1
|
Graham EL, Weir TL, Gentile CL. Exploring the Impact of Intermittent Fasting on Vascular Function and the Immune System: A Narrative Review and Novel Perspective. Arterioscler Thromb Vasc Biol 2025; 45:654-668. [PMID: 40177772 PMCID: PMC12018117 DOI: 10.1161/atvbaha.125.322692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Vascular function is a critical determinant of cardiovascular health and all-cause mortality. Recent studies have suggested that intermittent fasting, a popular dietary strategy, elicits beneficial effects on vascular function. These studies also suggest that fasting-mediated improvements in vascular function coincide with reductions in systemic inflammation. However, the mechanisms that connect fasting, the immune system, and vascular function remain largely underexplored. The current review summarizes the effects of different intermittent fasting modalities on vascular health, focusing on endothelial dysfunction and arterial stiffness, 2 critical indices of vascular function. Improvements in vascular function are associated with reduced inflammation and are mechanistically linked to decreased circulating immune cells and their accumulation within the vascular wall and perivascular tissue. Recent data show that fasting redistributes circulating and tissue-resident immune cells to the bone marrow, affecting their inflammatory actions. However, there is no direct evidence relating immune cell redistribution to cardiovascular health. By relating fasting-induced immune cell redistribution to reduced inflammation and improved vascular function, we propose an exciting avenue of further exploration is determining whether fasting-induced immune cell redistribution impacts cardiovascular health.
Collapse
Affiliation(s)
- Elliot L. Graham
- Integrative Cardiovascular Physiology Laboratory, Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - Tiffany L. Weir
- Integrative Cardiovascular Physiology Laboratory, Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - Christopher L. Gentile
- Integrative Cardiovascular Physiology Laboratory, Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
DeConne TM, Buzkova P, Pewowaruk R, Delaney JA, Psaty BM, Tracy RP, Doyle MF, Sitlani CM, Landay AL, Huber SA, Hughes TM, Bertoni AG, Gepner AD, Ding J, Olson NC. Associations of circulating T-cell subsets with carotid artery stiffness: the multiethnic study of atherosclerosis. Am J Physiol Heart Circ Physiol 2025; 328:H113-H119. [PMID: 39589781 PMCID: PMC11901338 DOI: 10.1152/ajpheart.00649.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Arterial stiffness measured by total pulse wave velocity (T-PWV) is associated with an increased risk of multiple age-related diseases. T-PWV can be described by structural (S-PWV) and load-dependent (LD-PWV) arterial stiffening. T-cells have been implicated in arterial remodeling, arterial stiffness, and hypertension in humans and animals; however, it is unknown whether T-cells are risk factors for T-PWV or its components. Therefore, we evaluated the cross-sectional associations of peripheral T-cell subpopulations with T-PWV, S-PWV, and LD-PWV. Peripheral blood T-cells were characterized using flow cytometry, and carotid artery stiffness was measured using B-mode ultrasound to calculate T-PWV at the baseline examination in a participant subset of the Multi-Ethnic Study of Atherosclerosis (MESA, n = 1,984). A participant-specific exponential model was used to calculate S-PWV and LD-PWV based on elastic modulus and blood pressure gradients. The associations between five primary (P-significance < 0.01) and 25 exploratory (P-significance < 0.05) immune cell subpopulations, per 1-SD increment, and arterial stiffness measures were assessed using adjusted linear regression models. For the primary analysis, higher CD4+CD28-CD57+, but not CD8+CD28-CD57+, T-cells were associated with higher LD-PWV (β = 0.04 m/s, P < 0.01) after adjusting for covariates. None of the remaining T-cell subpopulations in the primary analysis were associated with T-PWV or S-PWV. For the exploratory analysis, several memory and differentiated/senescence-associated CD4+ and CD8+ T-cell subpopulations were associated with greater T-PWV, S-PWV, and LD-PWV after adjusting for covariates. In conclusion, we highlight novel associations in humans between CD4+ and CD8+ memory and differentiated/senescence-associated T-cell subpopulations and measures of arterial stiffness in MESA. These results warrant longitudinal, prospective studies that examine changes in T-cell subpopulations and arterial stiffness in humans.NEW & NOTEWORTHY We investigated associations between T-cells and novel measures of structural and load-dependent arterial stiffness in a large multiethnic cohort. The primary analysis revealed that pro-inflammatory, senescence-associated CD4+CD28-CD57+ T-cells were associated with higher load-dependent arterial stiffness. An exploratory analysis revealed that multiple pro-inflammatory CD4+ and CD8+ T-cell subpopulations were associated with both higher structural and load-dependent arterial stiffness. These results suggest that pro-inflammatory T-cells may contribute to arterial stiffness through both arterial remodeling and elevated blood pressure.
