1
|
Arenas O, Osorno T, Malagón G, Pulido C, Gomez MDP, Nasi E. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors. J Gen Physiol 2018; 150:401-415. [PMID: 29374022 PMCID: PMC5839723 DOI: 10.1085/jgp.201711938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023] Open
Abstract
The mollusk Pecten irradians possesses ciliary photoreceptors that operate with an atypical mechanism. Arenas et al. reveal that a recently uncovered opsin type is the functional visual pigment in these photoreceptors and couples to Go, in contrast to other types of photoreceptor. The two basic animal photoreceptor types, ciliary and microvillar, use different light-transduction schemes: their photopigments couple to Gt versus Gq proteins, respectively, to either mobilize cyclic nucleotides or trigger a lipid signaling cascade. A third class of photoreceptors has been described in the dual retina of some marine invertebrates; these present a ciliary morphology but operate via radically divergent mechanisms, prompting the suggestion that they comprise a novel lineage of light sensors. In one of these organisms, an uncommon putative opsin was uncovered that was proposed to signal through Go. Orthologues subsequently emerged in diverse phyla, including mollusks, echinoderms, and chordates, but the cells in which they express have not been identified, and no studies corroborated their function as visual pigments or their suggested signaling mode. Conversely, in only one invertebrate species, Pecten irradians, have the ciliary photoreceptors been physiologically characterized, but their photopigment has not been identified molecularly. We used the transcriptome of Pecten retina to guide the cloning by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) extensions of a new member of this group of putative opsins. In situ hybridization shows selective transcription in the distal retina, and specific antibodies identify a single band of the expected molecular mass in Western blots and distinctly label ciliary photoreceptors in retina sections. RNA interference knockdown resulted in a reduction in the early receptor current—the first manifestation of light transduction—and prevented the prolonged aftercurrent, which requires a large buildup of activated rhodopsin. We also obtained a full-length clone of the α-subunit of a Go from Pecten retina complementary DNA and localized it by in situ hybridization to the distal photoreceptors. Small interfering RNA targeting this Go caused a specific depression of the photocurrent. These results establish this novel putative opsin as a bona fide visual pigment that couples to Go to convey the light signal.
Collapse
Affiliation(s)
- Oscar Arenas
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Tomás Osorno
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gerardo Malagón
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Pulido
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.,Marine Biological Laboratory, Woods Hole, MA
| | - Enrico Nasi
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
2
|
Gotow T, Nishi T. A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug onchidium. Front Cell Neurosci 2009; 3:18. [PMID: 20057929 PMCID: PMC2802546 DOI: 10.3389/neuro.03.018.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 11/24/2009] [Indexed: 11/13/2022] Open
Abstract
Simple photoreceptors, namely intrinsically light-sensitive neurons without microvilli and/or cilia, have long been known to exist in the central ganglia of crayfish, Aplysia, Onchidium, and Helix. These simple photoreceptors are not only first-order photosensory cells, but also second-order neurons (interneurons), relaying several kinds of sensory synaptic inputs. Another important issue is that the photoresponses of these simple photoreceptors show very slow kinetics and little adaptation. These characteristics suggest that the simple photoreceptors of the Onchidium have a function in non-image-forming vision, different from classical eye photoreceptors used for cording dynamic images of vision. The cited literature provides evidence that the depolarizing and hyperpolarizing photoresponses of simple photoreceptors play a role in the long-lasting potentiation of synaptic transmission of excitatory and inhibitory sensory inputs, and as well as in the potentiation and the suppression of the subsequent behavioral outputs. In short, we suggest that simple photoreceptors operate in the general potentiation of synaptic transmission and subsequent motor output; i.e., they perform a new photosensory function.
