1
|
Tran NT, Ellery SJ, Kelly SB, Sévigny J, Chatton M, Lu H, Polglase GR, Snow RJ, Walker DW, Galinsky R. Prophylactic Fetal Creatine Supplementation Improves Post-Asphyxial EEG Recovery and Reduces Seizures in Fetal Sheep: Implications for Hypoxic-Ischemic Encephalopathy. Ann Neurol 2025; 97:673-687. [PMID: 39644170 PMCID: PMC11889532 DOI: 10.1002/ana.27150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE Hypoxic-ischemic encephalopathy (HIE) is a major cause of perinatal brain injury. Creatine is a dietary supplement that can increase intracellular phosphocreatine to improve the provision of intracellular adenosine triphosphate (ATP) to meet the increase in metabolic demand of oxygen deprivation. Here, we assessed prophylactic fetal creatine supplementation in reducing acute asphyxia-induced seizures, disordered electroencephalography (EEG) activity and cerebral inflammation and cell death histopathology. METHODS Fetal sheep (118 ± 1 days' gestational age [dGA]; 0.8 gestation) were implanted with electrodes to continuously record EEG and nuchal electromyogram activity. At 121 dGA, fetuses were randomly assigned to sham control (i.v. saline infusion without umbilical cord occlusion [UCO]; SalCon), continuous i.v. creatine infusion (6 mg/kg/h; CrUCO) or isovolumetric saline (SalUCO) followed by UCO at 128 ± 2 dGA that lasted until the mean arterial blood pressure reached 19 mmHg. Brain tissue was collected for histopathology after 72 hours of recovery. RESULTS Creatine supplementation had no effects on basal systemic or neurological physiology. UCO duration did not differ between CrUCO and SalUCO. After reperfusion, CrUCO fetuses had improved EEG power and frequency recovery and reduced electrographic seizure incidence (SalUCO, 86% vs CrUCO, 29%) and burden. At 72 hours after UCO, cell death in the cerebral cortex and astrogliosis in the periventricular white matter were reduced in CrUCO fetuses compared with SalUCO. INTERPRETATION Creatine supplementation reduced post-asphyxial seizures and improved EEG recovery. Improvements in functional recovery with creatine were associated with regional reductions in cell death and astrogliosis. Prophylactic creatine treatment has the potential to mitigate functional indices of HIE in the late gestation fetal brain. ANN NEUROL 2025;97:673-687.
Collapse
Affiliation(s)
- Nhi T. Tran
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynecologyMonash UniversityMelbourneVictoriaAustralia
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynecologyMonash UniversityMelbourneVictoriaAustralia
| | - Sharmony B. Kelly
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynecologyMonash UniversityMelbourneVictoriaAustralia
| | - Juliane Sévigny
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- University of SherbrookeQuebecCanada
| | - Madeleine Chatton
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Hui Lu
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of PediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Rod J. Snow
- Institute for Physical Activity and NutritionDeakin UniversityMelbourneVictoriaAustralia
| | - David W. Walker
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Obstetrics and GynecologyMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Nordsten MJB, Yan X, Secher JBM, Sangild PT, Thymann T. Cord Obstruction and Delayed Cord Clamping Do Not Affect Gut Function in Neonatal Piglets. Neonatology 2024; 122:66-75. [PMID: 38952138 DOI: 10.1159/000539527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Birth-related obstruction of umbilical blood flow may induce hypoxic insults that affect postnatal organ adaptation. Using newborn cesarean-delivered pigs, we hypothesized that cord obstruction during delivery negatively affects physiological transition and gut maturation. Further, we investigated if delayed cord clamping (DCC) improves gut outcomes, including sensitivity to formula-induced necrotizing enterocolitis (NEC)-like lesions. METHODS In experiment 1, preterm (n = 24) and near-term (n = 29) piglets were subjected to umbilical cord obstruction (UCO, 5-7 min in utero), with corresponding pigs delivered without obstruction (CON, n = 17-22). Experiment 2 assessed preterm pigs subjected to delayed cord clamping (n = 30, 60 s) or immediate cord transection with umbilical cord milking (UCM, n = 34). Postnatal vital parameters were recorded, together with a series of gut parameters after 3 days of formula feeding. RESULTS UCO induced respiratory-metabolic acidosis in near-term pigs at birth (pH 7.16 vs. 7.32, pCO2 12.5 vs. 9.2 kPa, lactate 5.2 vs. 2.5 mmol/L, p < 0.05). In preterm pigs, UCO increased failure of resuscitation and mortality shortly after birth (88 vs. 47%, p < 0.05). UCO did not affect gut permeability, transit time, macromolecule absorption, six digestive enzymes, or sensitivity to NEC-like lesions. In experiment 2, DCC improved neonatal hemodynamics (pH 7.28 vs. 7.20, pCO2 8.9 vs. 9.9 at 2 h, p < 0.05), with no effects on gut parameters. CONCLUSION UCO and DCC affect neonatal transition and hemodynamics, but not neonatal gut adaptation or sensitivity to NEC-like lesions. Our findings suggest that the immature newborn gut is highly resilient to transient birth-related changes in cord blood flow.
