1
|
Chen X, Lv S, Liu J, Guan Y, Xu C, Ma X, Li M, Bai X, Liu K, Zhang H, Yan Q, Zhou F, Chen Y. Exploring the Role of Axons in ALS from Multiple Perspectives. Cells 2024; 13:2076. [PMID: 39768167 PMCID: PMC11674045 DOI: 10.3390/cells13242076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear. However, a burgeoning body of research indicates that axonal dysfunction is a pivotal element in the pathogenesis of ALS and significantly influences the progression of disease. Dysfunction of axons in ALS can result in impediments to nerve impulse transmission, leading to motor impairment, muscle atrophy, and other associated complications that severely compromise patients' quality of life and survival prognosis. In this review, we concentrate on several key areas: the ultrastructure of axons, the mechanisms of axonal degeneration in ALS, the impact of impaired axonal transport on disease progression in ALS, and the potential for axonal regeneration within the central nervous system (CNS). Our objective is to achieve a more holistic and profound understanding of the multifaceted role that axons play in ALS, thereby offering a more intricate and refined perspective on targeted axonal therapeutic interventions.
Collapse
Affiliation(s)
- Xiaosu Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Shuchang Lv
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Yingjun Guan
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Chunjie Xu
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xiaonan Ma
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Mu Li
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xue Bai
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Kexin Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Qiupeng Yan
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Yanchun Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| |
Collapse
|
2
|
Fletcher EV, Chalif JI, Rotterman TM, Pagiazitis JG, Alstyne MV, Sivakumar N, Rabinowitz JE, Pellizzoni L, Alvarez FJ, Mentis GZ. Synaptic imbalance and increased inhibition impair motor function in SMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610545. [PMID: 39257773 PMCID: PMC11383993 DOI: 10.1101/2024.08.30.610545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used mouse genetics, functional assays, morphological methods, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition neurotransmission in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable motor circuits in the SMA spinal cord fail to respond homeostatically to the reduction of excitatory drive and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment to activate muscle contraction. Importantly, genetic or pharmacological reduction of inhibitory synaptic drive improves neuronal function and provides behavioural benefit in SMA mice. Our findings identify the lack of excitation-inhibition homeostasis as a major maladaptive mechanism in SMA, by which the combined effects of reduced excitation and increased inhibition diminish the capacity of premotor commands to recruit motor neurons and elicit muscle contractions.
Collapse
Affiliation(s)
- Emily V. Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | | | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joseph E. Rabinowitz
- Department of Pharmacology, Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | | | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
3
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
5
|
Mora S, Stuckert A, von Huth Friis R, Pietersz K, Noes-Holt G, Montañana-Rosell R, Wang H, Sørensen AT, Selvan R, Verhaagen J, Allodi I. Stabilization of V1 interneuron-motor neuron connectivity ameliorates motor phenotype in a mouse model of ALS. Nat Commun 2024; 15:4867. [PMID: 38849367 PMCID: PMC11161600 DOI: 10.1038/s41467-024-48925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Anna Stuckert
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Kimberly Pietersz
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Gith Noes-Holt
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Haoyu Wang
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Joost Verhaagen
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ilary Allodi
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| |
Collapse
|
6
|
Montañana-Rosell R, Selvan R, Hernández-Varas P, Kaminski JM, Sidhu SK, Ahlmark DB, Kiehn O, Allodi I. Spinal inhibitory neurons degenerate before motor neurons and excitatory neurons in a mouse model of ALS. SCIENCE ADVANCES 2024; 10:eadk3229. [PMID: 38820149 PMCID: PMC11141618 DOI: 10.1126/sciadv.adk3229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of somatic motor neurons. A major focus has been directed to motor neuron intrinsic properties as a cause for degeneration, while less attention has been given to the contribution of spinal interneurons. In the present work, we applied multiplexing detection of transcripts and machine learning-based image analysis to investigate the fate of multiple spinal interneuron populations during ALS progression in the SOD1G93A mouse model. The analysis showed that spinal inhibitory interneurons are affected early in the disease, before motor neuron death, and are characterized by a slow progressive degeneration, while excitatory interneurons are affected later with a steep progression. Moreover, we report differential vulnerability within inhibitory and excitatory subpopulations. Our study reveals a strong interneuron involvement in ALS development with interneuron specific degeneration. These observations point to differential involvement of diverse spinal neuronal circuits that eventually may be determining motor neuron degeneration.