Collapse
Affiliation(s)
- Tsukasa Gotow
- Laboratory for Neuroanatomy, Department of Neurology, Graduate School of Medical and Dental Sciences, Kagoshima University Kagoshima, Japan
| | | |
Collapse
|
3
|
Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci U S A 2008; 105:15576-80. [PMID: 18832159 DOI: 10.1073/pnas.0806215105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. Here, we investigated the phototransduction cascade of a prebilaterian box jellyfish, the most basal animal having eyes containing lens and ciliary-type visual cells similar to vertebrate eyes, to examine the similarity at the molecular level and to obtain an implication of the origin of the vertebrate phototransduction cascade. We showed that the opsin-based pigment functions as a green-sensitive visual pigment and triggers the G(s)-type G protein-mediated phototransduction cascade in the ciliary-type visual cells of the box jellyfish lens eyes. We also demonstrated the light-dependent cAMP increase in the jellyfish visual cells and HEK293S cells expressing the jellyfish opsin. The first identified prebilaterian cascade was distinct from known phototransduction cascades but exhibited significant partial similarity with those in vertebrate and molluscan ciliary-type visual cells, because all involved cyclic nucleotide signaling. These similarities imply a monophyletic origin of ciliary phototransduction cascades distributed from prebilaterian to vertebrate.
Collapse
|
4
|
Gotow T, Nishi T. Simple photoreceptors in some invertebrates: physiological properties of a new photosensory modality. Brain Res 2008; 1225:3-16. [PMID: 18538313 DOI: 10.1016/j.brainres.2008.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/23/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Simple photoreceptors, namely photoresponsive neurons without microvilli and/or cilia have long been known in the central ganglion of crayfish, Aplysia, Onchidium and Helix. Recently, similar simple photoreceptors, ipRGCs were discovered in the mammalian retinas. A characteristic common to all of their photoreceptor potentials shows a slow kinetics and little adaptation, contrasting with the fast and adaptive photoresponses in eye photoreceptors. Furthermore, these simple photoreceptors are not only first-order photosensory cells, but also second-order interneurons. Such characteristics suggested that simple photoreceptors function as a new sensory modality, non-image-forming vision, which is different from the image-forming vision of eye photoreceptors. The Onchidium simple photoreceptors A-P-1 and Es-1 respond to light with a depolarizing receptor potential, caused by closing of light-dependent, cGMP-gated K+ channels, as in vertebrate cGMP cascade mediated by Gt-type G-protein. The same simple photoreceptors Ip-2 and Ip-1 are hyperpolarized by light, owing to opening of the same K+ channels. This shows the first demonstration of a new type of cGMP cascade, in which Ip-2/Ip-1 are hyperpolarized when light activates guanylate cyclase (GC) through a Go-type G-protein. The ipRGCs, as involved in non-imaging function of ipRGCs, contribute to pupillary light reflex and circadian clocks. However, their function as interneurons has not been ascertained. In Onchidium simple photoreceptors, A-P-1/Es-1 and Ip-2/Ip-1 cells the photoreceptor potentials play a role in LTP-like long-lasting potentiation (LLP) of the non-imaging functions, e.g., excitatory tactile or inhibitory pressure synaptic transmission and the subsequent behavioral responses. It was also shown that this LLP is effective, even if their photoresponse is subthreshold.
