, making its monitoring essential for maintaining athletic performance and reducing the risk of injury. Ratings of perceived exertion (RPE) and velocity loss have been reported as reliable indicators of muscle fatigue during explosive resistance exercises. However, their validity has been assessed only indirectly. This study aimed to directly examine the validity of RPE and velocity loss as markers of muscle fatigue during explosive back squat (BS) exercises. Methods: Seventeen trained men performed three BS tasks with varying volumes (low, medium, high) at 65% of their one-repetition maximum. RPE, spectral fatigue index (SFI), and velocity loss were measured throughout the tasks. Results: Significant effects were observed across conditions for overall RPE (p < 0.001) and velocity loss (p < 0.001), while no significant effect was found for SFI. RPE and SFI increased significantly as the tasks progressed (p < 0.001), while velocity did not significantly decrease. Significant but weak correlations were found between RPE and SFI (r = 0.325, p < 0.001) and between velocity loss and SFI (r = 0.224, p < 0.001). Conclusions: These findings suggest that RPE and muscle fatigue levels increase correspondingly, indicating that RPE could serve as a practical, indirect fatigue marker for explosive BS exercises. However, velocity loss may not fully reflect muscle fatigue during lower-body explosive training and should not be used as the sole indicator. Additionally, caution is warranted when applying velocity-related parameters as indirect physiological markers for resistance exercises. The significant but weak correlations between RPE, velocity loss, and SFI suggest that assessing muscle fatigue in lower-body exercises remains challenging.
Collapse
Affiliation(s)
- Hanye Zhao
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Takanori Kurokawa
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.K.); (M.T.); (Z.L.)
| | - Masayoshi Tajima
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.K.); (M.T.); (Z.L.)
| | - Zijian Liu
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.K.); (M.T.); (Z.L.)
| | - Junichi Okada
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| |
Collapse
|
5
|
Fekih N, Zghal F, Machfer A, Ben Hadj Hassen H, Zarizissi S, Bouzid MA. Peripheral fatigue regulation during knee extensor exercise in type 1 diabetes and consequences on the force-duration relationship. Eur J Appl Physiol 2024; 124:897-908. [PMID: 37733138 DOI: 10.1007/s00421-023-05318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE This study aimed to examine if peripheral fatigue is adjusted during knee extensor (KE) exercise in order not to surpass a critical threshold patient with type 1 diabetes (T1D) and the consequences of this mechanism on the force-duration relationship. METHODS Eleven T1D individuals randomly performed two different sessions in which they performed 60 maximum voluntary contractions (MVC; 3 s contraction, 2 s relaxation). One trial was performed in the non-fatigued state (CTRL) and another after fatiguing neuromuscular stimulation of the KE (FNMES). Peripheral and central fatigue were quantified by the difference between pre and post exercise in quadriceps voluntary activation (ΔVA) and potentiated twitch (ΔPtw). Critical torque (CT) was determined as the average force of the last 12 contractions, whereas W' was calculated as the area above the CT. RESULTS Although FNMES led to a significant decrease in potentiated twitch (Ptw) before performing the 60-MVCs protocol (p < 0.05), ΔVA (∼ -7.5%), ΔPtw (∼ -39%), and CT (∼816 N) post-MVCs were similar between the two conditions. The difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r2 = 0.60). In addition, W' was correlated with ΔPtw (r2 = 0.62) in the CTRL session. CONCLUSION Correlative results in the present study indicate that regulating peripheral fatigue mechanisms at a critical threshold limit W'. Additionally, peripheral fatigue during KE exercise is limited to an individual threshold in T1D patients.
Collapse
Affiliation(s)
- Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Firas Zghal
- Faculté des Sciences du Sport, LAMHESS, Université Côte d'Azur, Nice, France
| | - Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Hayfa Ben Hadj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Slim Zarizissi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia.
| |
Collapse
|
6
|
Janicijevic D, Miras-Moreno S, Morenas-Aguilar MD, Jiménez-Martínez P, Alix-Fages C, García-Ramos A. Relationship between perceptual and mechanical markers of fatigue during bench press and bench pull exercises: impact of inter-set rest period length. PeerJ 2024; 12:e16754. [PMID: 38250725 PMCID: PMC10799610 DOI: 10.7717/peerj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore whether the relationship between perceptual (rating of perceived exertion; RPE) and mechanical (maximal number of repetitions completed [MNR], fastest set velocity, and mean velocity decline) variables is affected by the length of inter-set rest periods during resistance training sets not leading to failure. Twenty-three physically active individuals (15 men and eight women) randomly completed 12 testing sessions resulting from the combination of two exercises (bench press and bench pull), three inter-set rest protocols (1, 3, and 5 min), and two minimal velocity thresholds (farther from muscular failure [MVT0.45 for bench press and MVT0.65 for bench pull] and closer to muscular failure [MVT0.35 for bench press and MVT0.55 for bench pull]). The duration of inter-set rest periods did not have a significant impact on RPE values (p ranged from 0.061 to 0.951). Higher proximities to failure, indicated by lower MVTs, were associated with increased RPE values (p < 0.05 in 19 out of 24 comparisons). Moreover, as the number of sets increased, an upward trend in RPE values was observed (p < 0.05 in seven out of 12 comparisons). Finally, while acknowledging some inconsistencies, it was generally observed that higher magnitudes of the mechanical variables, especially MNR (rs < -0.55 in three out of four comparisons), were associated with lower RPE values. These results, which were comparable for the bench press and bench pull exercises, suggest that post-set RPE values are affected by the fatigue experienced at both the beginning and end of the set.
Collapse
Affiliation(s)
- Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
| | | | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Universidad de Granada, Granada, España
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Catolica de la Santísima Concepcion, Concepcion, Chile
| |
Collapse
|
7
|
Thurston TS, Weavil JC, Georgescu VP, Wan HY, Birgenheier NM, Morrissey CK, Jessop JE, Amann M. The exercise pressor reflex - a pressure-raising mechanism with a limited role in regulating leg perfusion during locomotion in young healthy men. J Physiol 2023; 601:4557-4572. [PMID: 37698303 PMCID: PMC10592099 DOI: 10.1113/jp284870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
We investigated the role of the exercise pressor reflex (EPR) in regulating the haemodynamic response to locomotor exercise. Eight healthy participants (23 ± 3 years,V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ : 49 ± 6 ml/kg/min) performed constant-load cycling exercise (∼36/43/52/98%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ; 4 min each) without (CTRL) and with (FENT) lumbar intrathecal fentanyl attenuating group III/IV locomotor muscle afferent feedback and, thus, the EPR. To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during FENT, subjects mimicked the ventilatory response recorded during CTRL. Arterial and leg perfusion pressure (femoral arterial and venous catheters), femoral blood flow (Doppler-ultrasound), microvascular quadriceps blood flow index (indocyanine green), cardiac output (inert gas breathing), and systemic and leg vascular conductance were quantified during exercise. There were no cardiovascular and ventilatory differences between conditions at rest. Pulmonary ventilation, arterial blood gases and oxyhaemoglobin saturation were not different during exercise. Furthermore, cardiac output (-2% to -12%), arterial pressure (-7% to -15%) and leg perfusion pressure (-8% to -22%) were lower, and systemic (up to 16%) and leg (up to 27%) vascular conductance were higher during FENT compared to CTRL. Leg blood flow, microvascular quadriceps blood flow index, and leg O2 -transport and utilization were not different between conditions (P > 0.5). These findings reflect a critical role of the EPR in the autonomic control of the heart, vasculature and, ultimately, arterial pressure during locomotor exercise. However, the lack of a net effect of the EPR on leg blood flow challenges the idea of this cardiovascular reflex as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals. KEY POINTS: The role of the exercise pressor reflex (EPR) in regulating leg O2 -transport during human locomotion remains uncertain. We investigated the influence of the EPR on the cardiovascular response to cycling exercise. Lumbar intrathecal fentanyl was used to block group III/IV leg muscle afferents and debilitate the EPR at intensities ranging from 30% to 100%V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ . To avoid different respiratory muscle metaboreflex and arterial chemoreflex activation during exercise with blocked leg muscle afferents, subjects mimicked the ventilatory response recorded during control exercise. Afferent blockade increased leg and systemic vascular conductance, but reduced cardiac output and arterial-pressure, with no net effect on leg blood flow. The EPR influenced the cardiovascular response to cycling exercise by contributing to the autonomic control of the heart and vasculature, but did not affect leg blood flow. These findings challenge the idea of the EPR as a key determinant of leg O2 -transport during locomotor exercise in healthy, young individuals.
