1
|
Karbowski M, Boyman L, Garber L, Joca HC, Verhoeven N, Coleman AK, Ward CW, Lederer WJ, Greiser M. Na + /K + ATPase-Ca v 1.2 nanodomain differentially regulates intracellular [Na + ], [Ca 2+ ] and local adrenergic signaling in cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.553598. [PMID: 37693446 PMCID: PMC10491240 DOI: 10.1101/2023.08.31.553598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background The intracellular Na + concentration ([Na + ] i ) is a crucial but understudied regulator of cardiac myocyte function. The Na + /K + ATPase (NKA) controls the steady-state [Na + ] i and thereby determines the set-point for intracellular Ca 2+ . Here, we investigate the nanoscopic organization and local adrenergic regulation of the NKA macromolecular complex and how it differentially regulates the intracellular Na + and Ca 2+ homeostases in atrial and ventricular myocytes. Methods Multicolor STORM super-resolution microscopy, Western Blot analyses, and in vivo examination of adrenergic regulation are employed to examine the organization and function of Na + nanodomains in cardiac myocytes. Quantitative fluorescence microscopy at high spatiotemporal resolution is used in conjunction with cellular electrophysiology to investigate intracellular Na + homeostasis in atrial and ventricular myocytes. Results The NKAα1 (NKAα1) and the L-type Ca 2+ -channel (Ca v 1.2) form a nanodomain with a center-to center distance of ∼65 nm in both ventricular and atrial myocytes. NKAα1 protein expression levels are ∼3 fold higher in atria compared to ventricle. 100% higher atrial I NKA , produced by large NKA "superclusters", underlies the substantially lower Na + concentration in atrial myocytes compared to the benchmark values set in ventricular myocytes. The NKA's regulatory protein phospholemman (PLM) has similar expression levels across atria and ventricle resulting in a much lower PLM/NKAα1 ratio for atrial compared to ventricular tissue. In addition, a huge PLM phosphorylation reserve in atrial tissue produces a high ß-adrenergic sensitivity of I NKA in atrial myocytes. ß-adrenergic regulation of I NKA is locally mediated in the NKAα1-Ca v 1.2 nanodomain via A-kinase anchoring proteins. Conclusions NKAα1, Ca v 1.2 and their accessory proteins form a structural and regulatory nanodomain at the cardiac dyad. The tissue-specific composition and local adrenergic regulation of this "signaling cloud" is a main regulator of the distinct global intracellular Na + and Ca 2+ concentrations in atrial and ventricular myocytes.
Collapse
|
2
|
MacLeod KT. Changes in cellular Ca 2+ and Na + regulation during the progression towards heart failure. J Physiol 2023; 601:905-921. [PMID: 35946572 PMCID: PMC10952717 DOI: 10.1113/jp283082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.
Collapse
Affiliation(s)
- Kenneth T. MacLeod
- National Heart & Lung InstituteImperial Centre for Translational and Experimental MedicineImperial CollegeHammersmith HospitalLondonUK
| |
Collapse
|
3
|
Nano-scale solution of the Poisson-Nernst-Planck (PNP) equations in a fraction of two neighboring cells reveals the magnitude of intercellular electrochemical waves. PLoS Comput Biol 2023; 19:e1010895. [PMID: 36791152 PMCID: PMC9974139 DOI: 10.1371/journal.pcbi.1010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/28/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The basic building blocks of the electrophysiology of cardiomyocytes are ion channels integrated in the cell membranes. Close to the ion channels there are very strong electrical and chemical gradients. However, these gradients extend for only a few nano-meters and are therefore commonly ignored in mathematical models. The full complexity of the dynamics is modelled by the Poisson-Nernst-Planck (PNP) equations but these equations must be solved using temporal and spatial scales of nano-seconds and nano-meters. Here we report solutions of the PNP equations in a fraction of two abuttal cells separated by a tiny extracellular space. We show that when only the potassium channels of the two cells are open, a stationary solution is reached with the well-known Debye layer close to the membranes. When the sodium channels of one of the cells are opened, a very strong and brief electrochemical wave emanates from the channels. If the extracellular space is sufficiently small and the number of sodium channels is sufficiently high, the wave extends all the way over to the neighboring cell and may therefore explain cardiac conduction even at very low levels of gap junctional coupling.