Collapse
Affiliation(s)
- Tsukasa Gotow
- Laboratory for Neuroanatomy, Department of Neurology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | | |
Collapse
|
5
|
Matsumoto Y, Unoki S, Aonuma H, Mizunami M. Critical role of nitric oxide-cGMP cascade in the formation of cAMP-dependent long-term memory. Learn Mem 2006; 13:35-44. [PMID: 16452652 PMCID: PMC1360131 DOI: 10.1101/lm.130506] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have studied the signaling cascade underlying LTM formation by systematically coinjecting various "LTM-inducing" and "LTM-blocking" drugs in crickets. Multiple-trial olfactory conditioning led to LTM that lasted for several days, while memory induced by single-trial conditioning decayed away within several hours. Injection of inhibitors of the enzyme forming NO, cGMP, or cAMP into the hemolymph prior to multiple-trial conditioning blocked LTM, whereas injection of an NO donor, cGMP analog, or cAMP analog prior to single-trial conditioning induced LTM. Induction of LTM by injection of an NO donor or cGMP analog paired with single-trial conditioning was blocked by inhibitors of the cAMP pathway, but induction of LTM by a cAMP analog was unaffected by inhibitors of the NO-cGMP pathway. Inhibitors of cyclic nucleotide-gated channel (CNG channel) or calmodulin-blocked induction of LTM by cGMP analog paired with single-trial conditioning, but they did not affect induction of LTM by cAMP analog. Our findings suggest that the cAMP pathway is a downstream target of the NO-cGMP pathway for the formation of LTM, and that the CNG channel and calcium-calmodulin intervene between the NO-cGMP pathway and the cAMP pathway.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
6
|
Gomez MDP, Nasi E. On the gating mechanisms of the light-dependent conductance in Pecten hyperpolarizing photoreceptors: does light remove inactivation in voltage-dependent K channels? ACTA ACUST UNITED AC 2005; 125:455-64. [PMID: 15824193 PMCID: PMC2217503 DOI: 10.1085/jgp.200509269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hyperpolarizing receptor potential of ciliary photoreceptors of scallop and other mollusks is mediated by a cGMP-activated K conductance; these cells also express a transient potassium current triggered by depolarization. During steady illumination, the outward currents elicited by voltage steps lose their decay kinetics. One interesting conjecture that has been proposed is that the currents triggered by light and by depolarization are mediated by the same population of channels, and that illumination evokes the receptor potential by removing their steady-state inactivation. Exploiting the information that has become available on the phototransduction cascade of ciliary photoreceptors, we demonstrated that the same downstream signaling elements are implicated in the modulation of voltage-elicited currents: direct chemical stimulation both at the level of the G protein and of the final messenger that controls the light-dependent channels (cGMP) also attenuate the falling phase of the voltage-activated current. Application of a protein kinase G antagonist was ineffective, suggesting that a cGMP-initiated phosphorylation step is not implicated. To ascertain the commonality of ionic pathways we used pharmacological blockers. Although millimolar 4-aminopyridine (4-AP) suppressed both currents, at micromolar concentrations only the photocurrent was blocked. Conversely, barium completely and reversibly antagonized the transient voltage-activated current with no detectable effect on the light-evoked current. These results rule out that the same ionic pores mediate both currents; the mechanism of light modulation of the depolarization-evoked K current was elucidated as a time-dependent increase in the light-sensitive conductance that is superimposed on the inactivating K current.
Collapse
Affiliation(s)
- Maria del Pilar Gomez
- Department of Physiology and Biophysics, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
7
|