Collapse
Affiliation(s)
- Taylor S. Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Joshua C. Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT
| | - Vincent P. Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | | | | | - Jacob E. Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT
| |
Collapse
|
8
|
Jiménez-Martínez P, Sánchez-Valdepeñas J, Cornejo-Daza PJ, Cano-Castillo C, Asín-Izquierdo I, Alix-Fages C, Pareja-Blanco F, Colado JC. Effects of different phenylcapsaicin doses on neuromuscular activity and mechanical performance in trained male subjects: a randomized, triple-blinded, crossover, placebo-controlled trial. Front Physiol 2023; 14:1215644. [PMID: 37601635 PMCID: PMC10433207 DOI: 10.3389/fphys.2023.1215644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Objective: This study aimed to examine the effects of phenylcapsaicin (PC) supplementation on strength performance and neuromuscular activity in young trained male subjects. Materials and methods: A total of 25 trained subjects [full-squat (SQ) one repetition maximum (1RM) = 125.6 ± 21.0 kg] were enrolled in this randomized, triple-blinded, crossover, placebo-controlled trial. The subjects performed a first session and a post-24 h session for each condition. In the first session, the subjects ingested a high dose of PC (HD, 2.5 mg), a low dose (LD, 0.625 mg), or a placebo (PLA). Their performance in SQ was assessed under a 3% × 8 × 70% 1RM protocol in the first session. Their performances in countermovement jump (CMJ), SQ with 60% 1RM, and isometric squat were measured before and after the SQ protocol in both sessions. The neural activity of the vastus lateralis (VL) and vastus medialis (VM) was recorded via surface electromyography (EMG) and averaged in both sessions. Results: Significant differences between the conditions were reported for lifting velocity, velocity loss, and the 60% load in dynamic SQ (p range = 0.02-0.04). Electrical changes were not identified for any outcome, although neural activity changed across time (p range ≤0.001-0.006). A significant condition × time effect was observed in CMJ compared to PLA (p ≤0.001) and LD (p ≤0.001). Intra-set analyses revealed higher velocities in HD compared to those in LD (p = 0.01) and PLA (p range = 0.004-0.008). Conclusion: Therefore, PC may improve the strength performance and attenuate the mechanical fatigue induced by resistance training in SQ and CMJ exercises.
Collapse
Affiliation(s)
- Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
| | - Juan Sánchez-Valdepeñas
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Pedro J. Cornejo-Daza
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Clara Cano-Castillo
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Iván Asín-Izquierdo
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- Life Pro Nutrition Research Center, INDIEX, Madrid, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Fernando Pareja-Blanco
- Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan C. Colado
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| |
Collapse
|
9
|
Zhao H, Seo D, Okada J. Validity of using perceived exertion to assess muscle fatigue during back squat exercise. BMC Sports Sci Med Rehabil 2023; 15:14. [PMID: 36739396 PMCID: PMC9899404 DOI: 10.1186/s13102-023-00620-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023]
Abstract
The rating of perceived exertion (RPE) scale has been found to reflect physiological responses, and this study aimed to assess the validity of using the Borg CR-10 scale and velocity loss to evaluate muscle fatigue quantified by surface electromyography during back squat (BS) exercise. A total of 15 collegiate male athletes underwent three non-explosive BS tasks comprising low, medium, and high volumes at 65% of their one-repetition maximum. RPEs, spectral fatigue index (SFI), and velocity loss during BS exercise were assessed throughout the trials. Significant differences in overall RPE (p < 0.001) and average SFI (p < 0.05) were observed between the conditions, whereas no significant difference was observed in average velocity loss. Significant increases in RPE and SFI (p < 0.001) were observed within the exercise process, whereas a significant increase in velocity loss was not observed. Correlation analyses indicated a significant correlation between RPE and SFI obtained during exercise (r = 0.573, p < 0.001). However, no significant correlation was observed between velocity loss and SFI. These results demonstrated that RPE could be used as a muscle fatigue predictor in BS exercise, but that velocity loss may not reflect muscle fatigue correctly when participants cannot and/or are not required to perform BS explosively. Furthermore, practitioners should not use velocity loss as a muscle fatigue indicator in some resistance exercise situations, such as rehabilitation, beginner, and hypertrophy programs.
Collapse
Affiliation(s)
- Hanye Zhao
- grid.5290.e0000 0004 1936 9975Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama Japan ,grid.5290.e0000 0004 1936 9975Graduate School of Sport Sciences, Waseda University, Mikajima 2-579-15, Tokorozawa, Saitama 359-1192 Japan
| | - Dasom Seo
- grid.5290.e0000 0004 1936 9975Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama Japan
| | - Junichi Okada
- grid.5290.e0000 0004 1936 9975Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama Japan
| |
Collapse
|
10
|
Bergevin M, Steele J, Payen de la Garanderie M, Feral-Basin C, Marcora SM, Rainville P, Caron JG, Pageaux B. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med 2023; 53:415-435. [PMID: 36318384 DOI: 10.1007/s40279-022-01762-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The perception of effort provides information on task difficulty and influences physical exercise regulation and human behavior. This perception differs from other-exercise related perceptions such as pain. There is no consensus on the role of group III/IV muscle afferents as a signal processed by the brain to generate the perception of effort. OBJECTIVE The aim of this meta-analysis was to investigate the effect of pharmacologically blocking muscle afferents on the perception of effort. METHODS Six databases were searched to identify studies measuring the ratings of perceived effort during physical exercise, with and without pharmacological blockade of muscle afferents. Articles were coded based on the operational measurement used to distinguish studies in which perception of effort was assessed specifically (effort dissociated) or as a composite experience including other exercise-related perceptions (effort not dissociated). Articles that did not provide enough information for coding were assigned to the unclear group. RESULTS The effort dissociated group (n = 6) demonstrated a slight increase in ratings of perceived effort with reduced muscle afferent feedback (standard mean change raw, 0.39; 95% confidence interval 0.13-0.64). The group effort not dissociated (n = 2) did not reveal conclusive results (standard mean change raw, - 0.29; 95% confidence interval - 2.39 to 1.8). The group unclear (n = 8) revealed a slight ratings of perceived effort decrease with reduced muscle afferent feedback (standard mean change raw, - 0.27; 95% confidence interval - 0.50 to - 0.04). CONCLUSIONS The heterogeneity in results between groups reveals that the inclusion of perceptions other than effort in its rating influences the ratings of perceived effort reported by the participants. The absence of decreased ratings of perceived effort in the effort dissociated group suggests that muscle afferent feedback is not a sensory signal for the perception of effort.
Collapse
Affiliation(s)
- Maxime Bergevin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - James Steele
- School of Sport, Health and Social Sciences, Southampton, UK
| | - Marie Payen de la Garanderie
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Camille Feral-Basin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Pierre Rainville
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada.,Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jeffrey G Caron
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Montreal, QC, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada. .,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| |
Collapse
|
11
|
de la Garanderie MP, Courtay A, Féral-Basin C, Rainville P, Gaveau J, Pageaux B. Perception of effort and the allocation of physical resources: A generalization to upper-limb motor tasks. Front Psychol 2023; 13:974172. [PMID: 36760904 PMCID: PMC9904170 DOI: 10.3389/fpsyg.2022.974172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023] Open
Abstract
Purpose The perception of effort (PE) is widely used to prescribe and monitor exercise during locomotor and resistance tasks. The present study examines the validity of PE to prescribe and monitor exercise during upper-limb motor tasks under various loads and speed requirements. Methods Forty participants volunteered in two experiments. In experiment 1, we used four PE intensities to prescribe exercise on a modified version of the box and block test (BBT) and a pointing task. We investigated the possibility of monitoring the exercise intensity by tracking changes in PE rating in response to three different tempos or additional weights. Experiment 2 replicated the possibility of prescribing the exercise with the PE intensity during the BBT and explored the impact of additional weights on performance and PE during the standardized version of the BBT. Muscle activation, heart rate, and respiratory frequencies were recorded. Results In experiment 1, increasing the PE intensity to prescribe exercise induced an increased performance between each intensity. Increasing task difficulty with faster movement tempo and adding weight on the forearm increased the rating of PE. Experiment 2 replicated the possibility to use PE intensity for exercise prescription during the BBT. When completing the BBT with an additional weight on the forearm, participants maintained performance at the cost of a higher PE. In both experiments, changes in PE were associated with changes in muscle activation. Conclusion Our results suggest that PE is a valid tool to prescribe and monitor exercise during upper-limb motor tasks.