Collapse
Affiliation(s)
| | - Raghavendra Selvan
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Hernández-Varas
- Core Facility for Integrated Microscopy, University of Copenhagen, Copenhagen, Denmark
| | - Jan M. Kaminski
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dana B. Ahlmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ilary Allodi
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
Odierna GL, Vucic S, Dyer M, Dickson T, Woodhouse A, Blizzard C. How do we get from hyperexcitability to excitotoxicity in amyotrophic lateral sclerosis? Brain 2024; 147:1610-1621. [PMID: 38408864 PMCID: PMC11068114 DOI: 10.1093/brain/awae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease that, at present, has no effective cure. Evidence of increased circulating glutamate and hyperexcitability of the motor cortex in patients with amyotrophic lateral sclerosis have provided an empirical support base for the 'dying forward' excitotoxicity hypothesis. The hypothesis postulates that increased activation of upper motor neurons spreads pathology to lower motor neurons in the spinal cord in the form of excessive glutamate release, which triggers excitotoxic processes. Many clinical trials have focused on therapies that target excitotoxicity via dampening neuronal activation, but not all are effective. As such, there is a growing tension between the rising tide of evidence for the 'dying forward' excitotoxicity hypothesis and the failure of therapies that target neuronal activation. One possible solution to these contradictory outcomes is that our interpretation of the current evidence requires revision in the context of appreciating the complexity of the nervous system and the limitations of the neurobiological assays we use to study it. In this review we provide an evaluation of evidence relevant to the 'dying forward' excitotoxicity hypothesis and by doing so, identify key gaps in our knowledge that need to be addressed. We hope to provide a road map from hyperexcitability to excitotoxicity so that we can better develop therapies for patients suffering from amyotrophic lateral sclerosis. We conclude that studies of upper motor neuron activity and their synaptic output will play a decisive role in the future of amyotrophic lateral sclerosis therapy.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney 2050, Australia
| | - Marcus Dyer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
- Department of Pharmaceutical and Pharmacological Sciences, Center for Neurosciences, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Adele Woodhouse
- The Wicking Dementia Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Catherine Blizzard
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
8
|
Zhu H, Dalvi U, Cazenave W, Cattaert D, Branchereau P. Excitatory action of low frequency depolarizing GABA/glycine synaptic inputs is prevalent in prenatal spinal SOD1 G93A motoneurons. J Physiol 2024; 602:913-932. [PMID: 38345477 DOI: 10.1113/jp285105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease characterized by progressive motor neuron degeneration and muscle paralysis. Recent evidence suggests the dysfunction of inhibitory signalling in ALS motor neurons. We have shown that embryonic day (E)17.5 spinal motoneurons (MNs) of the SOD1G93A mouse model of ALS exhibit an altered chloride homeostasis. At this prenatal stage, inhibition of spinal motoneurons (MNs) is mediated by depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs). Here, using an ex vivo preparation and patch clamp recording from MNs with a chloride equilibrium set below spike threshold, we report that low input resistance (Rin ) E17.5 MNs from the SOD1G93A ALS mouse model do not correctly integrate dGPSPs evoked by electrical stimulations of GABA/glycine inputs at different frequencies. Indeed, firing activity of most wild-type (WT) MNs with low Rin was inhibited by incoming dGPSPs, whereas low Rin SOD1G93A MNs were excited or exhibited a dual response (excited by low frequency dGPSPs and inhibited by high frequency dGPSPs). Simulation highlighted the importance of the GABA/glycine input density and showed that pure excitation could be obtained in SOD-like MNs by moving GABA/glycine input away from the cell body to dendrites. This was in agreement with confocal imaging showing a lack of peri-somatic inhibitory terminals in SOD1G93A MNs compared to WT littermates. Putative fast ALS-vulnerable MNs with low Rin are therefore lacking functional inhibition at the near-term prenatal stage. KEY POINTS: We analysed the integration of GABAergic/glycinergic synaptic events by embryonic spinal motoneurons (MNs) in a mouse model of the amyotrophic lateral sclerosis (ALS) neurodegenerative disease. We found that GABAergic/glycinergic synaptic events do not properly inhibit ALS MNs with low input resistance, most probably corresponding to future vulnerable MNs. We used a neuron model to highlight the importance of the GABA/glycine terminal location and density in the integration of the GABAergic/glycinergic synaptic events. Confocal imaging showed a lack of GABA/glycine terminals on the cell body of ALS MNs. The present study suggests that putative ALS vulnerable MNs with low Rin lack functional inhibition at the near-term stage.