Collapse
|
4
|
Nelson G, Ye B, Schock M, Lustgarten DL, Mayhew EK, Palmer BM, Meyer M. Heart rate changes and myocardial sodium. Physiol Rep 2022; 10:e15446. [PMID: 36065860 PMCID: PMC9446395 DOI: 10.14814/phy2.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023] Open
Abstract
Historic studies with sodium ion (Na+ ) micropipettes and first-generation fluorescent probes suggested that an increase in heart rate results in higher intracellular Na+ -levels. Using a dual fluorescence indicator approach, we simultaneously assessed the dynamic changes in intracellular Na+ and calcium (Ca2+ ) with measures of force development in isolated excitable myocardial strip preparations from rat and human left ventricular myocardium at different stimulation rates and modeled the Na+ -effects on the sodium-calcium exchanger (NCX). To gain further insight into the effects of heart rate on intracellular Na+ -regulation and sodium/potassium ATPase (NKA) function, Na+ , and potassium ion (K+ ) levels were assessed in the coronary effluent (CE) of paced human subjects. Increasing the stimulation rate from 60/min to 180/min led to a transient Na+ -peak followed by a lower Na+ -level, whereas the return to 60/min had the opposite effect leading to a transient Na+ -trough followed by a higher Na+ -level. The presence of the Na+ -peak and trough suggests a delayed regulation of NKA activity in response to changes in heart rate. This was clinically confirmed in the pacing study where CE-K+ levels were raised above steady-state levels with rapid pacing and reduced after pacing cessation. Despite an initial Na+ peak that is due to a delayed increase in NKA activity, an increase in heart rate was associated with lower, and not higher, Na+ -levels in the myocardium. The dynamic changes in Na+ unveil the adaptive role of NKA to maintain Na+ and K+ -gradients that preserve membrane potential and cellular Ca2+ -hemostasis.
Collapse
Affiliation(s)
- Gabrielle Nelson
- Department of MedicineLillehei Heart Institute, University of Minnesota College of MedicineMinneapolisMinnesotaUSA
| | - Bo Ye
- Department of MedicineLillehei Heart Institute, University of Minnesota College of MedicineMinneapolisMinnesotaUSA
| | - Morgan Schock
- Department of MedicineLillehei Heart Institute, University of Minnesota College of MedicineMinneapolisMinnesotaUSA
| | - Daniel L. Lustgarten
- Department of Medicine and PhysiologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Elisabeth K. Mayhew
- Department of Medicine and PhysiologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Bradley M. Palmer
- Department of Medicine and PhysiologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Markus Meyer
- Department of MedicineLillehei Heart Institute, University of Minnesota College of MedicineMinneapolisMinnesotaUSA
- Department of Medicine and PhysiologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
5
|
Lopina OD, Fedorov DA, Sidorenko SV, Bukach OV, Klimanova EA. Sodium Ions as Regulators of Transcription in Mammalian Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:789-799. [PMID: 36171659 DOI: 10.1134/s0006297922080107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
The maintenance of an uneven distribution of Na+ and K+ ions between the cytoplasm and extracellular medium is the basis for the functioning of any animal cell. Changes in the intracellular ratio of these cations occur in response to numerous stimuli and are important for the cell activity regulation. Numerous experimental data have shown that gene transcription in mammalian cells can be regulated by changes in the intracellular [Na+]i/[K+]i ratio. Here, we discuss possible mechanisms of such regulation in various cell types, with special attention to the [Ca2+]-independent signaling pathways that suggest the presence of an intracellular sensor of monovalent cations. As such sensor, we propose the secondary structures of nucleic acids called G-quadruplexes. They are widely represented in mammalian genomes and are often found in the promoters of genes encoding transcription factors.