Tegeder I, Schmidtko A, Niederberger E, Ruth P, Geisslinger G. Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced nociception in rats. Neurosci Lett 2002; 332:146-50. [PMID: 12384231 DOI: 10.1016/s0304-3940(02)00938-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rat formalin assay was used to assess effects of the cyclic guanosine mono-phosphate (cGMP) analog, 8-bromo-cGMP on nociception and cGMP dependent protein kinase I (protein kinase G; PKG-I) expression in lumbar spinal cord. Intrathecal (i.t.) delivery of low doses of 8-bromo-cGMP (0.1-0.25 micromol) reduced nociceptive behavior and formalin-induced upregulation of PKG-I in the spinal cord. Medium doses (0.5-1 micromol i.t.) had no effect and high doses (2.5 micromol i.t.) caused hyperalgesia associated with a further increase of PKG-I expression and a PKG-I clip. To explain these dose-dependent contrary effects we assessed the potential involvement of various cGMP targets: protein kinase G, cyclic nucleotide gated cation channels (CNGs), phosphodiesterases (PDE2 and PDE3) and AMPA-receptors. The PKG inhibitor, Rp-8-bromo-cGMPS did not antagonize the antinociceptive effects of 8-bromo-cGMP but caused antinociception itself. Inhibitors of CNGs, PDE2 and PDE3 had no effect on formalin evoked nociceptive behavior. S-AMPA however, antagonized the antinociceptive effects of 8-bromo-cGMP. Since AMPA receptor currents were found to be reduced by 8-bromo-cGMP in vitro a direct or indirect reduction of AMPA receptor currents might possibly contribute to the antinociceptive effects of 8-bromo-cGMP. On the other hand, 8-bromo-cGMP evoked antinociception appears to be largely independent of PKG-I, CNGs, PDE2 and PDE3. The antinociceptive effects of the PKG inhibitor suggest that a strong PKG activation may be responsible for 'high dose' 8-bromo-cGMP evoked hyperalgesia.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
8
|
Abstract
The shared roles of Pax6 and Six homologues in the eye development of various bilaterians suggest that Urbilateria, the common ancestors of all Bilateria, already possessed some simple form of eyes. Here, we re-address the homology of bilaterian cerebral eyes at the level of eye anatomy, of eye-constituting cell types and of phototransductory molecules. The most widespread eye type found in Bilateria are the larval pigment-cup eyes located to the left and right of the apical organ in primary, ciliary larvae of Protostomia and Deuterostomia. They can be as simple as comprising a single pigment cell and a single photoreceptor cell in inverse orientation. Another more elaborate type of cerebral pigment-cup eyes with an everse arrangement of photoreceptor cells is found in adult Protostomia. Both inverse larval and everse adult eyes employ rhabdomeric photoreceptor cells and thus differ from the chordate cerebral eyes with ciliary photoreceptors. This is highly significant because on the molecular level we find that for phototransduction rhabdomeric versus ciliary photoreceptor cells employ divergent rhodopsins and non-orthologous G-proteins, rhodopsin kinases and arrestins. Our comparison supports homology of cerebral eyes in Protostomia; it challenges, however, homology of chordate and non-chordate cerebral eyes that employ photoreceptor cells with non-orthologous phototransductory cascades.
Collapse
Affiliation(s)
- D Arendt
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
9
|
Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase. J Neurosci 2000. [PMID: 10884309 DOI: 10.1523/jneurosci.20-14-05254.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hyperpolarizing receptor potential of scallop ciliary photoreceptors is attributable to light-induced opening of K(+)-selective channels. Having previously demonstrated the activation of this K(+) current by cGMP, we examined upstream events in the transduction cascade. GTP-gamma-S produced persistent excitation after a flash, accompanied by decreased sensitivity and acceleration of the photocurrent, whereas GDP-beta-S only inhibited responsiveness, consistent with the involvement of a G-protein. Because G(o) (but not G(t) nor G(q)) recently has been detected in the ciliary retinal layer of a related species, we tested the effects of activators of G(o); mastoparan peptides induced an outward current suppressible by blockers of the light-sensitive conductance such as l-cis-diltiazem. In addition, intracellular dialysis with the A-protomer of pertussis toxin (PTX) depressed the photocurrent. The mechanisms that couple G-protein stimulation to changes in cGMP were investigated. Intracellular IBMX enhanced the photoresponse with little effect on the baseline current, a result that argues against regulation by light of phosphodiesterase activity. LY83583, an inhibitor of guanylate cyclase (GC), exerted a reversible, dose-dependent suppression of the photocurrent. By contrast, ODQ, an antagonist of NO-sensitive GC, and YC-1, an activator of NO-sensitive GC, failed to alter the light response or the holding current; furthermore, the NO synthase inhibitor N-methyl- l-arginine was inert, indicating that the NO signaling pathway is not implicated. Taken together, these results suggest a novel type of phototransduction cascade in which stimulation of a PTX-sensitive G(o) may activate a membrane GC to induce an increase in cGMP and the consequent opening of light-dependent channels.