Collapse
Affiliation(s)
- Hongmei Zhu
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Urvashi Dalvi
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Daniel Cattaert
- University Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
9
|
Castro J, Oliveira Santos M, Swash M, de Carvalho M. Segmental motor neuron dysfunction in amyotrophic lateral sclerosis: Insights from H reflex paradigms. Muscle Nerve 2024; 69:303-312. [PMID: 38220221 DOI: 10.1002/mus.28035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION/AIMS In amyotrophic lateral sclerosis (ALS), the role of spinal interneurons in ALS is underrecognized. We aimed to investigate pre- and post-synaptic modulation of spinal motor neuron excitability by studying the H reflex, to understand spinal interneuron function in ALS. METHODS We evaluated the soleus H reflex, and three different modulation paradigms, to study segmental spinal inhibitory mechanisms. Homonymous recurrent inhibition (H'RI ) was assessed using the paired H reflex technique. Presynaptic inhibition of Ia afferents (H'Pre ) was evaluated using D1 inhibition after stimulation of the common peroneal nerve. We also studied inhibition of the H reflex after cutaneous stimulation of the sural nerve (H'Pos ). RESULTS Fifteen ALS patients (median age 57.0 years), with minimal signs of lower motor neuron involvement and good functional status, and a control group of 10 healthy people (median age 57.0 years) were studied. ALS patients showed reduced inhibition, compared to controls, in all paradigms (H'RI 0.35 vs. 0.11, p = .036; H'Pre 1.0 vs. 5.0, p = .001; H'Pos 0.0 vs. 2.5, p = .031). The clinical UMN score was a significant predictor of the amount of recurrent and presynaptic inhibition. DISCUSSION Spinal inhibitory mechanisms are impaired in ALS. We argue that hyperreflexia could be associated with dysfunction of spinal inhibitory interneurons. In this case, an interneuronopathy could be deemed a major feature of ALS.