Collapse
Affiliation(s)
- Olga D Lopina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| | - Dmitrii A Fedorov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | | - Olesya V Bukach
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | |
Collapse
|
6
|
Oshiyama NF, Pereira AHM, Cardoso AC, Franchini KG, Bassani JWM, Bassani RA. Developmental differences in myocardial transmembrane Na + transport: Implications for excitability and Na + handling. J Physiol 2022; 600:2651-2667. [PMID: 35489088 DOI: 10.1113/jp282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Previous studies showed that myocardial preparations from immature rats are less sensitive to electrical field stimulation than adult preparations. Freshly-isolated ventricular myocytes from neonatal rats showed lower excitability than adult cells, e.g., less negative threshold membrane potential and greater membrane depolarization required for action potential triggering. In addition to differences in mRNA levels for Na+ channels isoforms and greater Na+ current (INa ) density, Na+ channel voltage-dependence was shifted to the right in immature myocytes, which seems to be sufficient to decrease excitability, according to computer simulations. Only in neonatal myocytes did cyclic activity promote marked cytosolic Na+ accumulation, which was prevented by abolition of systolic Ca2+ transients by blockade of Ca2+ currents. Developmental changes in INa may account for the difference in action potential initiation parameters, but not for cytosolic Na+ accumulation, which seems to be due mainly to Na+ /Ca2+ exchanger-mediated Na+ influx. ABSTRACT Little is currently known about possible developmental changes in myocardial Na+ handling, which may have impact on cell excitability and Ca2+ content. Resting intracellular Na+ concentration ([Na+ ]i ), measured in freshly-isolated rat ventricular myocytes with CoroNa-green, was not significantly different in neonates (3-5 days old) and adults, but electrical stimulation caused marked [Na+ ]i rise only in neonates. Inhibition of L-type Ca2+ current by CdCl2 abolished not only systolic Ca2+ transients, but also activity-dependent intracellular Na+ accumulation in immature cells. This indicates that the main Na+ influx pathway during activity is the Na+ /Ca2+ exchanger, rather than voltage-dependent Na+ current (INa ), which was not affected by CdCl2 . In immature myocytes, INa density was 2-fold greater, inactivation was faster, and the current peak occurred at less negative transmembrane potential (Em ) than in adults. Na+ channel steady-state activation and inactivation curves in neonates showed a rightward shift, which should increase channel availability at diastolic Em , but also require greater depolarization for excitation, which was observed experimentally and reproduced in computer simulations. Ventricular mRNA levels of Nav 1.1, Nav 1.4 and Nav 1.5 pore-forming isoforms were greater in neonate ventricles, while decrease was seen for the β1 subunit. Both molecular and biophysical changes in the channel profile may contribute to the differences in INa density and voltage-dependence, and also to the less negative threshold Em in neonates, compared to adults. The apparently lower excitability in immature ventricle may confer protection against the development of spontaneous activity in this tissue. Abstract figure legend Little is currently known about possible developmental changes in myocardial Na+ transport, which may have impact on cell excitability and other physiological aspects. At the mRNA level, neonatal rat ventricle expresses a greater variety of Na+ channel isoforms than in adults. In immature ventricular cardiomyocytes, Na+ current (INa ) density was greater, but voltage-dependence is shifted to less negative potentials than in adults. This should increase channel availability at diastolic membrane potential, but also require greater depolarization for excitation, which was observed experimentally and reproduced in computer simulation. We also observed that electrical stimulation caused marked intracellular Na+ accumulation only in neonates, which was abolished when Ca2+ transients and the Na+ /Ca2+ exchanger (NCX) were inhibited by Cd2+ + Ni2+ . Thus, it seems that the main Na+ influx pathway during activity in neonates is the NCX, rather than voltage-dependent INa , which was not affected by these blockers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natália F Oshiyama
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana H M Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil
| | - Alisson C Cardoso
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil
| | - Kleber G Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil.,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, SP, Brazil
| | - José W M Bassani
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rosana A Bassani
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Pabel S, Knierim M, Stehle T, Alebrand F, Paulus M, Sieme M, Herwig M, Barsch F, Körtl T, Pöppl A, Wenner B, Ljubojevic-Holzer S, Molina CE, Dybkova N, Camboni D, Fischer TH, Sedej S, Scherr D, Schmid C, Brochhausen C, Hasenfuß G, Maier LS, Hamdani N, Streckfuss-Bömeke K, Sossalla S. Effects of Atrial Fibrillation on the Human Ventricle. Circ Res 2022; 130:994-1010. [PMID: 35193397 PMCID: PMC8963444 DOI: 10.1161/circresaha.121.319718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Maria Knierim
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| | - Thea Stehle
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Felix Alebrand
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| | - Michael Paulus
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Marcel Sieme
- Institut für Forschung und Lehre (IFL), Department of Molecular and Experimental Cardiology and Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Germany (M.S., M.H., N.H.)
