1
|
van Gerwen J, Masson SWC, Cutler HB, Vegas AD, Potter M, Stöckli J, Madsen S, Nelson ME, Humphrey SJ, James DE. The genetic and dietary landscape of the muscle insulin signalling network. eLife 2024; 12:RP89212. [PMID: 38329473 PMCID: PMC10942587 DOI: 10.7554/elife.89212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Metabolic disease is caused by a combination of genetic and environmental factors, yet few studies have examined how these factors influence signal transduction, a key mediator of metabolism. Using mass spectrometry-based phosphoproteomics, we quantified 23,126 phosphosites in skeletal muscle of five genetically distinct mouse strains in two dietary environments, with and without acute in vivo insulin stimulation. Almost half of the insulin-regulated phosphoproteome was modified by genetic background on an ordinary diet, and high-fat high-sugar feeding affected insulin signalling in a strain-dependent manner. Our data revealed coregulated subnetworks within the insulin signalling pathway, expanding our understanding of the pathway's organisation. Furthermore, associating diverse signalling responses with insulin-stimulated glucose uptake uncovered regulators of muscle insulin responsiveness, including the regulatory phosphosite S469 on Pfkfb2, a key activator of glycolysis. Finally, we confirmed the role of glycolysis in modulating insulin action in insulin resistance. Our results underscore the significance of genetics in shaping global signalling responses and their adaptability to environmental changes, emphasising the utility of studying biological diversity with phosphoproteomics to discover key regulatory mechanisms of complex traits.
Collapse
Affiliation(s)
- Julian van Gerwen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Stewart WC Masson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Harry B Cutler
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Alexis Diaz Vegas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Meg Potter
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Søren Madsen
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Marin E Nelson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
2
|
Yu E, Chen Z, Huang Y, Wu Y, Wang Z, Wang F, Wu M, Xu K, Peng W. A grooved conduit combined with decellularized tissues for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:35. [PMID: 37477830 PMCID: PMC10361901 DOI: 10.1007/s10856-023-06737-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.
Collapse
Affiliation(s)
- Enxing Yu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zhiwu Chen
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Yibing Wu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Zonghuan Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Fangfang Wang
- Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kailei Xu
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Wei Peng
- Department of Plastic and reconstructive surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
3
|
Wang C, Lin R, Qi X, Xu Q, Sun X, Zhao Y, Jiang T, Jiang J, Sun Y, Deng Y, Wen J. Alternative glucose uptake mediated by β-catenin/RSK1 axis under stress stimuli in mammalian cells. Biochem Pharmacol 2023:115645. [PMID: 37321415 DOI: 10.1016/j.bcp.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Cells adapt to stress conditions by increasing glucose uptake as cytoprotective strategy. The efficiency of glucose uptake is determined by the translocation of glucose transporters (GLUTs) from cytosolic vesicles to cellular membranes in many tissues and cells. GLUT translocation is tightly controlled by the activation of Tre-2/BUB2/CDC16 1 domain family 4 (TBC1D4) via its phosphorylation. The mechanisms of glucose uptake under stress conditions remain to be clarified. In this study, we surprisingly found that glucose uptake is apparently increased for the early response to three stress stimuli, glucose starvation and the exposure to lipopolysaccharide (LPS) or deoxynivalenol (DON). The stress-induced glucose uptake was mainly controlled by the increment of β-catenin level and the activation of RSK1. Mechanistically, β-catenin directly interacted with RSK1 and TBC1D4, acting as the scaffold protein to recruit activated RSK1 to promote the phosphorylation of TBC1D4. In addition, β-catenin was further stabilized due to the inhibition of GSK3β kinase activity which is caused by activated RSK1 phosphorylating GSK3β at Ser9. In general, this triple protein complex consisting of β-catenin, phosphorylated RSK1, and TBC1D4 were increased in the early response to these stress signals, and consequently, further promoted the phosphorylation of TBC1D4 to facilitate the translocation of GLUT4 to the cell membrane. Our study revealed that the β-catenin/RSK1 axis contributed to the increment of glucose uptake for cellular adaption to these stress conditions, shedding new insights into cellular energy utilization under stress.
Collapse
Affiliation(s)
- Caizhu Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xueying Qi
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qiang Xu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Xingsheng Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Tianqing Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
4
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Masson SWC, Dissanayake WC, Broome SC, Hedges CP, Peeters WM, Gram M, Rowlands DS, Shepherd PR, Merry TL. A role for β-catenin in diet-induced skeletal muscle insulin resistance. Physiol Rep 2023; 11:e15536. [PMID: 36807886 PMCID: PMC9937784 DOI: 10.14814/phy2.15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 02/19/2023] Open
Abstract
A central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.