Collapse
Grants
- N01-HC-95168 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95163 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- R00 HL129045 NHLBI NIH HHS
- N01-HC-95166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- R01HL135625 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95164 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32AG033534 HHS | NIH | National Institute on Aging (NIA)
- 75N92020D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- R00HL129045 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95161 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00005 NHLBI NIH HHS
- N01-HC-95160 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95160 NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- UL1-TR-001079 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- N01-HC-95167 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- T32 AG033534 NIA NIH HHS
- UL1-TR-000040 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- N01HC95164 NHLBI NIH HHS
- R01 HL120854 NHLBI NIH HHS
- R01 HL135625 NHLBI NIH HHS
- N01-HC-95169 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95162 NHLBI NIH HHS
- N01-HC-95162 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00003 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1-TR-001420 HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- N01-HC-95159 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HHSN268201500003I NHLBI NIH HHS
- N01-HC-95165 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95163 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01HC95167 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- R01HL120854 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
Collapse
Affiliation(s)
- Theodore M DeConne
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Ryan Pewowaruk
- Ryan Pewowaruk Research Consulting, Madison, Wisconsin, United States
| | - Joseph A Delaney
- Department of Medicine, University of Washington, Seattle, Washington, United States
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, United States
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Alan L Landay
- Division of Geriatrics, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Texas, United States
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - Timothy M Hughes
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Alain G Bertoni
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Adam D Gepner
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
- William S. Middleton Memorial Veterans Hospital and Clinics, Madison, Wisconsin, United States
| | - Jingzhong Ding
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
4
|
DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol 2024; 327:H1345-H1360. [PMID: 39423035 DOI: 10.1152/ajpheart.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Vascular dysfunction has emerged as a significant risk factor for the development of cardio- and cerebrovascular diseases (CVDs), which are currently the leading cause of morbidity and mortality worldwide. T lymphocytes (T cells) have been shown to be important modulators of vascular function in primary aging and CVDs, likely by producing inflammatory cytokines and reactive oxygen species that influence vasoprotective molecules. This review summarizes the role of T cells on vascular function in aging, hypertension, and atherosclerosis in animals and humans, and discusses potential T-cell targeted therapeutics to prevent, delay, or reverse vascular dysfunction.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
5
|
Rivera CF, Farra YM, Silvestro M, Medvedovsky S, Matz J, Pratama MY, Vlahos J, Ramkhelawon B, Bellini C. Mapping the unicellular transcriptome of the ascending thoracic aorta to changes in mechanosensing and mechanoadaptation during aging. Aging Cell 2024; 23:e14197. [PMID: 38825882 PMCID: PMC11320362 DOI: 10.1111/acel.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
Aortic stiffening is an inevitable manifestation of chronological aging, yet the mechano-molecular programs that orchestrate region- and layer-specific adaptations along the length and through the wall of the aorta are incompletely defined. Here, we show that the decline in passive cyclic distensibility is more pronounced in the ascending thoracic aorta (ATA) compared to distal segments of the aorta and that collagen content increases in both the medial and adventitial compartments of the ATA during aging. The single-cell RNA sequencing of aged ATA tissues reveals altered cellular senescence, remodeling, and inflammatory responses accompanied by enrichment of T-lymphocytes and rarefaction of vascular smooth muscle cells, compared to young samples. T lymphocyte clusters accumulate in the adventitia, while the activation of mechanosensitive Piezo-1 enhances vasoconstriction and contributes to the overall functional decline of ATA tissues. These results portray the immuno-mechanical aging of the ATA as a process that culminates in a stiffer conduit permissive to the accrual of multi-gerogenic signals priming to disease development.