| | - Melissa Herwig
- Institut für Forschung und Lehre (IFL), Department of Molecular and Experimental Cardiology and Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Germany (M.S., M.H., N.H.)
| | - Friedrich Barsch
- Institute of Pathology, University Hospital Regensburg, Germany (F.B., C.B.)
| | - Thomas Körtl
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Arnold Pöppl
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Brisca Wenner
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| | | | - Cristina E. Molina
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Germany (C.E.M.)
| | - Nataliya Dybkova
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| | - Daniele Camboni
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Germany (D.C., C.S.)
| | - Thomas H. Fischer
- Department of Internal Medicine I, University of Würzburg, Germany (T.H.F.)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Austria (S.L.-H., S. Sedej, D.S.)
- Faculty of Medicine, University of Maribor, Maribor, Slovenia (S. Sedej)
- BioTechMed Graz, Graz, Austria (S. Sedej)
| | - Daniel Scherr
- Department of Cardiology, Medical University of Graz, Austria (S.L.-H., S. Sedej, D.S.)
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Germany (D.C., C.S.)
| | | | - Gerd Hasenfuß
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| | - Lars S. Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Department of Molecular and Experimental Cardiology and Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Germany (M.S., M.H., N.H.)
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany (K.S.-B.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany (S.P., M.K., T.S., M.P., T.K., A.P., L.S.M., S. Sossalla)
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany (M.K., F.A., B.W., N.D., G.H., K.S.-B., S. Sossalla)
| |
Collapse
|
8
|
Kaplan AD, Joca HC, Boyman L, Greiser M. Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial Sodium Homeostasis. Int J Mol Sci 2021; 22:10513. [PMID: 34638854 PMCID: PMC8508839 DOI: 10.3390/ijms221910513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF's incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.
Collapse
Affiliation(s)
- Aaron D. Kaplan
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Humberto C. Joca
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| | - Maura Greiser
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.D.K.); (H.C.J.); (L.B.)
| |
Collapse
|
9
|
Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na +? Int J Mol Sci 2021; 22:ijms22157976. [PMID: 34360742 PMCID: PMC8347698 DOI: 10.3390/ijms22157976] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.
Collapse
|
10
|
Morotti S, Ni H, Peters CH, Rickert C, Asgari-Targhi A, Sato D, Glukhov AV, Proenza C, Grandi E. Intracellular Na + Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. Int J Mol Sci 2021; 22:5645. [PMID: 34073281 PMCID: PMC8198068 DOI: 10.3390/ijms22115645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Christian Rickert
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Ameneh Asgari-Targhi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Alexey V. Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| |
Collapse
|
11
|
Cortassa S, Juhaszova M, Aon MA, Zorov DB, Sollott SJ. Mitochondrial Ca 2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J Mol Cell Cardiol 2021; 151:113-125. [PMID: 33301801 PMCID: PMC7880885 DOI: 10.1016/j.yjmcc.2020.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/05/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a progressive, debilitating condition characterized, in part, by altered ionic equilibria, increased ROS production and impaired cellular energy metabolism, contributing to variable profiles of systolic and diastolic dysfunction with significant functional limitations and risk of premature death. We summarize current knowledge concerning changes of intracellular Na+ and Ca2+ control mechanisms during the disease progression and their consequences on mitochondrial Ca2+ homeostasis and the shift in redox balance. Absent existing biological data, our computational modeling studies advance a new 'in silico' analysis to reconcile existing opposing views, based on different experimental HF models, regarding variations in mitochondrial Ca2+ concentration that participate in triggering and perpetuating oxidative stress in the failing heart and their impact on cardiac energetics. In agreement with our hypothesis and the literature, model simulations demonstrate the possibility that the heart's redox status together with cytoplasmic Na+ concentrations act as regulators of mitochondrial Ca2+ levels in HF and of the bioenergetics response that will ultimately drive ATP supply and oxidative stress. The resulting model predictions propose future directions to study the evolution of HF as well as other types of heart disease, and to develop novel testable mechanistic hypotheses that may lead to improved therapeutics.