Collapse
Affiliation(s)
- Marie Payen de la Garanderie
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Aymeric Courtay
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Camille Féral-Basin
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Pierre Rainville
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
- Espace d’Etude du Mouvement—Etienne Jules MAREY, Université Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Benjamin Pageaux
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
12
|
Smith RW, Housh TJ, Anders JPV, Neltner TJ, Arnett JE, Schmidt RJ, Johnson GO. Application of the Ratings of Perceived Exertion-Clamp Model to Examine the Effects of Joint Angle on the Time Course of Torque and Neuromuscular Responses During a Sustained, Isometric Forearm Flexion to Task Failure. J Strength Cond Res 2022; 37:1023-1033. [PMID: 36730581 DOI: 10.1519/jsc.0000000000004357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Robert W Smith
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | | | | | |
Collapse
|
13
|
Martín-Rivera F, Beato M, Alepuz-Moner V, Maroto-Izquierdo S. Use of concentric linear velocity to monitor flywheel exercise load. Front Physiol 2022; 13:961572. [PMID: 36035469 PMCID: PMC9412162 DOI: 10.3389/fphys.2022.961572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To propose the concentric linear velocity measurement as a valid method to quantify load and individualise the prescription of flywheel training, we investigated the relationship between inertial load and mean concentric linear velocity (MCLV) during the flywheel squat exercise in a wide spectrum of intensities. In addition, we compared MCLV and subjective rating of perceived exertion (RPE) after each load. Methods: Twenty-five physically active men volunteered for this study (26.5 ± 2.9 years, 179.5 ± 4.2 cm, 81.6 ± 8.6 kg). After familiarization, all participants performed two inertial progressive load tests on separated days to determine the flywheel load-velocity profile and its reliability. Each participant performed 5 set of 6 repetitions of the flywheel squat exercise with different inertial loads (0.047, 0.104, 0.161, 0.245, 0.321 kg m2) selected in a counterbalanced and randomized order for each testing day. Average MCLV and RPE for each load were compared. Results: The inter-session intraclass correlation coefficient (ICC) showed values above 0.9 in all the included outcomes (MCLV: ICC = 0.91; RPE: ICC = 0.93). A significant correlation (p < 0.01, R2 = 0.80) between inertial load and MCLV was found. Similarly, significant correlation models (p < 0.01) were observed between RPE and load (R2 = 0.87) and (R2 = 0.71) between RPE and MCLV. Conclusion: The control of MCLV during flywheel exercise can be proposed as a valid method to quantify load and to individualize the prescription of flywheel training. In addition, RPE responses have demonstrated significant correlations with load and velocity. Therefore, RPE has been proposed as a valid and reliable alternative to control flywheel training.
Collapse
Affiliation(s)
- Fernando Martín-Rivera
- Research Group in Prevention and Health in Exercise and Sport, University of Valencia, Valencia, Spain
- *Correspondence: Fernando Martín-Rivera,
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom
- Institute of Health and Wellbeing, University of Suffolk, Ipswich, United Kingdom
| | | | - Sergio Maroto-Izquierdo
- Department of Health Sciences, European University Miguel de Cervantes, Valladolid, Spain
- Proporción A, Applied Sports Science Centre, Valladolid, Spain
| |
Collapse
|
14
|
Iannetta D, Zhang J, Murias JM, Aboodarda SJ. Neuromuscular and perceptual mechanisms of fatigue accompanying task failure in response to moderate-, heavy-, severe-, and extreme-intensity cycling. J Appl Physiol (1985) 2022; 133:323-334. [PMID: 35771217 DOI: 10.1152/japplphysiol.00764.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive characterization of neuromuscular and perceptual mechanisms of fatigue at task failure following exercise across the entire intensity spectrum is lacking. This study evaluated the extent of peripheral and central fatigue, and corresponding perceptual attributes, at task failure following cycling within the moderate-(MOD), heavy-(HVY), severe-(SVR), and extreme-(EXT) intensity domains. After a ramp-incremental test, eleven young males performed four constant-power output trials to the limit of tolerance (Tlim) at four distinct domain-specific workloads. These trials were preceded and followed by 5-s knee-extension maximal voluntary contractions (MVC) and femoral nerve electrical stimuli to quantify peripheral and central fatigue. Additionally, perceptual measures including ratings of global fatigue, legs pain, dyspnea and perceived effort (RPE) were also collected. At Tlim, reductions in MVC were independent of intensity (P>0.05). However, peripheral fatigue was greater following EXT and SVR and progressively, but distinctively, lower following HVY and MOD (P<0.05). Central fatigue was similar after SVR, HVY, and MOD, but absent after EXT (P<0.05). At Tlim, subjective ratings of global fatigue were progressively higher with lower exercise intensities, while ratings of legs pain and dyspnea were progressively higher with higher exercise intensities. On the other hand, RPE was maximal following HVY, SVR, and EXT, but not MOD. The findings demonstrate that at Tlim the extent of peripheral fatigue is highly domain-specific whereas the extent of central fatigue is not. Sensations such as fatigue, pain, and dyspnea may integrate with mechanisms of sense of effort to determine task failure in a manner specific to each intensity domain.
Collapse
Affiliation(s)
- Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jenny Zhang
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
15
|
Zhao H, Nishioka T, Okada J. Validity of using perceived exertion to assess muscle fatigue during resistance exercises. PeerJ 2022; 10:e13019. [PMID: 35251786 PMCID: PMC8896022 DOI: 10.7717/peerj.13019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The rating of perceived exertion (RPE) is correlated with physiological variables. The purpose of this study was to assess the validity of using the Borg CR-10 scale and velocity to predict muscle fatigue assessed by surface electromyography during single joint resistance exercises. METHODS Fifteen healthy males underwent different fatigue levels of unilateral elbow flexion (EF) and knee extension (KE), consisting of low, medium, and high volumes at 65% of their one-repetition maximum. The RPEs, spectral fatigue index (SFI), and mean velocity of the experimental exercises were assessed throughout the trials. RESULTS Significant differences in overall RPE (p < 0.001) and average SFI (p < 0.001) were observed between the conditions in both exercises. Significant changes in RPE and SFI (p < 0.001) were observed throughout the EF, whereas a SFI increase (p < 0.001) was only observed at the end point of KE. Multiple regression analyses revealed two significant models (p < 0.001) for the prediction of muscle fatigue during EF (R2 = 0.552) and KE (R2 = 0.377). CONCLUSIONS Muscle fatigue resulted in similar increases in perceptual responses, demonstrating that RPE is useful for assessing fatigue when resistance exercise is performed. However, velocity changes may not reflect muscle fatigue correctly when exercise is no longer performed in an explosive manner. We recommend combining RPE responses with velocity changes to comprehensively assess muscle fatigue during clinical and sports situations.
Collapse
Affiliation(s)
- Hanye Zhao
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Takuya Nishioka
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Junichi Okada
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| |
Collapse
|
16
|
Lewis MT, Blain GM, Hart CR, Layec G, Rossman MJ, Park SY, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Amann M, Richardson RS. Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. Am J Physiol Regul Integr Comp Physiol 2021; 321:R687-R698. [PMID: 34549627 DOI: 10.1152/ajpregu.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.