Collapse
Affiliation(s)
- Cristobal F. Rivera
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Yasmeen M. Farra
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Michele Silvestro
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Steven Medvedovsky
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Jacqueline Matz
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Muhammad Yogi Pratama
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - John Vlahos
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Bhama Ramkhelawon
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Chiara Bellini
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
6
|
DeConne TM, Buzkova P, Pewowaruk R, Delaney JA, Psaty BM, Tracy RP, Doyle MF, Sitlani CM, Landay AL, Huber SA, Hughes TM, Bertoni AG, Gepner AD, Olson NC, Ding J. Associations of circulating T-cell subsets in carotid artery stiffness: the Multi-Ethnic Study of Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311196. [PMID: 39132475 PMCID: PMC11312665 DOI: 10.1101/2024.07.29.24311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Arterial stiffness measured by total pulse wave velocity (T-PWV) is associated with increased risk of multiple age-related diseases. T-PWV can be described by structural (S-PWV) and load-dependent (LD-PWV) arterial stiffening. T-cells have been associated with arterial remodeling, blood pressure, and arterial stiffness in humans and animals; however, it is unknown whether T-cells are related to S-PWV or LD-PWV. Therefore, we evaluated the cross-sectional associations of peripheral T-cell subpopulations with T-PWV, S-PWV, and LD-PWV stiffness. Methods Peripheral blood T-cells were characterized using flow cytometry and the carotid artery was measured using B-mode ultrasound to calculate T-PWV at the baseline examination in a subset of the Multi-Ethnic Study of Atherosclerosis (MESA, n=1,984). A participant-specific exponential model was used to calculate S-PWV and LD-PWV based on elastic modulus and blood pressure gradients. The associations between five primary (p-significance<0.01) and twenty-five exploratory (p-significance<0.05) immune cell subpopulations, per 1-SD increment, and arterial stiffness measures were assessed using adjusted, linear regressions. Results For the primary analysis, higher CD4+CD28-CD57+ T-cells were associated with higher LD-PWV (β=0.04 m/s, p<0.01) after adjusting for co-variates. For the exploratory analysis, T-cell subpopulations that commonly shift with aging towards memory and differentiated/immunosenescent phenotypes were associated with greater T-PWV, S-PWV, and LD-PWV after adjusting for co-variates. Conclusions In this cross-sectional study, several T-cell subpopulations commonly associated with aging were related with measures of arterial stiffness. Longitudinal studies that examine changes in T-cell subpopulations and measures of arterial stiffness are warranted.