Collapse
Affiliation(s)
- Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| | - Dmitry B Zorov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
12
|
Wei M, Lin P, Chen Y, Lee JY, Zhang L, Li F, Ling D. Applications of ion level nanosensors for neuroscience research. Nanomedicine (Lond) 2020; 15:2871-2881. [PMID: 33252311 DOI: 10.2217/nnm-2020-0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ion activities are tightly associated with brain physiology, such as intracranial cell membrane potential, neural activity and neuropathology. Thus, monitoring the ion levels in the brain is of great significance in neuroscience research. Recently, nanosensors have emerged as powerful tools for monitoring brain ion levels and dynamics. With controllable structures and functions, nanosensors have been intensively used for monitoring neural activity and cell function and can be used in disease diagnosis. Here, we summarize the recent advances in the design and application of ion level nanosensors at different physiological levels, aiming to draw a connection of the interrelated intracranial ion activities. Furthermore, perspectives on the rationally designed ion level nanosensors in understanding the brain functions are highlighted.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Young Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Zhang H, Zhang S, Wang W, Wang K, Shen W. A Mathematical Model of the Mouse Atrial Myocyte With Inter-Atrial Electrophysiological Heterogeneity. Front Physiol 2020; 11:972. [PMID: 32848887 PMCID: PMC7425199 DOI: 10.3389/fphys.2020.00972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Biophysically detailed mathematical models of cardiac electrophysiology provide an alternative to experimental approaches for investigating possible ionic mechanisms underlying the genesis of electrical action potentials and their propagation through the heart. The aim of this study was to develop a biophysically detailed mathematical model of the action potentials of mouse atrial myocytes, a popular experimental model for elucidating molecular and cellular mechanisms of arrhythmogenesis. Based on experimental data from isolated mouse atrial cardiomyocytes, a set of mathematical equations for describing the biophysical properties of membrane ion channel currents, intracellular Ca2+ handling, and Ca2+-calmodulin activated protein kinase II and β-adrenergic signaling pathways were developed. Wherever possible, membrane ion channel currents were modeled using Markov chain formalisms, allowing detailed representation of channel kinetics. The model also considered heterogeneous electrophysiological properties between the left and the right atrial cardiomyocytes. The developed model was validated by its ability to reproduce the characteristics of action potentials and Ca2+ transients, matching quantitatively to experimental data. Using the model, the functional roles of four K+ channel currents in atrial action potential were evaluated by channel block simulations, results of which were quantitatively in agreement with existent experimental data. To conclude, this newly developed model of mouse atrial cardiomyocytes provides a powerful tool for investigating possible ion channel mechanisms of atrial electrical activity at the cellular level and can be further used to investigate mechanisms underlying atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Henggui Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China
| | - Shanzhuo Zhang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom.,Peng Cheng Laboratory, Shenzhen, China.,Shenzhen Key Laboratory of Visual Object Detection and Recognition, Harbin Institute of Technology, Shenzhen, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weijian Shen
- Department of Physics and Astronomy, Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Zhao J, Wang Y, Gao J, Jing Y, Xin W. Berberine Mediated Positive Inotropic Effects on Rat Hearts via a Ca 2+-Dependent Mechanism. Front Pharmacol 2020; 11:821. [PMID: 32581792 PMCID: PMC7289965 DOI: 10.3389/fphar.2020.00821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that berberine, an alkaloid from Coptis Chinensis Franch, might exert a positive inotropic effect on the heart. However, the underlying mechanisms were unclear. Here, we reported that berberine at 10–20 µM increased the left ventricular (LV) developed pressure and the maximal rate of the pressure rising, and it increased the maximal rate of the pressure descending at 20 µM in Langendorff-perfused isolated rat hearts. These effects diminished with the concentration of berberine increasing to 50 µM. In the concentration range of 50–300 µM, berberine increased the isometric tension of isolated left ventricular muscle (LVM) strips with or without electrical stimulations, and it (30–300 µM) also increased the intracellular Ca2+ level in the isolated LV myocytes. The removal of extracellular Ca2+ hindered the berberine-induced increases in the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. These suggested that berberine might exert its positive inotropic effects via enhancing Ca2+ influx. The blockade of L-type Ca2+ channels (LTCCs) with nifedipine significantly attenuated 300 μM berberine-induced tension increase in LVM strips but not the increase in the intracellular Ca2+ level. Berberine (300 μM) further increased the LVM tension following the treatment with the LTCC opener FPL-64716 (10 μM), indicating an LTCC-independent effect of berberine. Lowering extracellular Na+ attenuated the berberine-induced increases in both the tension of LVM strips and the intracellular Ca2+ level of LV myocytes. In conclusion, berberine might exert a positive inotropic effect on the isolated rat heart by enhancing the Ca2+ influx in LV myocytes; these were extracellular Na+-dependent.