Collapse
Affiliation(s)
- Matthew T Lewis
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Gregory M Blain
- LAMHESS, University Nice Sophia Antipolis, Nice, France.,LAMHESS, University of Toulon, La Garde, France
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Song-Young Park
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,School of Health and Kinesiology, University of Nebraska, Omaha, Nebraska
| | - Joel D Trinity
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Simranjit K Sidhu
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Thomas J Hureau
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,LAMHESS, University Nice Sophia Antipolis, Nice, France.,LAMHESS, University of Toulon, La Garde, France
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Goulding RP, Rossiter HB, Marwood S, Ferguson C. Bioenergetic Mechanisms Linking V˙O2 Kinetics and Exercise Tolerance. Exerc Sport Sci Rev 2021; 49:274-283. [PMID: 34547760 PMCID: PMC8528340 DOI: 10.1249/jes.0000000000000267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesize that the V˙O2 time constant (τV˙O2) determines exercise tolerance by defining the power output associated with a "critical threshold" of intramuscular metabolite accumulation (e.g., inorganic phosphate), above which muscle fatigue and work inefficiency are apparent. Thereafter, the V˙O2 "slow component" and its consequences (increased pulmonary, circulatory, and neuromuscular demands) determine performance limits.
Collapse
Affiliation(s)
- Richie P. Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
- Laboratory for Myology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance CA, 90254, USA
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, L16 9JD, UK
| | - Carrie Ferguson
- School of Biomedical Sciences, Faculty of Biological Sciences & Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, LS 2 9JT, UK
| |
Collapse
|
18
|
Noboa K, Keller J, Hergenrader K, Housh T, Anders JP, Neltner T, Schmidt R, Johnson G. Men Exhibit Greater Pain Pressure Thresholds and Times to Task Failure but Not Performance Fatigability Following Self-Paced Exercise. Percept Mot Skills 2021; 128:2326-2345. [PMID: 34313524 DOI: 10.1177/00315125211035028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The purpose of the current study was to determine if, and to what extent, sex differences in performance fatigability after a sustained, bilateral leg extension, anchored to a moderate rating of perceived exertion (RPE), could be attributed to muscle size, muscular strength, or pain pressure threshold (PPT) in young, healthy adults. Thirty adults (men: n = 15, women: n = 15) volunteered to complete a sustained leg extension task anchored to RPE = 5 (10-point OMNI scale) as well as pretest and posttest maximal voluntary isometric contraction (MVIC) trials. The fatigue-induced decline in MVIC force was defined as performance fatigability. We used muscle cross-sectional area (mCSA) to quantify muscle size and a dolorimeter to assess PPT. The sustained task induced fatigue such that both men and women exhibited significant (p < 0.05) decreases in MVIC force from pretest to posttest (M = 113.3, SD =24.2 kg vs. M = 98.3, SD = 23.1 kg and M = 73.1, SD =14.5 kg vs. M = 64.1, SD = 16.2 kg, respectively), with no significant sex differences in performance fatigability (grand M = 12.6, SD =10.6%). Men, however, exhibited significantly (p < 0.05) longer time to task failure (TTF) than women (M = 166.1, SD =83.0 seconds vs. M = 94.6, SD =41.7) as well as greater PPT (M = 5.9, SD = 2.2 kg vs. M = 3.4, SD =1.1 kg). The only significant predictor of performance fatigability was PPT. In conclusion, differences in PPT, at least in part, mediate variations in TTF during self-paced exercise anchored to a specific RPE and resulting in performance fatigability.
Collapse
Affiliation(s)
- Karina Noboa
- Performance and Physique Enhancement Laboratory, Department of Educational and Psychological Studies, College of Education, University of South Florida, Tampa, Florida, United States
| | - Joshua Keller
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, United States
| | - Kipp Hergenrader
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Terry Housh
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - John Paul Anders
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Tyler Neltner
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Richard Schmidt
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Glen Johnson
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| |
Collapse
|
19
|
Malenfant S, Lebret M, Breton-Gagnon É, Potus F, Paulin R, Bonnet S, Provencher S. Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms. Eur Respir Rev 2021; 30:200284. [PMID: 33853885 PMCID: PMC9488698 DOI: 10.1183/16000617.0284-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022] Open
Abstract
Exercise intolerance is a cardinal symptom of pulmonary arterial hypertension (PAH) and strongly impacts patients' quality of life (QoL). Although central cardiopulmonary impairments limit peak oxygen consumption (V' O2peak ) in patients with PAH, several peripheral abnormalities have been described over the recent decade as key determinants in exercise intolerance, including impaired skeletal muscle (SKM) morphology, convective O2 transport, capillarity and metabolism indicating that peripheral abnormalities play a greater role in limiting exercise capacity than previously thought. More recently, cerebrovascular alterations potentially contributing to exercise intolerance in patients with PAH were also documented. Currently, only cardiopulmonary rehabilitation has been shown to efficiently improve the peripheral components of exercise intolerance in patients with PAH. However, more extensive studies are needed to identify targeted interventions that would ultimately improve patients' exercise tolerance and QoL. The present review offers a broad and comprehensive analysis of the present literature about the complex mechanisms and their interactions limiting exercise in patients and suggests several gaps in knowledge that need to be addressed in the future for a better understanding of exercise intolerance in patients with PAH.
Collapse
Affiliation(s)
- Simon Malenfant
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Marius Lebret
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Émilie Breton-Gagnon
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - François Potus
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Quebec Heart and Lung Institute Research Center, Quebec City, Canada
- Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
20
|
Keller JL, Hill EC, Housh TJ, Smith CM, Anders JPV, Schmidt RJ, Johnson GO. The acute and early phase effects of blood flow restriction training on ratings of perceived exertion, performance fatigability, and muscular strength in women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Blood flow restriction (BFR) resistance training (RT) has garnered recent interest, but female-specific data remains scarce. OBJECTIVE: The purpose was to examine the effects of 2-wks of low-load concentric, isokinetic, reciprocal forearm flexion and extension training, with and without BFR on perceptual responses, performance fatigability, and muscular strength. METHODS: Twenty women were assigned to a BFRT or a non-BFRT group. Each group trained at 30% of concentric peak moment. Each session consisted of 75 concentric, isokinetic, reciprocal forearm flexion extension muscle actions. RPEs were recorded following each set. Pretest and posttest maximal voluntary isometric contraction (MVIC) force was measured, and percent decline was defined as performance fatigability. RESULTS: The RPE values (p< 0.05) increased across sets. Strength (collapsed across muscle action) increased (p< 0.05) from 0-wk (23.7 ± 3.2 Nm) to 2-wk (26.8 ± 2.7 Nm). Independent of group and muscle action, performance fatigability (p< 0.05) increased from 0-wk (10.9 ± 5.0%) to 2-wk (14.1 ± 4.4%). CONCLUSIONS: 2-wks of low-load concentric, reciprocal forearm flexion and extension training resulted in similar training-induced changes in perceptual responses, performance fatigability, and muscular strength between BFRT and non-BFRT. These findings may reduce concerns of increased perceptual responses following BFRRT compared to non-BFRRT.
Collapse
Affiliation(s)
- Joshua L. Keller
- Department of Health, Kinesiology and Sport, College of Education, University of South Alabama, AL, USA
| | - Ethan C. Hill
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Terry J. Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Cory M. Smith
- Human and Environmental Physiology Laboratory, Department of Kinesiology, University of Texas at El Paso, El Paso, TX, USA
| | - John Paul V. Anders
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Richard J. Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Glen O. Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| |
Collapse
|
21
|
Amann M, Wan HY, Thurston TS, Georgescu VP, Weavil JC. On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance. Exerc Sport Sci Rev 2020; 48:209-216. [PMID: 32658041 DOI: 10.1249/jes.0000000000000233] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses evidence suggesting that group III/IV muscle afferents affect locomotor performance by influencing neuromuscular fatigue. These neurons regulate the hemodynamic and ventilatory response to exercise and, thus, assure appropriate locomotor muscle O2 delivery, which optimizes peripheral fatigue development and facilitates endurance performance. In terms of central fatigue, group III/IV muscle afferents inhibit motoneuronal output and thereby limit exercise performance.