Collapse
Affiliation(s)
- Theodore M DeConne
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Joseph A. Delaney
- Departments of Medicine and Epidemiology, University of Washington, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | | | - Alan L. Landay
- Geriatrics Department of Internal Medicine, University of Texas Medical Brach at Galveston, Galveston, TX
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Timothy M. Hughes
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alain G. Bertoni
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Adam D. Gepner
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- William S. Middleton Memorial Veterans Hospital and Clinics, Madison, WI
| | - Nels C. Olson
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
7
|
DeConne TM, Fancher IS, Edwards DG, Trott DW, Martens CR. CD8 + T-cell metabolism is related to cerebrovascular reactivity in middle-aged adults. Am J Physiol Regul Integr Comp Physiol 2024; 326:R416-R426. [PMID: 38406845 PMCID: PMC11687960 DOI: 10.1152/ajpregu.00267.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Cerebrovascular reactivity (CVR) decreases with advancing age, contributing to increased risk of cognitive impairment; however, the mechanisms underlying the age-related decrease in CVR are incompletely understood. Age-related changes to T cells, such as impaired mitochondrial respiration, increased inflammation, likely contribute to peripheral and cerebrovascular dysfunction in animals. However, whether T-cell mitochondrial respiration is related to cerebrovascular function in humans is not known. Therefore, we hypothesized that peripheral T-cell mitochondrial respiration would be positively associated with CVR and that T-cell glycolytic metabolism would be negatively associated with CVR. Twenty middle-aged adults (58 ± 5 yr) were recruited for this study. T cells were separated from peripheral blood mononuclear cells. Cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR, a marker of glycolytic activity) were measured using extracellular flux analysis. CVR was quantified using the breath-hold index (BHI), which reflects the change in blood velocity in the middle-cerebral artery (MCAv) during a 30-s breath-hold. In contrast to our hypothesis, we found that basal OCR in CD8+ T cells (β = -0.59, R2 = 0.27, P = 0.019) was negatively associated with BHI. However, in accordance with our hypothesis, we found that basal ECAR (β = -2.20, R2 = 0.29, P = 0.015) and maximum ECAR (β = -50, R2 = 0.24, P = 0.029) were negatively associated with BHI in CD8+ T cells. There were no associations observed in CD4+ T cells. These associations appeared to be primarily mediated by an association with the pressor response to the breath-hold test. Overall, our findings suggest that CD8+ T-cell respiration and glycolytic activity may influence CVR in humans.NEW & NOTEWORTHY Peripheral T-cell metabolism is related to in vivo cerebrovascular reactivity in humans. Higher glycolytic metabolism in CD8+ T cells was associated with lower cerebrovascular reactivity to a breath-hold in middle-aged adults, which is possibly reflective of a more proinflammatory state in midlife.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
8
|
Xu LL, Chen X, Cheng JP. The effect of T cell aging on the change of human tissue structure. Immun Ageing 2024; 21:26. [PMID: 38689298 PMCID: PMC11059612 DOI: 10.1186/s12979-024-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The trend of aging of the global population is becoming more and more significant, and the incidence of age-related diseases continues to rise.This phenomenon makes the problem of aging gradually attracted wide attention of the society, and gradually developed into an independent research field.As a vital defense mechanism of the human body, the immune system changes significantly during the aging process.Age-induced changes in the body's immune system are considered harmful and are commonly referred to as immune aging, which may represent the beginning of systemic aging.Immune cells, especially T cells, are the biggest influencers and participants in age-related deterioration of immune function, making older people more susceptible to different age-related diseases.More and more evidence shows that T cells play an important role in the change of human tissue structure after aging, which fundamentally affects the health and survival of the elderly.In this review, we discuss the general characteristics of age-related T cell immune alterations and the possible effects of aging T cells in various tissue structures in the human body.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xiang Chen
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Jing-Ping Cheng
- Department of Gerontology, CR & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430080, China.
| |
Collapse
|
9
|
Buckley DJ, Sharma S, Joseph B, Fayyaz AH, Canizales A, Terrebonne KJ, Trott DW. Early life thymectomy induces arterial dysfunction in mice. GeroScience 2024; 46:1035-1051. [PMID: 37354388 PMCID: PMC10828352 DOI: 10.1007/s11357-023-00853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
Aging of the arteries is characterized by increased large artery stiffness and impaired endothelium-dependent dilation. We have previously shown that in old (22-24 month) mice T cells accumulate within aorta and mesentery. We have also shown that pharmacologic and genetic deletion of these T cells ameliorates age-related arterial dysfunction. These data indicate that T cells contribute to arterial aging; however, it is unknown if aged T cells alone can induce arterial dysfunction in otherwise young mice. To produce an aged-like T cell phenotype, mice were thymectomized at three-weeks of age or were left with their thymus intact. At 9 months of age, thymectomized mice exhibited greater proportions of both CD4 + and CD8 + memory T cells compared to controls in the blood. Similar changes were observed in the T cells accumulating in the aorta and mesentery. We also observed greater numbers of proinflammatory cytokine producing T cells in the aorta and mesentery. The phenotypic T cell changes in the blood, aorta and mesentery of thymectomized mice were similar to those observed when we compared young (4-6 month) to old thymus intact mice. Along with these alterations, compared to controls, thymectomized mice exhibited augmented large artery stiffness and greater aortic collagen deposition as well as impaired mesenteric artery endothelium dependent dilation due to blunted nitric oxide bioavailability. These results indicate that early life thymectomy results in arterial dysfunction and suggest that an aged-like T cell phenotype alone is sufficient to induce arterial dysfunction in otherwise young mice.