Collapse
Affiliation(s)
- Mads J B Nordsten
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,
| | - Xudong Yan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Shenzhen People's Hospital, Shenzhen, China
| | - Jan B M Secher
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neonatology, Odense University Hospital, Odense, Denmark
- Department of Neonatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Theology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Tran NT, Muccini AM, Hale N, Tolcos M, Snow RJ, Walker DW, Ellery SJ. Creatine in the fetal brain: A regional investigation of acute global hypoxia and creatine supplementation in a translational fetal sheep model. Front Cell Neurosci 2023; 17:1154772. [PMID: 37066075 PMCID: PMC10097948 DOI: 10.3389/fncel.2023.1154772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
Background Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions. Methods Near-term fetal sheep were administered continuous intravenous infusion of either creatine (6 mg kg-1 h-1) or isovolumetric saline from 122 to 134 days gestational age (dGA; term is approx. 145 dGA). At 131 dGA, global hypoxia was induced by a 10 min umbilical cord occlusion (UCO). Fetuses were then recovered for 72 h at which time (134 dGA) cerebral tissue was collected for either RT-qPCR or immunohistochemistry analyses. Results UCO resulted in mild injury to the cortical gray matter, thalamus and hippocampus, with increased cell death and astrogliosis and downregulation of genes involved in regulating injury responses, vasculature development and mitochondrial integrity. Creatine supplementation reduced astrogliosis within the corpus callosum but did not ameliorate any other gene expression or histopathological changes induced by hypoxia. Of importance, effects of creatine supplementation on gene expression irrespective of hypoxia, including increased expression of anti-apoptotic (BCL-2) and pro-inflammatory (e.g., MPO, TNFa, IL-6, IL-1β) genes, particularly in the gray matter, hippocampus, and striatum were identified. Creatine treatment also effected oligodendrocyte maturation and myelination in white matter regions. Conclusion While supplementation did not rescue mild neuropathology caused by UCO, creatine did result in gene expression changes that may influence in utero cerebral development.
Collapse
Affiliation(s)
- Nhi T. Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Nhi T. Tran,
| | - Anna M. Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Rod J. Snow
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - David W. Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Stojanovska V, Atta J, Kelly SB, Zahra VA, Matthews-Staindl E, Nitsos I, Moxham A, Pham Y, Hooper SB, Herlenius E, Galinsky R, Polglase GR. Increased Prostaglandin E2 in Brainstem Respiratory Centers Is Associated With Inhibition of Breathing Movements in Fetal Sheep Exposed to Progressive Systemic Inflammation. Front Physiol 2022; 13:841229. [PMID: 35309054 PMCID: PMC8928579 DOI: 10.3389/fphys.2022.841229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Background Preterm newborns commonly experience apnoeas after birth and require respiratory stimulants and support. Antenatal inflammation is a common antecedent of preterm birth and inflammatory mediators, particularly prostaglandin E2 (PGE2), are associated with inhibition of vital brainstem respiratory centers. In this study, we tested the hypothesis that exposure to antenatal inflammation inhibits fetal breathing movements (FBMs) and increases inflammation and PGE2 levels in brainstem respiratory centers, cerebrospinal fluid (CSF) and blood plasma. Methods Chronically instrumented late preterm fetal sheep at 0.85 of gestation were randomly assigned to receive repeated intravenous saline (n = 8) or lipopolysaccharide (LPS) infusions (experimental day 1 = 300 ng, day 2 = 600 ng, day 3 = 1200 ng, n = 8). Fetal breathing movements were recorded throughout the experimental period. Sheep were euthanized 4 days after starting infusions for assessment of brainstem respiratory center histology. Results LPS infusions increased circulating and cerebrospinal fluid PGE2 levels, decreased arterial oxygen saturation, increased the partial pressure of carbon dioxide and lactate concentration, and decreased pH (p < 0.05 for all) compared to controls. LPS infusions caused transient reductions in the % of time fetuses spent breathing and the proportion of vigorous fetal breathing movements (P < 0.05 vs. control). LPS-exposure increased PGE2 expression in the RTN/pFRG (P < 0.05 vs. control) but not the pBÖTC (P < 0.07 vs. control) of the brainstem. No significant changes in gene expression were observed for PGE2 enzymes or caspase 3. LPS-exposure reduced the numbers of GFAP-immunoreactive astrocytes in the RTN/pFRG, NTS and XII of the brainstem (P < 0.05 vs. control for all) and increased microglial activation in the RTN/pFRG, preBÖTC, NTS, and XII brainstem respiratory centers (P < 0.05 vs. control for all). Conclusion Chronic LPS-exposure in late preterm fetal sheep increased PGE2 levels within the brainstem, CSF and plasma, and was associated with inhibition of FBMs, astrocyte loss and microglial activation within the brainstem respiratory centers. Further studies are needed to determine whether the inflammation-induced increase in PGE2 levels plays a key role in depressing respiratory drive in the perinatal period.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - John Atta