Collapse
Affiliation(s)
- José Castro
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
10
|
Trajano GS, Orssatto LBR, McCombe PA, Rivlin W, Tang L, Henderson RD. Longitudinal changes in intrinsic motoneuron excitability in amyotrophic lateral sclerosis are dependent on disease progression. J Physiol 2023; 601:4723-4735. [PMID: 37768183 DOI: 10.1113/jp285181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Increased amplitude of persistent inward currents (PICs) is observed in pre-symptomatic genetically modified SOD1 mice models of amyotrophic lateral sclerosis (ALS). However, at the symptomatic stage this reverses and there is a large reduction in PIC amplitude. It remains unclear whether these changes in PICs can be observed in humans, with cross-sectional studies in humans reporting contradictory findings. In people with ALS, we estimated the PIC contribution to self-sustained firing of motoneurons, using the paired-motor unit analysis to calculate the Δfrequency (ΔF), to compare the weaker and stronger muscles during the course of disease. We hypothesised that, with disease progression, ΔFs would relatively increase in the stronger muscles; and decline in the weaker muscles. Forty-three individuals with ALS were assessed in two occasions on average 17 weeks apart. Tibialis anterior high-density electromyograms were recorded during dorsiflexion (40% of maximal capacity) ramped contractions, followed by clinical tests. ∆F increased from 3.14 (2.57, 3.71) peaks per second (pps) to 3.55 (2.94, 4.17) pps on the stronger muscles (0.41 (0.041, 0.781) pps, standardised difference (d) = 0.287 (0.023, 0.552), P = 0.030). ∆F reduced from 3.38 (95% CI 2.92, 3.84) pps to 2.88 (2.40, 3.36) pps on the weaker muscles (-0.50 (-0.80, -0.21) pps, d = 0.353 (0.138, 0.567), P = 0.001). The ALSFRS-R score reduced 3.9 (2.3, 5.5) points. These data indicate that the contribution of PICs to motoneuron self-sustained firing increases over time in early stages of the disease when there is little weakness before decreasing as the disease progresses and muscle weakness exacerbates, in alignment with the findings from studies using SOD1 mice. KEY POINTS: Research on mouse model of amyotrophic lateral sclerosis (ALS) suggests that the amplitude of persistent inward currents (PICs) is increased in early stages before decreasing as the disease progresses. Cross-sectional studies in humans have reported contradictory findings with both higher and lower PIC contributions to motoneuron self-sustained firing. In this longitudinal (∼17 weeks) study we tracked changes in PIC contribution to motoneuron self-sustained firing, using the ΔF calculation (i.e. onset-offset hysteresis of motor unit pairs), in tibialis anterior muscles with normal strength and with clinical signs of weakness in people with ALS. ΔFs decreased over time in muscles with clinical signs of weakness. The PIC contribution to motoneuron self-sustained firing increases before the onset of muscle weakness, and subsequently decreases when muscle weakness progresses.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Warwick Rivlin
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Lily Tang
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Aly A, Laszlo ZI, Rajkumar S, Demir T, Hindley N, Lamont DJ, Lehmann J, Seidel M, Sommer D, Franz-Wachtel M, Barletta F, Heumos S, Czemmel S, Kabashi E, Ludolph A, Boeckers TM, Henstridge CM, Catanese A. Integrative proteomics highlight presynaptic alterations and c-Jun misactivation as convergent pathomechanisms in ALS. Acta Neuropathol 2023; 146:451-475. [PMID: 37488208 PMCID: PMC10412488 DOI: 10.1007/s00401-023-02611-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.
Collapse
Affiliation(s)
- Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Zsofia I Laszlo
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Tugba Demir
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Nicole Hindley
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, Discovery Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Johannes Lehmann
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Francesca Barletta
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Edor Kabashi
- Laboratory of Translational Research for Neurological Disorders, Imagine Institute, Université de Paris, INSERM, UMR 1163, 75015, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany
| | - Christopher M Henstridge
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm Site, Germany.
| |
Collapse
|
12
|
Mora S, Allodi I. Neural circuit and synaptic dysfunctions in ALS-FTD pathology. Front Neural Circuits 2023; 17:1208876. [PMID: 37469832 PMCID: PMC10352654 DOI: 10.3389/fncir.2023.1208876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 07/21/2023] Open
Abstract
Action selection is a capital feature of cognition that guides behavior in processes that range from motor patterns to executive functions. Here, the ongoing actions need to be monitored and adjusted in response to sensory stimuli to increase the chances of reaching the goal. As higher hierarchical processes, these functions rely on complex neural circuits, and connective loops found within the brain and the spinal cord. Successful execution of motor behaviors depends, first, on proper selection of actions, and second, on implementation of motor commands. Thus, pathological conditions crucially affecting the integrity and preservation of these circuits and their connectivity will heavily impact goal-oriented motor behaviors. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders known to share disease etiology and pathophysiology. New evidence in the field of ALS-FTD has shown degeneration of specific neural circuits and alterations in synaptic connectivity, contributing to neuronal degeneration, which leads to the impairment of motor commands and executive functions. This evidence is based on studies performed on animal models of disease, post-mortem tissue, and patient derived stem cells. In the present work, we review the existing evidence supporting pathological loss of connectivity and selective impairment of neural circuits in ALS and FTD, two diseases which share strong genetic causes and impairment in motor and executive functions.