Collapse
Affiliation(s)
- Stewart W. C. Masson
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Waruni C. Dissanayake
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Christopher P. Hedges
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| | - Wouter M. Peeters
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
- Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Martin Gram
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - David S. Rowlands
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - Peter R. Shepherd
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Troy L. Merry
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| |
Collapse
|
6
|
Liu S, Qi R, Zhang J, Zhang C, Chen L, Yao Z, Niu W. Kalirin mediates Rac1 activation downstream of calcium/calmodulin-dependent protein kinase II to stimulate glucose uptake during muscle contraction. FEBS Lett 2022; 596:3159-3175. [PMID: 35716086 DOI: 10.1002/1873-3468.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023]
Abstract
In this study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in contraction-stimulated glucose uptake in skeletal muscle. C2C12 myotubes were contracted by electrical pulse stimulation (EPS), and treadmill running was used to exercise mice. The activities of CaMKII, the small G protein Rac1, and the Rac1 effector kinase PAK1 were elevated in muscle by running exercise or EPS, while they were lowered by the CaMKII inhibitor KN-93 and/or small interfering RNA (siRNA)-mediated knockdown. EPS induced the mRNA and protein expression of the Rac1-GEF Kalirin in a CaMKII-dependent manner. EPS-induced Rac1 activation was lowered by the Kalirin inhibitor ITX3 or siRNA-mediated Kalirin knockdown. KN-93, ITX3, and siRNA-mediated Kalirin knockdown reduced EPS-induced glucose uptake. These findings define a CaMKII-Kalirin-Rac1 signaling pathway that contributes to contraction-stimulated glucose uptake in skeletal muscle myotubes and tissue.
Collapse
Affiliation(s)
- Sasa Liu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Rui Qi
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Juan Zhang
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Chang Zhang
- Department of Pharmacy, General Hospital, Tianjin Medical University, China
| | - Liming Chen
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Zhi Yao
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| | - Wenyan Niu
- School of Medical Laboratory, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), NHC Key Laboratory of Hormones and Development, Tianjin Medical University, China
| |
Collapse
|
7
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Ouyang H, Gao X, Zhang J. Impaired expression of BCAT1 relates to muscle atrophy of mouse model of sarcopenia. BMC Musculoskelet Disord 2022; 23:450. [PMID: 35562710 PMCID: PMC9102634 DOI: 10.1186/s12891-022-05332-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background The underlying mechanism of muscle atrophy in sarcopenia is still not fully understood; branched chain aminotransferase 1(BCAT1) isocitrate dehydrogenase-1 encodes an evolutionarily conserved cytoplasmic aminotransferase for glutamate and branched-chain amino acids (BCAAs), thus constituting a regulatory component of cytoplasmic amino and keto acid metabolism. In human gliomas carrying wild-type isocitrate dehydrogenase-1, BCAT1 promotes cell proliferation through amino acid catabolism. Hence, the goals of this study were to unravel the potential role of BCAT1 expression in muscle atrophy and to explore the mechanisms underlying this process. Methods We first measured Bcat1 expression by RT-qPCR and western blotting in murine and cellular models of muscle atrophy. To understand how the Bcat1-driven changes sustained muscle cell growth, we analyzed reactive oxygen species (ROS) levels and activation of the mTORC1/S6K1 pathway in muscle cells. Furthermore, we performed Cell Counting Kit-8(CCK8) assays and fluorescence staining to evaluate growth rate of cells and ROS levels. Finally, we verified that depletion of Bcat1 impairs the growth rate of muscle cells and increases ROS levels, indicating that muscle atrophy resulted from the downregulation of the mTORC1/S6K1 pathway. Data were analyzed by two-tailed unpaired Student’s t-test or Mann-Whitney U test for two groups to determine statistical significance. Statistical analyses were performed using GraphPad Prism version 6.0 and SPSS 16.0 software. Results Bcat1 expression level in skeletal muscles was lower in murine and cellular models of sarcopenia than in the control groups. Bcat1 knockdown not only suppressed the growth of muscle cells but also increased the production of ROS. Impaired cell growth and increased ROS production was rescued by co-introduction of an shRNA-resistant Bcat1 cDNA or addition of the mTORC1 stimulator MYH1485. Muscle cells with Bcat1 knockdown featured lower mTORC1 and S6K1 phosphorylation (pS6K1) than NT muscle cells. Addition of either shRNA-resistant Bcat1 cDNA or MYH1485 rescued the suppression of cell growth, increase in ROS production, and decrease in pS6K1. Conclusions The branched chain amino acids catabolic enzyme BCAT1 is essential for the growth of muscle cells. BCAT1 expression contributes to sustained growth of muscle cells by activating mTOR signaling and reducing ROS production. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05332-7.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xuguang Gao
- Department of Neuromedicine, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
9
|
Interactions between insulin and exercise. Biochem J 2021; 478:3827-3846. [PMID: 34751700 DOI: 10.1042/bcj20210185] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023]
Abstract
The interaction between insulin and exercise is an example of balancing and modifying the effects of two opposing metabolic regulatory forces under varying conditions. While insulin is secreted after food intake and is the primary hormone increasing glucose storage as glycogen and fatty acid storage as triglycerides, exercise is a condition where fuel stores need to be mobilized and oxidized. Thus, during physical activity the fuel storage effects of insulin need to be suppressed. This is done primarily by inhibiting insulin secretion during exercise as well as activating local and systemic fuel mobilizing processes. In contrast, following exercise there is a need for refilling the fuel depots mobilized during exercise, particularly the glycogen stores in muscle. This process is facilitated by an increase in insulin sensitivity of the muscles previously engaged in physical activity which directs glucose to glycogen resynthesis. In physically trained individuals, insulin sensitivity is also higher than in untrained individuals due to adaptations in the vasculature, skeletal muscle and adipose tissue. In this paper, we review the interactions between insulin and exercise during and after exercise, as well as the effects of regular exercise training on insulin action.
Collapse
|
10
|
Hoecht EM. The missing 'link'? β-Catenin's role in skeletal muscle glucose uptake during exercise and contraction. J Physiol 2021; 599:4737-4739. [PMID: 34510455 DOI: 10.1113/jp282232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Evan M Hoecht
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|