Collapse
Affiliation(s)
- Junli Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yaqian Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jie Gao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Jing
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Wenkuan Xin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Cheung JY, Merali S, Wang J, Zhang XQ, Song J, Merali C, Tomar D, You H, Judenherc-Haouzi A, Haouzi P. The central role of protein kinase C epsilon in cyanide cardiotoxicity and its treatment. Toxicol Sci 2019; 171:247-257. [PMID: 31173149 PMCID: PMC6735853 DOI: 10.1093/toxsci/kfz137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
In adult mouse myocytes, brief exposure to sodium cyanide (CN) in the presence of glucose does not decrease ATP levels, yet produces profound reduction in contractility, intracellular Ca2+ concentration ([Ca2+]i) transient and L-type Ca2+ current (ICa) amplitudes. We analyzed proteomes from myocytes exposed to CN, focusing on ionic currents associated with excitation-contraction coupling. CN induced phosphorylation of α1c subunit of L-type Ca2+ channel and α2 subunit of Na+-K+-ATPase. Methylene blue (MB), a CN antidote that we previously reported to ameliorate CN-induced reduction in contraction, [Ca2+]i transient and ICa amplitudes, was able to reverse this phosphorylation. CN decreased Na+-K+-ATPase current contributed by α2 but not α1 subunit, an effect that was also counteracted by MB. Peptide consensus sequences suggested CN-induced phosphorylation was mediated by protein kinase C epsilon (PKCε). Indeed, CN stimulated PKC kinase activity and induced PKCε membrane translocation, effects that were prevented by MB. Pre-treatment with myristoylated PKCε translocation activator or inhibitor peptides mimicked and inhibited the effects of CN on ICa and myocyte contraction, respectively. We conclude that CN activates PKCε, which phosphorylates L-type Ca2+ channel and Na+-K+-ATPase, resulting in depressed cardiac contractility. We hypothesize that this inhibition of ion fluxes represents a novel mechanism by which the cardiomyocyte reduces its ATP demand (decreased ion fluxes and contractility), diminishes ATP turnover and preserves cell viability. However, this cellular protective effect translates into life-threatening cardiogenic shock in vivo, thereby creating a profound disconnect between survival mechanisms at the cardiomyocyte level from those at the level of the whole organism.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA.,Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Salim Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - JuFang Wang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Xue-Qian Zhang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Carmen Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - Dhanendra Tomar
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Hanning You
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | | | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
16
|
Skogestad J, Lines GT, Louch WE, Sejersted OM, Sjaastad I, Aronsen JM. Evidence for heterogeneous subsarcolemmal Na + levels in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2019; 316:H941-H957. [PMID: 30657726 DOI: 10.1152/ajpheart.00637.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular Na+ concentration ([Na+]) regulates cardiac contractility. Previous studies have suggested that subsarcolemmal [Na+] is higher than cytosolic [Na+] in cardiac myocytes, but this concept remains controversial. Here, we used electrophysiological experiments and mathematical modeling to test whether there are subsarcolemmal pools with different [Na+] and dynamics compared with the bulk cytosol in rat ventricular myocytes. A Na+ dependency curve for Na+-K+-ATPase (NKA) current was recorded with symmetrical Na+ solutions, i.e., the same [Na+] in the superfusate and internal solution. This curve was used to estimate [Na+] sensed by NKA in other experiments. Three experimental observations suggested that [Na+] is higher near NKA than in the bulk cytosol: 1) when extracellular [Na+] was high, [Na+] sensed by NKA was ~6 mM higher than the internal solution in quiescent cells; 2) long trains of Na+ channel activation almost doubled this gradient; compared with an even intracellular distribution of Na+, the increase of [Na+] sensed by NKA was 10 times higher than expected, suggesting a local Na+ domain; and 3) accumulation of Na+ near NKA after trains of Na+ channel activation dissipated very slowly. Finally, mathematical models assuming heterogeneity of [Na+] between NKA and the Na+ channel better reproduced experimental data than the homogeneous model. In conclusion, our data suggest that NKA-sensed [Na+] is higher than [Na+] in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. NEW & NOTEWORTHY Our data suggest that the Na+-K+-ATPase-sensed Na+ concentration is higher than the Na+ concentration in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/heterogeneous-sodium-in-ventricular-myocytes/ .