Collapse
Affiliation(s)
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah
| | - Taylor S Thurston
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Vincent P Georgescu
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, Salt Lake City, UT
| |
Collapse
|
22
|
Fulton TJ, Baranauskas MN, Paris HL, Koceja DM, Mickleborough TD, Chapman RF. Respiratory Muscle Fatigue Alters Cycling Performance and Locomotor Muscle Fatigue. Med Sci Sports Exerc 2020; 52:2380-2389. [PMID: 33064411 DOI: 10.1249/mss.0000000000002399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine if preexisting respiratory muscle fatigue (RMF) alters motoneuronal output, locomotor muscle fatigue, and cycling performance. METHODS Eight trained male cyclists performed 5-km cycling time trials after a resistive breathing task that induced RMF and under control conditions (CON). Motoneuronal output was estimated using vastus lateralis surface electromyography, and locomotor muscle fatigue was quantified as the change in potentiated quadriceps twitch force from preexercise to postexercise. RESULTS Time to complete the time trial was 1.9% ± 0.9% longer in RMF compared with CON (P < 0.001). Estimated motoneuronal output was lower in RMF compared with CON during 1 km (45% ± 11% vs 53% ± 13%, P = 0.004) and 2 km (45% ± 14% vs 51% ± 14%, P = 0.008), but was not different thereafter. Ventilation was lower in RMF compared with CON during 1 km (114 ± 19 vs 135 ± 24 L·min, P = 0.003) and 2 km (136 ± 23 vs 152 ± 31 L·min, P = 0.009); however, ratings of dyspnea were similar. After the 5-km time trial, locomotor muscle fatigue was attenuated in RMF compared with CON (-22% ± 6%, vs -28% ± 7%, P = 0.02). CONCLUSIONS Alterations to dyspnea for a given ventilation seem to have constrained power output during cycling exercise, thereby limiting the development of locomotor muscle fatigue. These findings indicate that the respiratory system is an integral component in a global feedback loop that regulates exercise performance and the development of locomotor muscle fatigue.
Collapse
Affiliation(s)
- Timothy J Fulton
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Hunter L Paris
- Department of Sports Medicine, Pepperdine University, Malibu, CA
| | - David M Koceja
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
23
|
Zarzissi S, Bouzid MA, Zghal F, Rebai H, Hureau TJ. Aging reduces the maximal level of peripheral fatigue tolerable and impairs exercise capacity. Am J Physiol Regul Integr Comp Physiol 2020; 319:R617-R625. [PMID: 32966120 DOI: 10.1152/ajpregu.00151.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to determine the magnitude of the maximal level of peripheral fatigue attainable (fatigue threshold) during an all-out intermittent isometric knee-extensor protocol in both younger (24 ± 1 yr, n = 12) and older (60 ± 2 yr, n = 12) participants to provide new insights into the effects of aging on neuromuscular function. Participants performed two experimental sessions, in which they performed 60 maximal voluntary contractions (MVCs; 3 s of contraction, 2 s of relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the quadriceps (FNMES). Peripheral fatigue was quantified via pre/postexercise decrease in quadriceps twitch force (∆Ptw). Critical force (CF) was determined as the mean force output of the last 12 contractions, whereas W' was calculated as the area above CF. Although FNMES led to a significant decrease in Ptw before performing the 60-MVCs protocol (P = 0.024), ∆Ptw was not different between CTRL and FNMES for both the young group (P = 0.491) and the old group (P = 0.523). However, this peripheral fatigue threshold was significantly greater in young versus old participants (∆Ptw = -48 ± 10% vs. -29 ± 13%, respectively, P = 0.028). In CTRL, W' was 55 ± 13% lower in the old group than in the young group (P < 0.001), but CF was similar (326 ± 10 N vs. 322 ± 12 N, respectively, P = 0.941). ∆Ptw was correlated with W', independently of age (r2 = 0.84, P < 0.001). Exercise performance decreases with aging consequent to a lower tolerance to peripheral fatigue. However, the peripheral fatigue threshold mechanism persists with healthy aging and continues to play a protective role in preserving locomotor muscle function during exercise.
Collapse
Affiliation(s)
- Slim Zarzissi
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Education, Motor Skills, Sport and Health Laboratory, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France.,European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), Faculty of Sport Sciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
24
|
Hammer SM, Alexander AM, Didier KD, Barstow TJ. Influence of blood flow occlusion on muscular recruitment and fatigue during maximal‐effort small muscle‐mass exercise. J Physiol 2020; 598:4293-4306. [DOI: 10.1113/jp279925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shane M. Hammer
- Department of Kinesiology Kansas State University Manhattan KS USA
| | | | - Kaylin D. Didier
- Department of Kinesiology Kansas State University Manhattan KS USA
| | | |
Collapse
|
25
|
Lis A, Łopusiewicz W, Piepoli MF, Ponikowska B, Paleczny B. Passive bilateral leg cycling with concomitant regional circulatory occlusion for testing mechanoreflex-metaboreflex interactions in humans. Clin Auton Res 2020; 30:549-556. [PMID: 32770375 PMCID: PMC7704518 DOI: 10.1007/s10286-020-00717-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/30/2020] [Indexed: 11/27/2022]
Abstract
Purpose The exercise pressor reflex (EPR) plays a fundamental role in physiological reactions to exercise in humans and in the pathophysiology of cardiovascular disorders. There is no “gold standard” method for EPR assessment; therefore, we propose a new protocol for testing interactions between the muscle mechanoreflex and metaboreflex (major components of EPR). Methods Thirty-four healthy subjects (mean age [± standard deviation] 24 ± 4 years, 22 men) were enrolled in the study. During the study, the hemodynamic and ventilatory parameters of these subjects were continuously monitored using our proposed assessment method. This assessment method consists of an initial 5-min rest period (baseline) followed by 5 min of passive cycling (PC) on an automated cycle ergometer (mechanoreceptor stimulation), after which tourniquet cuffs located bilaterally on the upper thighs are inflated for 3 min to evoke venous and arterial regional circulatory occlusion (CO) during PC (metaboreceptor stimulation). Deflation of the tourniquet cuffs is followed by a second 5 min of PC and finally by a 5-min recovery time. The control test comprises a 5-min rest period, followed by 3 min of CO only and a final 5-min recovery. Results Mean arterial pressure (MAP) and minute ventilation (MV) increased significantly during PC (MAP: from 90 ± 9.3 to 95 ± 9.7 mmHg; MV: from 11.5 ± 2.5 to 13.5 ± 2.9 L/min; both p < 0.05) and again when CO was applied (MAP: from 95 ± 9.7 to 101 ± 11.0 mmHg; MV: from 13.5 ± 2.9 to 14.8 ± 3.8 L/min; both p < 0.05). In the control test there was a slight increase in MAP during CO (from 92 ± 10.5 to 94 ± 10.0 mmHg; p < 0.05) and no changes in the ventilatory parameters. Conclusion Bilateral leg passive cycling with concomitant circulatory occlusion is a new, simple and effective method for testing interactions between the mechanoreflex and metaboreflex in humans. Electronic supplementary material The online version of this article (10.1007/s10286-020-00717-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Lis
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland.
| | - Wojciech Łopusiewicz
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Massimo F Piepoli
- Department of Cardiology, Polichirurgico Hospital G Da Saliceto, Saliceto, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Beata Ponikowska
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology, Wroclaw Medical University, ul. Chałubińskiego 10, 50-368, Wroclaw, Poland
| |
Collapse
|
26
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
27
|
Self-Regulated Force and Neuromuscular Responses During Fatiguing Isometric Leg Extensions Anchored to a Rating of Perceived Exertion. Appl Psychophysiol Biofeedback 2020; 44:343-350. [PMID: 31494754 DOI: 10.1007/s10484-019-09450-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of the study was to examine the fatigue-related patterns of responses for electromyography (EMG), mechanomyography (MMG), and force during a sustained isometric muscle action anchored to RPE = 5. Ten men (22.9 ± 2.0 year) performed maximal voluntary isometric contractions (MVIC) prior to and following an isometric leg extension muscle action, which was sustained for a maximal time-limit of 5 min or until it could not be maintained at RPE = 5 (actual time-limit). EMG amplitude (AMP), EMG mean power-frequency (MPF), MMG AMP, MMG MPF, and force values were determined every 5% of the actual time-limit. Regression analyses were used to examine the neuromuscular parameters and force responses, and a t test was used to examine MVIC. The pretest MVIC (62.4 ± 14.3 kg) was significantly (p < 0.001; d = 1.07) greater than posttest (47.9 ± 12.8 kg). The percent decline in force during the sustained isometric muscle action was 47.5 ± 19.6%, and there was a significant, negative force versus time relationship (p < 0.001; R = - 0.980). There was a significant, negative EMG AMP versus time relationship (p < 0.001; R = -0.789), but no significant (p > 0.05) relationships for EMG MPF, MMG AMP, or MMG MPF versus time. The findings indicated that it was necessary to reduce force and EMG AMP to maintain RPE = 5. We hypothesize that the maintenance of RPE = 5 was initially accomplished by an anticipatory feedforward mechanism and then continuous integrations of afferent feedback, which resulted in reductions of EMG AMP and force, due to reductions in neural drive, to attenuate the impact of metabolic byproducts.