Collapse
|
10
|
Gomez MP, Nasi E. Light transduction in invertebrate hyperpolarizing photoreceptors: possible involvement of a Go-regulated guanylate cyclase. J Neurosci 2000; 20:5254-63. [PMID: 10884309 PMCID: PMC6772339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The hyperpolarizing receptor potential of scallop ciliary photoreceptors is attributable to light-induced opening of K(+)-selective channels. Having previously demonstrated the activation of this K(+) current by cGMP, we examined upstream events in the transduction cascade. GTP-gamma-S produced persistent excitation after a flash, accompanied by decreased sensitivity and acceleration of the photocurrent, whereas GDP-beta-S only inhibited responsiveness, consistent with the involvement of a G-protein. Because G(o) (but not G(t) nor G(q)) recently has been detected in the ciliary retinal layer of a related species, we tested the effects of activators of G(o); mastoparan peptides induced an outward current suppressible by blockers of the light-sensitive conductance such as l-cis-diltiazem. In addition, intracellular dialysis with the A-protomer of pertussis toxin (PTX) depressed the photocurrent. The mechanisms that couple G-protein stimulation to changes in cGMP were investigated. Intracellular IBMX enhanced the photoresponse with little effect on the baseline current, a result that argues against regulation by light of phosphodiesterase activity. LY83583, an inhibitor of guanylate cyclase (GC), exerted a reversible, dose-dependent suppression of the photocurrent. By contrast, ODQ, an antagonist of NO-sensitive GC, and YC-1, an activator of NO-sensitive GC, failed to alter the light response or the holding current; furthermore, the NO synthase inhibitor N-methyl- l-arginine was inert, indicating that the NO signaling pathway is not implicated. Taken together, these results suggest a novel type of phototransduction cascade in which stimulation of a PTX-sensitive G(o) may activate a membrane GC to induce an increase in cGMP and the consequent opening of light-dependent channels.
Collapse
Affiliation(s)
- M P Gomez
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, and Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
11
|
Danaceau JP, Lucero MT. Electrogenic Na(+)/Ca(2+) exchange. A novel amplification step in squid olfactory transduction. J Gen Physiol 2000; 115:759-68. [PMID: 10828249 PMCID: PMC2232891 DOI: 10.1085/jgp.115.6.759] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Olfactory receptor neurons (ORNs) from the squid, Lolliguncula brevis, respond to the odors l-glutamate or dopamine with increases in internal Ca(2+) concentrations ([Ca(2+)](i)). To directly asses the effects of increasing [Ca(2+)](i) in perforated-patched squid ORNs, we applied 10 mM caffeine to release Ca(2+) from internal stores. We observed an inward current response to caffeine. Monovalent cation replacement of Na(+) from the external bath solution completely and selectively inhibited the caffeine-induced response, and ruled out the possibility of a Ca(2+)-dependent nonselective cation current. The strict dependence on internal Ca(2+) and external Na(+) indicated that the inward current was due to an electrogenic Na(+)/Ca(2+) exchanger. Block of the caffeine-induced current by an inhibitor of Na(+)/Ca(2+) exchange (50-100 microM 2',4'-dichlorobenzamil) and reversibility of the exchanger current, further confirmed its presence. We tested whether Na(+)/Ca(2+) exchange contributed to odor responses by applying the aquatic odor l-glutamate in the presence and absence of 2', 4'-dichlorobenzamil. We found that electrogenic Na(+)/Ca(2+) exchange was responsible for approximately 26% of the total current associated with glutamate-induced odor responses. Although Na(+)/Ca(2+) exchangers are known to be present in ORNs from numerous species, this is the first work to demonstrate amplifying contributions of the exchanger current to odor transduction.