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Sharmony B. Kelly
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Eva Matthews-Staindl
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Moxham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B. Hooper
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Galinsky
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Robert Galinsky,
| | - Graeme R. Polglase
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Graeme R. Polglase,
| |
Collapse
|
6
|
Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lear CA. Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 2021; 600:431-450. [PMID: 34951476 DOI: 10.1113/jp282276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
The interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal wellbeing during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines. Surprisingly, there is little systematic evidence to support this observation. In this review we methodically dissect the potential pathways controlling FHRV during labour-like hypoxaemia. Before labour, FHRV is controlled by the combined activity of the parasympathetic and sympathetic nervous systems, in part regulated by a complex interplay between fetal sleep state and behaviour. By contrast, preclinical studies using multiple autonomic blockades have now shown that sympathetic neural control of FHRV was potently suppressed between periods of labour-like hypoxaemia, and thus, that the parasympathetic system is the sole neural regulator of FHRV once FHR decelerations are present during labour. We further discuss the pattern of changes in FHRV during progressive fetal compromise and highlight potential biochemical, behavioural and clinical factors that may regulate parasympathetic-mediated FHRV during labour. Further studies are needed to investigate the regulators of parasympathetic activity to better understand the dynamic changes in FHRV and their true utility during labour. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexane Tournier
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Michael Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles Garabedian
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, SW17 0RE, UK
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Tran NT, Muccini AM, Snow RJ, Nitsos I, Hale N, Walker DW, Ellery SJ. The physiological effects of creatine supplementation in fetal sheep before, during and after umbilical cord occlusion and global hypoxia. J Appl Physiol (1985) 2021; 131:1088-1099. [PMID: 34382841 DOI: 10.1152/japplphysiol.00092.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the effects of direct creatine infusion on fetal systemic metabolic and cardiovascular responses to mild acute in utero hypoxia. Pregnant ewes (n=28) were surgically instrumented at 118 days gestation (dGa). A constant intravenous infusion of creatine (6 mg.kg-1.h-1) or isovolumetric saline (1.5 ml.h-1) began at 121 dGa. After 10 days, fetuses were subjected to 10-minute umbilical cord occlusion (UCO) to induce mild global hypoxia (saline-UCO, n=8; creatine-UCO, n=7) or sham UCO (saline-control, n=6; creatine-control, n=7). Cardiovascular, arterial blood gases and metabolites, and plasma creatine were monitored prior to, during, and then for 72 hours following the UCO. Total creatine content in discrete fetal brain regions was also measured. Fetal creatine infusion increased plasma concentrations 5-fold but had no significant effects on any measurement pre-UCO. Creatine did not alter fetal physiology during the UCO or in the early recovery stage, up to 24 hours after UCO. During the late recovery stage, 24-72 hours after UCO, there was a significant reduction in the arterial oxygen pressure and saturation in creatine fetuses (PUCO x TREATMENT = 0.02 and0.04, respectively). At 72 hours after UCO, significant creatine loading was detected in cortical grey matter, hippocampus, thalamus and striatum (PTREATMENT = 0.01-0.001). In the striatum, the UCO itself increased total creatine content (PUCO = 0.019). Overall, fetal creatine supplementation may alter oxygen flux following an acute hypoxic insult. Increasing total creatine content in the striatum may also be a fetal adaptation to acute oxygen deprivation.
Collapse
Affiliation(s)
- Nhi Thao Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Faculty of Health Science, RMIT University, Melbourne, Victoria, Australia
| | - Anna M Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Rod J Snow
- Institute for Physical Activity and Nutrition, Deakin University, Burwood, Melbourne, Victoria, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - David W Walker
- Faculty of Health Science, RMIT University, Melbourne, Victoria, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|