Collapse
Affiliation(s)
- David J Buckley
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Sunita Sharma
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Blessy Joseph
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Alia H Fayyaz
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Alexandra Canizales
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Konner J Terrebonne
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Daniel W Trott
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA.
| |
Collapse
|
10
|
Bloom SI, Tucker JR, Machin DR, Abdeahad H, Adeyemo AO, Thomas TG, Bramwell RC, Lesniewski LA, Donato AJ. Reduction of double-strand DNA break repair exacerbates vascular aging. Aging (Albany NY) 2023; 15:9913-9947. [PMID: 37787989 PMCID: PMC10599741 DOI: 10.18632/aging.205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Advanced age is the greatest risk factor for cardiovascular disease (CVD), the leading cause of death. Arterial function is impaired in advanced age which contributes to the development of CVD. One underexplored hypothesis is that DNA damage within arteries leads to this dysfunction, yet evidence demonstrating the incidence and physiological consequences of DNA damage in arteries, and in particular, in the microvasculature, in advanced age is limited. In the present study, we began by assessing the abundance of DNA damage in human and mouse lung microvascular endothelial cells and found that aging increases the percentage of cells with DNA damage. To explore the physiological consequences of increases in arterial DNA damage, we evaluated measures of endothelial function, microvascular and glycocalyx properties, and arterial stiffness in mice that were lacking or heterozygous for the double-strand DNA break repair protein ATM kinase. Surprisingly, in young mice, vascular function remained unchanged which led us to rationalize that perhaps aging is required to accumulate DNA damage. Indeed, in comparison to wild type littermate controls, mice heterozygous for ATM that were aged to ~18 mo (Old ATM +/-) displayed an accelerated vascular aging phenotype characterized by increases in arterial DNA damage, senescence signaling, and impairments in endothelium-dependent dilation due to elevated oxidative stress. Furthermore, old ATM +/- mice had reduced microvascular density and glycocalyx thickness as well as increased arterial stiffness. Collectively, these data demonstrate that DNA damage that accumulates in arteries in advanced age contributes to arterial dysfunction that is known to drive CVD.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - Jordan R. Tucker
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - AdeLola O. Adeyemo
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Tyler G. Thomas
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - R. Colton Bramwell
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
| | - Anthony J. Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84148, USA
| |
Collapse
|
11
|
Grandi E. Cell diversity and signalling in the cardiovascular system. J Physiol 2023; 601:2537-2539. [PMID: 37211722 PMCID: PMC10364990 DOI: 10.1113/jp284979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Zheng X, Berg Sen J, Li Z, Sabouri M, Samarah L, Deacon CS, Bernardo J, Machin DR. High-salt diet augments systolic blood pressure and induces arterial dysfunction in outbred, genetically diverse mice. Am J Physiol Heart Circ Physiol 2023; 324:H473-H483. [PMID: 36735405 PMCID: PMC10010918 DOI: 10.1152/ajpheart.00415.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Excess salt consumption contributes to hypertension and arterial dysfunction in humans living in industrialized societies. However, this arterial phenotype is not typically observed in inbred, genetically identical mouse strains that consume a high-salt (HS) diet. Therefore, we sought to determine the effects of HS diet consumption on systolic blood pressure (BP) and arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent a low-salt [LS (1% NaCl)] or HS (4% NaCl) diet for 12 wk. Systolic BP and aortic stiffness, determined by pulse wave velocity (PWV), were increased in HS after 2 and 4 wk, respectively, compared with baseline and continued to increase through week 12 (P < 0.05). Systolic