Collapse
Affiliation(s)
- Santiago Mora
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilary Allodi
- Integrative Neuroscience Unit, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Neural Circuits of Disease Laboratory, School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
13
|
Soares-Neto R, Calixtro J, Ribeiro FC. Early dysfunction of spinal cord interneurons in a mouse model of amyotrophic lateral sclerosis. J Physiol 2023; 601:1057-1058. [PMID: 36799221 DOI: 10.1113/jp284365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Rubens Soares-Neto
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Calixtro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Liu H, Guan L, Deng M, Bolund L, Kristiansen K, Zhang J, Luo Y, Zhang Z. Integrative genetic and single cell RNA sequencing analysis provides new clues to the amyotrophic lateral sclerosis neurodegeneration. Front Neurosci 2023; 17:1116087. [PMID: 36875658 PMCID: PMC9983639 DOI: 10.3389/fnins.2023.1116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction The gradual loss of motor neurons (MNs) in the brain and spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the mechanisms underlying neurodegeneration in ALS are still not fully understood. Methods Based on 75 ALS-pathogenicity/susceptibility genes and large-scale single-cell transcriptomes of human/mouse brain/spinal cord/muscle tissues, we performed an expression enrichment analysis to identify cells involved in ALS pathogenesis. Subsequently, we created a strictness measure to estimate the dosage requirement of ALS-related genes in linked cell types. Results Remarkably, expression enrichment analysis showed that α- and γ-MNs, respectively, are associated with ALS-susceptibility genes and ALS-pathogenicity genes, revealing differences in biological processes between sporadic and familial ALS. In MNs, ALS-susceptibility genes exhibited high strictness, as well as the ALS-pathogenicity genes with known loss of function mechanism, indicating the main characteristic of ALS-susceptibility genes is dosage-sensitive and the loss of function mechanism of these genes may involve in sporadic ALS. In contrast, ALS-pathogenicity genes with gain of function mechanism exhibited low strictness. The significant difference of strictness between loss of function genes and gain of function genes provided a priori understanding for the pathogenesis of novel genes without an animal model. Besides MNs, we observed no statistical evidence for an association between muscle cells and ALS-related genes. This result may provide insight into the etiology that ALS is not within the domain of neuromuscular diseases. Moreover, we showed several cell types linked to other neurological diseases [i.e., spinocerebellar ataxia (SA), hereditary motor neuropathies (HMN)] and neuromuscular diseases [i.e. hereditary spastic paraplegia (SPG), spinal muscular atrophy (SMA)], including an association between Purkinje cells in brain and SA, an association between α-MNs in spinal cord and SA, an association between smooth muscle cells and SA, an association between oligodendrocyte and HMN, a suggestive association between γ-MNs and HMN, a suggestive association between mature skeletal muscle and HMN, an association between oligodendrocyte in brain and SPG, and no statistical evidence for an association between cell type and SMA. Discussion These cellular similarities and differences deepened our understanding of the heterogeneous cellular basis of ALS, SA, HMN, SPG, and SMA.
Collapse
Affiliation(s)
- Hankui Liu
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China.,BGI-Shenzhen, Shenzhen, China
| | - Liping Guan
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, BGI-Shijiazhuang Medical Laboratory, Shijiazhuang, China.,BGI-Shenzhen, Shenzhen, China
| | - Yonglun Luo
- BGI-Shenzhen, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|