Collapse
Affiliation(s)
- Jonathan P. Danaceau
- Interdepartmental Program in Neuroscience, School of Medicine, Salt Lake City, Utah 84108
- Department of Physiology University of Utah, School of Medicine, Salt Lake City, Utah 84108
| | - Mary T. Lucero
- Department of Physiology University of Utah, School of Medicine, Salt Lake City, Utah 84108
| |
Collapse
|
12
|
Galindo BE, Beltrán C, Cragoe EJ, Darszon A. Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm. Dev Biol 2000; 221:285-94. [PMID: 10790326 DOI: 10.1006/dbio.2000.9678] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Speract, a decapeptide from Strongylocentrotus purpuratus sea urchin eggs, transiently stimulates a membrane guanylyl cyclase and activates a K(+)-selective channel that hyperpolarizes sperm. However, previous studies of sperm and of sperm membrane vesicles reached conflicting conclusions about the mechanisms that open these channels. We find that speract hyperpolarizes and increases the cGMP content of flagellar vesicles. We confirm previous findings that intravesicular GTPgammaS and GTP enhance this hyperpolarization, but not GDPbetaS. The G protein activators AlF(-)(4) and mastoparan also are ineffective. Thus, it is unlikely that a G protein participates in the speract response. In contrast, hyperpolarization responses to speract are increased by 3-isobutyl-1-methylxanthine, which preferentially inhibits cGMP-selective phosphodiesterases of sperm, and the 8Br-cGMP derivative hyperpolarizes vesicles in the absence of speract. The responses to speract and to 8Br-cGMP have similar ionic selectivities (K(+) > Rb(+) > > Li(+) > Na(+)) and sensitivities to the channel blockers 4-aminopiridine and 3, 4-dichlorobenzamil, indicating that they likely result from opening of the same K(+) channel. Inhibitors that preferentially inhibit cAMP-selective phosphodiesterases do not alter responses to speract, and permeant cAMP analogs do not hyperpolarize vesicles. In addition, inhibitors of protein kinases and phosphatases fail to alter vesicle hyperpolarization by speract. The increase in vesicular cGMP content produced by speract therefore may directly mediate opening of the channel that hyperpolarizes sperm membrane vesicles. Similar mechanisms presumably operate in intact sperm.
Collapse
Affiliation(s)
- B E Galindo
- Departamento de Genética y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62250, México
| | | | | | | |
Collapse
|
13
|
Chapter 8 Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. HANDBOOK OF BIOLOGICAL PHYSICS 2000. [DOI: 10.1016/s1383-8121(00)80011-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Nasi E, del Pilar Gomez M. Divalent cation interactions with light-dependent K channels. Kinetics of voltage-dependent block and requirement for an open pore. J Gen Physiol 1999; 114:653-72. [PMID: 10532963 PMCID: PMC2230541 DOI: 10.1085/jgp.114.5.653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca(2+) and Mg(2+) that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca(2+) than Mg(2+) (K(1/2) approximately 16 and 61 mM, respectively, at V(m) = -30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca(2+) block is consistent with a single binding site located at an electrical distance of delta approximately 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (tau = 5-20 ms) that disappears on removal of Ca(2+) and Mg(2+) and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca(2+) than with Mg(2+), suggesting that the process is dominated by the "on" rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside.