Collapse
Affiliation(s)
- J Skogestad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - G T Lines
- Simula Research Laboratory, Center for Cardiological Innovation , Oslo , Norway
| | - W E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research, University of Oslo , Oslo , Norway
| | - O M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - I Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research, University of Oslo , Oslo , Norway
| | - J M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Bjørknes College , Oslo , Norway
| |
Collapse
|
17
|
Bilginoglu A, Selcuk MFT, Nakkas H, Turan B. Pioglitazone provides beneficial effect in metabolic syndrome rats via affecting intracellular Na + Dyshomeostasis. J Bioenerg Biomembr 2018; 50:437-445. [PMID: 30361824 DOI: 10.1007/s10863-018-9776-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome, is associated impaired blood glucose level, insulin resistance, and dyslipidemia caused by abdominal obesity. Also, it is related with cardiovascular risk accumulation and cardiomyopathy. The hypothesis of this study was to examine the effect of thiazolidinediones such as pioglitazone on intracellular Na+ homeostasis in heart of metabolic syndrome male rats. Abdominal obesity and glucose intolerance had measured as a marker of metabolic syndrome. Intracellular Na+ concentration ([Na+]i) at rest and [Na+]i during pacing with electrical field stimulation were determined in freshly isolated cardiomyocytes. Also, TTX-sensitive Na+- channel current (INa) density and I-V characteristics of these channels were measured to understand [Na+]i homeostasis. We determined the protein levels of Na+/Ca2+ exchanger and Na+-K+ pump to understand the relation between [Na+]i homeostasis. High sucrose intake significantly increased body mass and blood glucose level of the rats in the metabolic syndrome group as compared with control group. There was a decrease in INa density and there were differences in points on activation curve of INa. Basal [Na+]i in metabolic syndrome group significantly increased but there was a significantly decrease in [Na+]i in stimulated cardiomyocytes in metabolic syndrome. Furthermore, pioglitazone induced decreases in the basal [Na+]i and preserved the decrease in INa and [Na+]i in stimulated cardiomyocytes to those of controls. Histologically, metabolic syndrome affected heart and associated tissues together with many other organs. Results of the present study suggest that pioglitazone has significant beneficial effects on metabolic syndrome associated disturbances in the heart via effecting Na+ homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Ayca Bilginoglu
- Department of Biophysics, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | | | - Hilal Nakkas
- Department of Histology and Embriyology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Despa S. Myocyte [Na +] i Dysregulation in Heart Failure and Diabetic Cardiomyopathy. Front Physiol 2018; 9:1303. [PMID: 30258369 PMCID: PMC6144935 DOI: 10.3389/fphys.2018.01303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
By controlling the function of various sarcolemmal and mitochondrial ion transporters, intracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, electrical activity, the matching of energy supply and demand, and oxidative stress in cardiac myocytes. Thus, maintenance of myocyte Na+ homeostasis is vital for preserving the electrical and contractile activity of the heart. [Na+]i is set by the balance between the passive Na+ entry through numerous pathways and the pumping of Na+ out of the cell by the Na+/K+-ATPase. This equilibrium is perturbed in heart failure, resulting in higher [Na+]i. More recent studies have revealed that [Na+]i is also increased in myocytes from diabetic hearts. Elevated [Na+]i causes oxidative stress and augments the sarcoplasmic reticulum Ca2+ leak, thus amplifying the risk for arrhythmias and promoting heart dysfunction. This mini-review compares and contrasts the alterations in Na+ extrusion and/or Na+ uptake that underlie the [Na+]i increase in heart failure and diabetes, with a particular emphasis on the emerging role of Na+ - glucose cotransporters in the diabetic heart.