Collapse
|
28
|
Korzeniewski B, Rossiter HB. Exceeding a "critical" muscle P i: implications for
V
˙
O
2
and metabolite slow components, muscle fatigue and the power-duration relationship. Eur J Appl Physiol 2020; 120:1609-1619. [PMID: 32435984 DOI: 10.1007/s00421-020-04388-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The consequences of the assumption that the additional ATP usage, underlying the slow component of oxygen consumption (V ˙ O 2 ) and metabolite on-kinetics, starts when cytosolic inorganic phosphate (Pi) exceeds a certain "critical" Pi concentration, and muscle work terminates because of fatigue when Pi exceeds a certain, higher, "peak" Pi concentration are investigated. METHODS A previously developed computer model of the myocyte bioenergetic system is used. RESULTS Simulated time courses of muscleV ˙ O 2 , cytosolic ADP, pH, PCr and Pi at various ATP usage activities agreed well with experimental data. Computer simulations resulted in a hyperbolic power-duration relationship, with critical power (CP) as an asymptote. CP was increased, and phase IIV ˙ O 2 on-kinetics was accelerated, by progressive increase in oxygen tension (hyperoxia). CONCLUSIONS Pi is a major factor responsible for the slow component of theV ˙ O 2 and metabolite on-kinetics, fatigue-related muscle work termination and hyperbolic power-duration relationship. The successful generation of experimental system properties suggests that the additional ATP usage, underlying the slow component, indeed starts when cytosolic Pi exceeds a "critical" Pi concentration, and muscle work terminates when Pi exceeds a "peak" Pi concentration. The contribution of other factors, such as cytosolic acidification, or glycogen depletion and central fatigue should not be excluded. Thus, a detailed quantitative unifying mechanism underlying various phenomena related to skeletal muscle fatigue and exercise tolerance is offered that was absent in the literature. This mechanism is driven by reciprocal stimulation of Pi increase and additional ATP usage when "critical" Pi is exceeded.
Collapse
Affiliation(s)
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
29
|
Greenhouse-Tucknott A, Wrightson JG, Raynsford M, Harrison NA, Dekerle J. Interactions between perceptions of fatigue, effort, and affect decrease knee extensor endurance performance following upper body motor activity, independent of changes in neuromuscular function. Psychophysiology 2020; 57:e13602. [PMID: 32578885 DOI: 10.1111/psyp.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Prior exercise has previously been shown to impair subsequent endurance performance in non-activated muscles. Declines in the neuromuscular function and altered perceptual/affective responses offer possible mechanisms through which endurance performance may be limited in these remote muscle groups. We thus conducted two experiments to better understand these performance-limiting mechanisms. In the first experiment, we examined the effect of prior handgrip exercise on the behavioral, perceptual, and affective responses to a sustained, sub-maximal contraction of the knee extensors. In the second experiment, transcranial magnetic stimulation was used to assess the neuromuscular function of the knee extensors before and after the handgrip exercise. The results of the first experiment demonstrated prior handgrip exercise increased the perceptions of effort and reduced affective valence during the subsequent knee extensor endurance exercise. Both effort and affect were associated with endurance performance. Subjective ratings of fatigue were also increased by the preceding handgrip exercise but were not directly related to knee extensor endurance performance. However, perceptions of fatigue were correlated with heightened effort perception and reduced affect during the knee extensor contraction. In the second experiment, prior handgrip exercise did not significantly alter the neuromuscular function of the knee extensors. The findings of the present study indicate that motor performance in the lower limbs following demanding exercise in the upper body appears to be regulated by complex, cognitive-emotional interactions, which may emerge independent of altered neuromuscular function. Subjective fatigue states are implicated in the control of perceptual and affective processes responsible for the regulation of endurance performance.
Collapse
Affiliation(s)
| | - J G Wrightson
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Raynsford
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK
| | - N A Harrison
- Immunopsychiatry Research Group, Cardiff University, Cardiff, UK.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - J Dekerle
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK
| |
Collapse
|
30
|
Kavanagh JJ, Smith KA, Minahan CL. Sex differences in muscle activity emerge during sustained low-intensity contractions but not during intermittent low-intensity contractions. Physiol Rep 2020; 8:e14398. [PMID: 32281749 PMCID: PMC7153036 DOI: 10.14814/phy2.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
Sex differences in motor performance may arise depending on the mode of contraction being performed. In particular, contractions that are held for long durations, rather than contractions that are interspersed with rest periods, may induce greater levels of fatigue in men compared to women. The purpose of this study was to examine fatigue responses in a cohort of healthy men (n = 7, age [mean] = 21.6 ± [SD] 1.1 year) and women (n = 7, age: 22.0 ± 2.0 year) during sustained isometric and intermittent isometric contractions. Two contraction protocols were matched for intensity (20% MVC) and total contraction time (600-s). Biceps brachii EMG and elbow flexion torque steadiness were examined throughout each protocol, and motor nerve stimulation was used to quantify central and peripheral fatigue. Overall, there were few sex-related differences in the fatigue responses during intermittent contractions. However, men exhibited progressively lower maximal torque generation (39% versus 27% decrease), progressively greater muscle activity (220% versus 144% increase), progressively greater declines in elbow flexion steadiness (354% versus 285% decrease), and progressively greater self-perception of fatigue (Borg scale: 8.8 ± 1.2 versus 6.3 ± 1.1) throughout the sustained contractions. The mechanism underlying fatigue responses had a muscle component, as voluntary activation of the biceps brachii did not differ between sexes, but the amplitude of resting twitches decreased throughout the sustained contractions (m: 32%, w: 10% decrease). As generating large sustained forces causes a progressive increase in intramuscular pressure and mechanical occlusion-which has the effect of enhancing metabolite accumulation and peripheral fatigue-it is likely that the greater maximal strength of men contributed to their exacerbated levels of fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Kristen A. Smith
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Clare L. Minahan
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
- Griffith Sports Physiology and PerformanceSchool of Allied Health SciencesGriffith UniversityGold CoastAustralia
| |
Collapse
|
31
|
Vargas-Molina S, Martín-Rivera F, Bonilla DA, Petro JL, Carbone L, Romance R, deDiego M, Schoenfeld BJ, Benítez-Porres J. Comparison of blood lactate and perceived exertion responses in two matched time-under-tension protocols. PLoS One 2020; 15:e0227640. [PMID: 31940407 PMCID: PMC6961884 DOI: 10.1371/journal.pone.0227640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose The aim of this study was to compare the concentration of blood lactate [bLa-] and the subjective perception of exertion of trained men in a moderate repetition protocol (MRP) versus a high repetition protocol (HRP) equated for time under tension. Methods A sample of 40 healthy young men (aged, 23.2 ± 4.0 years; height, 177.3 ± 7.0 cm; BMI, 24.3 ± 2.2) performed two sessions of 8 sets of bicep curls with a one-week recovery interval between the trials. In the HRP protocol, 20 repetitions were performed with a cadence of 2 seconds of eccentric and 1 second of concentric, while in the MRP protocol 10 repetitions were performed with 4 seconds of eccentric and 2 seconds of concentric. Cadences were controlled by a metronome. At the beginning and end of each of the sessions, blood lactate was taken at 2, 15, and 30 minutes, and rating of perceived exertion (OMNI-RES) was assessed immediately after completion of each session. Results There were [bLa-] differences between protocols in the MRP 2 min, (5.2 ±1.4); 15 min, (3.2 ±1.2); 30 min, (1.9 ±0.6); p< 0.05, and the HRP 2 min, (6.1 ±1.6); 15 min, (3.7 ±1.1); 30 min, (2.2 ±0.6); p<0.01. OMNI-RES was higher in HRP, (8.8 ±0.7) than in MRP, (7.7 ±0.9). Additionally, a correlation was found between the RPE and [bLa-] values in the HRP protocol (rs = 0.35, p < 0.01). Conclusions Training protocols with high times under tension promote substantial increases in metabolic stress, however, our findings indicate that HRP generates more [bLa-] than MRP. In addition, there were higher RPE values in the HRP protocol compared to MRP in single-joint exercises.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- EADE-University of Wales Trinity Saint David, Málaga, Spain