Collapse
Affiliation(s)
- Enrico Nasi
- From the Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Maria del Pilar Gomez
- From the Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
15
|
Nishi T, Gotow T. Light-increased cGMP and K+ conductance in the hyperpolarizing receptor potential of Onchidium extra-ocular photoreceptors. Brain Res 1998; 809:325-36. [PMID: 9853128 DOI: 10.1016/s0006-8993(98)00913-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The phototransduction mechanism of the extra-ocular photoreceptor cells Ip-2 and Ip-1 in the mollusc Onchidium ganglion was examined. Previous work showed that the depolarizing receptor potential of another extra-ocular photoreceptor cell, A-P-1 is produced by a decrease of the light-sensitive K+ conductance activated by a second messenger, cGMP and is inactivated by the hydrolysis of cGMP. Here, a hyperpolarizing receptor potential of Ip-2 or Ip-1 was associated with an increase in membrane conductance. When Ip-2 or Ip-1 was voltage-clamped near the resting membrane potential, light induced an outward photocurrent corresponding to the above hyperpolarization. The spectral sensitivity had a peak at 510 nm. The shift of reversal potentials of the photocurrent depended on the Nernst equation of K(+)-selective conductance. The photocurrent was blocked by 4-AP and L-DIL, which are effective blockers of the A-P-1 light-sensitive K+ conductance. These results suggested that the hyperpolarization is mediated by increasing a similar light-sensitive K+ conductance to that of A-P-1. The injection of cGMP or Ca2+ into a cell produced a K+ current that mimicked the photocurrent. 4-AP and L-DIL both abolished the cGMP-activated K+ current, while TEA suppressed only the Ca(2+)-activated K+ current. These results indicated that cGMP is also a second messenger that regulates the light-sensitive K+ conductance. The photocurrent was blocked by LY-83583, a guanylate cyclase (GC) inhibitor, but was unaltered by zaprinast, a phosphodiesterase (PDE) inhibitor. Together, the present results suggest that increasing the internal cGMP in Ip-2 or Ip-1 cells light-activates GC rather than inhibits PDE, thereby leading to an increase of the light-sensitive K+ conductance and the hyperpolarization.
Collapse
Affiliation(s)
- T Nishi
- Laboratory of Physiology, Senshu University, Kawasaki, Japan
| | | |
Collapse
|
16
|
Wei JY, Roy DS, Leconte L, Barnstable CJ. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol 1998; 56:37-64. [PMID: 9723130 DOI: 10.1016/s0301-0082(98)00029-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most functional studies of cyclic nucleotide-gated (CNG) channels have been confined to photoreceptors and olfactory epithelium, in which CNG channels are abundant and easy to study. The widespread distribution of CNG channels in tissues throughout the body has only recently been recognized and the functions of this channel family in many of these tissues remain largely unknown. The molecular biological and pharmacological properties of the CNG channel family are summarized in order to put in context studies aimed at probing CNG channel functions in these tissues using pharmacological and genetic methods. Compounds have now been identified that are useful in distinguishing CNG channel activated pathways from cAMP/cGMP dependent-protein kinases or other pathways. The ways in which these interact with CNG channels are understood and this knowledge is leading to the identification of more potent and more specific CNG channel subtype-specific agonists or antagonists. Recent molecular and genetic analyses have identified novel roles of CNG channels in neuronal development and plasticity in both invertebrates and vertebrates. Targeting CNG channels via specific drugs and genetic manipulation (such as knockout mice) will permit better understanding of the role of CNG channels in both basic and higher orders of brain function.
Collapse
Affiliation(s)
- J Y Wei
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
17
|
Finn JT, Xiong WH, Solessio EC, Yau KW. A cGMP-gated cation channel and phototransduction in depolarizing photoreceptors of the lizard parietal eye. Vision Res 1998; 38:1353-7. [PMID: 9667003 DOI: 10.1016/s0042-6989(97)00365-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photoreceptors of the lizard parietal eye, unlike rods and cones but like most invertebrate photoreceptors, respond to light under dark-adapted conditions with a depolarization. Using excised-patch recordings, we have nonetheless found a cGMP-gated, non-selective cation channel present at high density at the presumptive light-sensitive part (the outer segment) of these cells. This channel resembles the rod cGMP-gated channel in its activation characteristics, and by showing a relative non-selectivity among alkali monovalent cations, a high permeability to Ca2+, a high sensitivity to L-cis-diltiazem, as well as a negative modulation by Ca(2+)-calmodulin. This channel appears to mediate phototransduction by opening in the light to produce the depolarizing response.
Collapse
Affiliation(s)
- J T Finn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|