BP was higher from weeks 2-12 and PWV was higher from weeks 4-12 in HS compared with LS mice (P < 0.05). Aortic collagen content was ∼81% higher in HS compared with LS (P < 0.05), whereas aortic elastin content was similar between groups (P > 0.05). Carotid artery endothelium-dependent dilation (EDD) was ∼10% lower in HS compared with LS (P < 0.05), endothelium-independent dilation was similar between groups (P > 0.05). Finally, there was a strong relationship between systolic BP and PWV (r2 = 0.40, P < 0.05), as well as inverse relationship between EDD and systolic BP (r2 = 0.21, P < 0.05) or PWV (r2 = 0.20, P < 0.05). In summary, HS diet consumption in UM-HET3 mice increases systolic BP, which is accompanied by aortic stiffening and impaired EDD. These data suggest that outbred, genetically diverse mice may provide unique translational insight into arterial adaptations of humans that consume an HS diet.NEW & NOTEWORTHY Excess salt consumption is a contributor to hypertension and arterial dysfunction in humans living in industrialized societies, but this phenotype is not observed in inbred, genetically identical mice that consume a high-salt (HS) diet. This study reveals that a HS diet in outbred, genetically diverse mice progressively increases systolic blood pressure and induce arterial dysfunction. These data suggest that genetically diverse mice may provide translational insight into arterial adaptations in humans that consume an HS diet.
Collapse
Affiliation(s)
- Xiangyu Zheng
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer Berg Sen
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Zhuoxin Li
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Mostafa Sabouri
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christina S Deacon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Joseph Bernardo
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
13
|
Zheng X, Li Z, Berg Sen J, Samarah L, Deacon CS, Bernardo J, Machin DR. Western diet augments metabolic and arterial dysfunction in a sex-specific manner in outbred, genetically diverse mice. Front Nutr 2023; 9:1090023. [PMID: 36687716 PMCID: PMC9853899 DOI: 10.3389/fnut.2022.1090023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023] Open
Abstract
Western diet (WD), characterized by excess saturated fat and sugar intake, is a major contributor to obesity and metabolic and arterial dysfunction in humans. However, these phenotypes are not consistently observed in traditional inbred, genetically identical mice. Therefore, we sought to determine the effects of WD on visceral adiposity and metabolic/arterial function in UM-HET3 mice, an outbred, genetically diverse strain of mice. Male and female UM-HET3 mice underwent normal chow (NC) or WD for 12 weeks. Body mass and visceral adiposity were higher in WD compared to NC (P < 0.05). Female WD mice had greater visceral adiposity than male WD mice (P < 0.05). The results of glucose and insulin tolerance tests demonstrated that metabolic function was lower in WD compared to NC mice (P < 0.05). Metabolic dysfunction in WD as was driven by male mice, as metabolic function in female WD mice was unchanged (P > 0.05). Systolic blood pressure (BP) and aortic stiffness were increased in WD after 2 weeks compared to baseline and continued to increase through week 12 (P < 0.05). Systolic BP and aortic stiffness were higher from weeks 2-12 in WD compared to NC (P < 0.05). Aortic collagen content was higher in WD compared to NC (P < 0.05). Carotid artery endothelium-dependent dilation was lower in WD compared to NC (P < 0.05). These data suggest sex-related differences in visceral adiposity and metabolic dysfunction in response to WD. Despite this, arterial dysfunction was similar in male and female WD mice, indicating this model may provide unique translational insight into similar sex-related observations in humans that consume WD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
14
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
15
|
Venkatasubramanian R, Mahoney SA, Clayton ZS. Could angiotensin-II induced T-cell senescence exacerbate age-related vascular dysfunction? J Physiol 2022; 600:1821-1823. [PMID: 35238408 PMCID: PMC9012694 DOI: 10.1113/jp282581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|