- Human Kinetics and Body Composition Laboratory, University of Málaga, Málaga, Spain
| | | | | | - Jorge L. Petro
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería, Colombia
| | | | - Ramón Romance
- Human Kinetics and Body Composition Laboratory, University of Málaga, Málaga, Spain
| | - Manuel deDiego
- EADE-University of Wales Trinity Saint David, Málaga, Spain
| | - Brad J. Schoenfeld
- Health Sciences Department, CUNY Lehman College, Bronx, NY, United States of America
| | - Javier Benítez-Porres
- Human Kinetics and Body Composition Laboratory, University of Málaga, Málaga, Spain
- * E-mail:
| |
Collapse
|
32
|
Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO. Are There Sex-Specific Neuromuscular or Force Responses to Fatiguing Isometric Muscle Actions Anchored to a High Perceptual Intensity? J Strength Cond Res 2019; 36:156-161. [PMID: 31860532 DOI: 10.1519/jsc.0000000000003394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keller, JL, Housh, TJ, Hill, EC, Smith, CM, Schmidt, RJ, and Johnson, GO. Are there sex-specific neuromuscular or force responses to fatiguing isometric muscle actions anchored to a high perceptual intensity? J Strength Cond Res XX(X): 000-000, 2019-The purpose of this study was to use the ratings of perceived exertion (RPE) clamp model to examine sex-specific changes in neuromuscular responses and force after a sustained isometric leg extension muscle action anchored to RPE = 8. Twenty adults (10 men and 10 women) performed sustained, isometric leg extension muscle actions at RPE = 8. Electromyographic (EMG) and mechanomyographic signals were recorded from the dominant leg. Neuromuscular and force values resulting from the sustained muscle action were normalized to pretest maximal voluntary isometric contractions (MVICs). The level of significance set for the study was p ≤ 0.05. The pretest MVIC was significantly (p < 0.001) greater (averaged across sex) than posttest MVIC force (55.5 ± 10.0 vs. 47.6 ± 11.1 kg). There was a significant (p < 0.01) decrease from pretest (95.4 ± 7.7 Hz) to posttest (76.2 ± 5.9 Hz) in EMG mean power frequency (MPF) for the men. The normalized force (averaged across sex) decreased significantly (p < 0.001) from the initial timepoint (57.1 ± 16.4%) to the final timepoint (44.3 ± 15.7%) of the sustained muscle action. Normalized EMG MPF (averaged across sex) decreased significantly (p = 0.001) from the initial timepoint (96.4 ± 17.5%) to final timepoint (87.8 ± 18.1%). The men and women exhibited similar fatigue-induced changes in force and neuromuscular parameters; therefore, these findings did not indicate different sex-specific responses after the fatiguing task anchored to a high perception of exertion. The force corresponding to RPE = 8 did not match the anticipated value; so, RPE and percentages of MVIC cannot be used interchangeably, and sustained isometric muscle actions anchored to RPE may elicit unique neuromuscular adaptations.
Collapse
Affiliation(s)
- Joshua L Keller
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Terry J Housh
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ethan C Hill
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida
| | - Cory M Smith
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, Texas 79968
| | - Richard J Schmidt
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Glen O Johnson
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
33
|
Hureau TJ, Weavil JC, Thurston TS, Wan HY, Gifford JR, Jessop JE, Buys MJ, Richardson RS, Amann M. Pharmacological attenuation of group III/IV muscle afferents improves endurance performance when oxygen delivery to locomotor muscles is preserved. J Appl Physiol (1985) 2019; 127:1257-1266. [PMID: 31513446 DOI: 10.1152/japplphysiol.00490.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to investigate the role of group III/IV muscle afferents in limiting endurance exercise performance, independently of their role in optimizing locomotor muscle O2 delivery. While breathing 100% O2 to ensure a similar arterial O2 content ([Formula: see text]) in both trials, eight male cyclists performed 5-km time trials under control conditions (HCTRL) and with lumbar intrathecal fentanyl (HFENT) impairing neural feedback from the lower limbs. After each time trial, common femoral artery blood flow (FBF) was quantified (Doppler ultrasound) during constant-load cycling performed at the average power of the preceding time trial. The assessment of end-tidal gases, hemoglobin content and saturation, and FBF facilitated the calculation of leg O2 delivery. Locomotor muscle activation during cycling was estimated from vastus lateralis EMG. With electrical femoral nerve stimulation, peripheral and central fatigue were quantified by pre- to postexercise decreases in quadriceps twitch torque (ΔQtw) and voluntary activation (ΔVA), respectively. FBF (~16 mL·min-1·W-1; P = 0.6), [Formula: see text] (~24 mL O2/dL; P = 0.9), and leg O2 delivery (~0.38 mL O2·min-1·W-1; P = 0.9) were not different during HCTRL and HFENT. Mean power output and time to completion were significantly improved by 9% (~310 W vs. ~288 W) and 3% (~479 s vs. ~463 s), respectively, during HFENT compared with HCTRL. Quadriceps muscle activation was 9 ± 7% higher during HFENT compared with HCTRL (P < 0.05). ΔQtw was significantly greater in HFENT compared with HCTRL (54 ± 8% vs. 39 ± 9%), whereas ΔVA was not different (~5%; P = 0.3) in both trials. These findings reveal that group III/IV muscle afferent feedback limits whole body endurance exercise performance and peripheral fatigue by restricting neural activation of locomotor muscle.NEW & NOTEWORTHY Group III/IV muscle afferent feedback facilitates endurance performance by optimizing locomotor muscle O2 delivery but also limits performance by restricting neural drive to locomotor muscle. To isolate the performance-limiting effect of these sensory neurons, we pharmacologically attenuated their central projection during a cycling time trial while controlling for locomotor muscle O2 delivery. With no difference in leg O2 delivery, afferent blockade attenuated the centrally mediated restriction in motoneuronal output and improved cycling performance.
Collapse
Affiliation(s)
- Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Medicine and EA 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, University of Strasbourg, Strasbourg, France
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Michael J Buys
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Zarzissi S, Zghal F, Bouzid MA, Hureau TJ, Sahli S, Ben Hassen H, Rebai H. Centrally-mediated regulation of peripheral fatigue during knee extensor exercise and consequences on the force-duration relationship in older men. Eur J Sport Sci 2019; 20:641-649. [PMID: 31397211 DOI: 10.1080/17461391.2019.1655099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to investigate the existence of a critical threshold beyond which peripheral fatigue would not further decrease during knee extensor (KE) exercise in older men, and the consequences of this mechanism on the force-duration relationship. Twelve old men (59 ± 2 years) randomly performed two different sessions, in which they performed 60 maximum voluntary contractions (MVC; 3s contraction, 2s relaxation). One trial was performed in the unfatigued state (CTRL) and one other following fatiguing neuromuscular electrical stimulation of the KE (FNMES). Peripheral and central fatigue were quantified via pre/post-exercise decreases in quadriceps twitch-force (Δ Ptw) and voluntary activation (ΔVA). Critical torque (CT) was determined as the mean force of the last 12 contractions while W' was calculated as the area above CT. Compared with CTRL, pre-fatigue (Δ Ptw = -10.3 ± 6.2%) resulted in a significant (p < 0.05) reduction in W' (-18.2 ± 1.6%) in FNMES. However, CT (∼964 N), ΔVA (∼15%) and Δ Ptw (∼25%) post-MVCs were similar between both conditions. In CTRL, W' was correlated with Δ Ptw (r 2 = 0.78). Moreover, the difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r 2 = 0.76). These findings document that peripheral fatigue is confined to an individual threshold during KE exercise in older men. Furthermore, correlative results suggest that mechanisms regulating peripheral fatigue to a critical threshold also restrict W', and therefore play a role in exercise capacity in older men.
Collapse
Affiliation(s)
- Slim Zarzissi
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Firas Zghal
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.,Faculté des Sciences du Sport, Université Côte d'Azur, LAMHESS, Nice, France
| | - Mohamed Amine Bouzid
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Thomas J Hureau
- Mitochondria, oxidative stress and muscular protection laboratory (EA 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Sonia Sahli
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Habib Ben Hassen
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Research Unit: Education, Motor Skills, Sport and Health (EM2S), UR15JS01, High institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| |
Collapse
|
35
|
P i-induced muscle fatigue leads to near-hyperbolic power-duration dependence. Eur J Appl Physiol 2019; 119:2201-2213. [PMID: 31399839 DOI: 10.1007/s00421-019-04204-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Consequences of combining three ideas proposed previously by other authors: (1) that there exists a critical power (CP), above which no steady state in [Formula: see text]O2 (oxygen consumption) and metabolites can be achieved in voluntary constant-power exercise; (2) that muscle fatigue is related to decreased exercise efficiency (increased [Formula: see text]O2/power output ratio); and (3) that Pi (inorganic phosphate) is the main fatigue-related metabolite are investigated. METHODS A previously-developed computer model of the skeletal muscle bioenergetic system is used. It was assumed in computer simulations that skeletal muscle work terminates when cytosolic Pi (inorganic phosphate) exceeds a certain critical level. RESULTS Simulated changes in muscle [Formula: see text]O2, cytosolic ADP, pH, PCr and Pi as a function of time at various ATP usage activities (corresponding to power outputs) agreed well with experimental data. Computer simulations resulted in a fourth previously-published idea: (4) that the power-duration relationship describing the dependence of power output (PO) on the time to exhaustion of voluntary constant-power exercise at a given PO has a (near-)hyperbolic shape. CONCLUSIONS Pi is a major factor contributing to muscle fatigue, as such an assumption leads to a (near-)hyperbolic shape of the power-duration relationship, at least for exercise duration of ~ 1-10 min. Thus, a potential mechanism underlying the power-duration relationship shape is offered that was absent in the literature. Other factors/mechanisms, such as cytosol acidification, glycogen stores depletion and central fatigue can contribute to this relationship, especially in longer exercises.
Collapse
|
36
|
Morgan PT, Bailey SJ, Banks RA, Fulford J, Vanhatalo A, Jones AM. Contralateral fatigue during severe-intensity single-leg exercise: influence of acute acetaminophen ingestion. Am J Physiol Regul Integr Comp Physiol 2019; 317:R346-R354. [PMID: 31141387 PMCID: PMC6732432 DOI: 10.1152/ajpregu.00084.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Exhaustive single-leg exercise has been suggested to reduce time to task failure (Tlim) during subsequent exercise in the contralateral leg by exacerbating central fatigue development. We investigated the influence of acetaminophen (ACT), an analgesic that may blunt central fatigue development, on Tlim during single-leg exercise completed with and without prior fatiguing exercise of the contralateral leg. Fourteen recreationally active men performed single-leg severe-intensity knee-extensor exercise to Tlim on the left (Leg1) and right (Leg2) legs without prior contralateral fatigue and on Leg2 immediately following Leg1 (Leg2-CONTRA). The tests were completed following ingestion of 1-g ACT or maltodextrin [placebo (PL)] capsules. Intramuscular phosphorus-containing metabolites and substrates and muscle activation were assessed using 31P-MRS and electromyography, respectively. Tlim was not different between Leg1ACT and Leg1PL conditions (402 ± 101 vs. 390 ± 106 s, P = 0.11). There was also no difference in Tlim between Leg2ACT-CONTRA and Leg2PL-CONTRA (324 ± 85 vs. 311 ± 92 s, P = 0.10), but Tlim was shorter in Leg2ACT-CONTRA and Leg2PL-CONTRA than in Leg2CON (385 ± 104 s, both P < 0.05). There were no differences in intramuscular phosphorus-containing metabolites and substrates or muscle activation between Leg1ACT and Leg1PL and between Leg2ACT-CONTRA and Leg2PL-CONTRA (all P > 0.05). These findings suggest that levels of metabolic perturbation and muscle activation at Tlim are not different during single-leg severe-intensity knee-extensor exercise completed with or without prior fatiguing exercise of the contralateral leg. Despite contralateral fatigue, ACT ingestion did not alter neuromuscular responses, muscle metabolites, or exercise performance.
Collapse
Affiliation(s)
- Paul T Morgan
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Stephen J Bailey
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Rhys A Banks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Jonathan Fulford
- Peninsula Clinical Research Facility, National Institute for Health Research, College of Medicine and Health, Exeter, United Kingdom
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Andrew M Jones
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| |
Collapse
|
37
|
Bassan N, Denadai BS, Lima LCR, Caritá RAC, Abdalla LHP, Greco CC. Effects of resistance training on impulse above end‐test torque and muscle fatigue. Exp Physiol 2019; 104:1115-1125. [DOI: 10.1113/ep087204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Natália Bassan
- Human Performance LaboratorySão Paulo State University Rio Claro SP Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Sundberg CW, Prost RW, Fitts RH, Hunter SK. Bioenergetic basis for the increased fatigability with ageing. J Physiol 2019; 597:4943-4957. [PMID: 31018011 DOI: 10.1113/jp277803] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The mechanisms for the age-related increase in fatigability during dynamic exercise remain elusive. We tested whether age-related impairments in muscle oxidative capacity would result in a greater accumulation of fatigue causing metabolites, inorganic phosphate (Pi ), hydrogen (H+ ) and diprotonated phosphate (H2 PO4 - ), in the muscle of old compared to young adults during a dynamic knee extension exercise. The age-related increase in fatigability (reduction in mechanical power) of the knee extensors was closely associated with a greater accumulation of metabolites within the working muscle but could not be explained by age-related differences in muscle oxidative capacity. These data suggest that the increased fatigability in old adults during dynamic exercise is primarily determined by age-related impairments in skeletal muscle bioenergetics that result in a greater accumulation of metabolites. ABSTRACT The present study aimed to determine whether the increased fatigability in old adults during dynamic exercise is associated with age-related differences in skeletal muscle bioenergetics. Phosphorus nuclear magnetic resonance spectroscopy was used to quantify concentrations of high-energy phosphates and pH in the knee extensors of seven young (22.7 ± 1.2 years; six women) and eight old adults (76.4 ± 6.0 years; seven women). Muscle oxidative capacity was measured from the phosphocreatine (PCr) recovery kinetics following a 24 s maximal voluntary isometric contraction. The fatiguing exercise consisted of 120 maximal velocity contractions (one contraction per 2 s) against a load equivalent to 20% of the maximal voluntary isometric contraction. The PCr recovery kinetics did not differ between young and old adults (0.023 ± 0.007 s-1 vs. 0.019 ± 0.004 s-1 , respectively). Fatigability (reductions in mechanical power) of the knee extensors was ∼1.8-fold greater with age and was accompanied by a greater decrease in pH (young = 6.73 ± 0.09, old = 6.61 ± 0.04) and increases in concentrations of inorganic phosphate, [Pi ], (young = 22.7 ± 4.8 mm, old = 32.3 ± 3.6 mm) and diprotonated phosphate, [H2 PO4 - ], (young = 11.7 ± 3.6 mm, old = 18.6 ± 2.1 mm) at the end of the exercise in old compared to young adults. The age-related increase in power loss during the fatiguing exercise was strongly associated with intracellular pH (r = -0.837), [Pi ] (r = 0.917) and [H2 PO4 - ] (r = 0.930) at the end of the exercise. These data suggest that the age-related increase in fatigability during dynamic exercise has a bioenergetic basis and is explained by an increased accumulation of metabolites within the muscle.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Robert W Prost
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
39
|
Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO. Neuromuscular responses of recreationally active women during a sustained, submaximal isometric leg extension muscle action at a constant perception of effort. Eur J Appl Physiol 2018; 118:2499-2508. [DOI: 10.1007/s00421-018-3976-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/23/2018] [Indexed: 11/28/2022]
|