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
19
|
Hegyi B, Bányász T, Shannon TR, Chen-Izu Y, Izu LT. Electrophysiological Determination of Submembrane Na(+) Concentration in Cardiac Myocytes. Biophys J 2017; 111:1304-1315. [PMID: 27653489 DOI: 10.1016/j.bpj.2016.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
In the heart, Na(+) is a key modulator of the action potential, Ca(2+) homeostasis, energetics, and contractility. Because Na(+) currents and cotransport fluxes depend on the Na(+) concentration in the submembrane region, it is necessary to accurately estimate the submembrane Na(+) concentration ([Na(+)]sm). Current methods using Na(+)-sensitive fluorescent indicators or Na(+) -sensitive electrodes cannot measure [Na(+)]sm. However, electrophysiology methods are ideal for measuring [Na(+)]sm. In this article, we develop patch-clamp protocols and experimental conditions to determine the upper bound of [Na(+)]sm at the peak of action potential and its lower bound at the resting state. During the cardiac cycle, the value of [Na(+)]sm is constrained within these bounds. We conducted experiments in rabbit ventricular myocytes at body temperature and found that 1) at a low pacing frequency of 0.5 Hz, the upper and lower bounds converge at 9 mM, constraining the [Na(+)]sm value to ∼9 mM; 2) at 2 Hz pacing frequency, [Na(+)]sm is bounded between 9 mM at resting state and 11.5 mM; and 3) the cells can maintain [Na(+)]sm to the above values, despite changes in the pipette Na(+) concentration, showing autoregulation of Na(+) in beating cardiomyocytes.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, Davis, California
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, Davis, California; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas R Shannon
- Department of Molecular Physiology and Biophysics, Rush University School of Medicine, Chicago, Illinois
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, California; Department of Biomedical Engineering, University of California, Davis, Davis, California; Department of Internal Medicine, Division of Cardiology, University of California, Davis, Davis, California
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, Davis, California.
| |
Collapse
|
20
|
Gómez-Hurtado N, Domínguez-Rodríguez A, Mateo P, Fernández-Velasco M, Val-Blasco A, Aizpún R, Sabourin J, Gómez AM, Benitah JP, Delgado C. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse. J Physiol 2017; 595:4227-4243. [PMID: 28374413 DOI: 10.1113/jp274030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca2+ handling parameters. ABSTRACT Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg-1 day-1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca2+ ]i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca2+ waves. These proarrhythmic manifestations, related to Ca2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level.
Collapse
Affiliation(s)
- Nieves Gómez-Hurtado
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain.,UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alejandro Domínguez-Rodríguez
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Institute of Biomedicine of Seville/CIBER-CV, Seville, Spain
| | - Philippe Mateo
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | | | | | - Rafael Aizpún
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain
| | - Jessica Sabourin
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana María Gómez
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Carmen Delgado
- Departament of Pharmacology, School of Medicine, Complutense University, Madrid, Spain.,Biomedical Research Institute Alberto Sols/CIBER-CV, Madrid, Spain
| |
Collapse
|
21
|
Greiser M. Calcium signalling silencing in atrial fibrillation. J Physiol 2017; 595:4009-4017. [PMID: 28332202 DOI: 10.1113/jp273045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca2+ signalling instability and Ca2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca2+ ]i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca2+ sparks and arrhythmogenic Ca2+ waves remains low. Less Ca2+ release per [Ca2+ ]i transient, increased fast Ca2+ buffering strength, shortened action potentials and reduced L-type Ca2+ current contribute to a substantial reduction of intracellular [Na+ ]. These features of Ca2+ signalling silencing are distinct and in contrast to the changes attributed to Ca2+ -based arrhythmogenicity. Some features of Ca2+ signalling silencing prevail in human AF suggesting that the Ca2+ signalling 'phenotype' in AF is a sum of Ca2+ stabilizing (Ca2+ signalling silencing) and Ca2+ destabilizing (arrhythmogenic unstable Ca2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca2+ -based arrhythmogenicity after the onset of AF.
Collapse
Affiliation(s)
- Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Dimitrov AG. An approach to expand description of the pump and co-transporter steady-state current. J Theor Biol 2017; 412:94-99. [PMID: 27765532 DOI: 10.1016/j.jtbi.2016.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/06/2016] [Accepted: 10/15/2016] [Indexed: 11/16/2022]
Abstract
The membrane transporters (pumps and co-transporters) are the main players in maintaining the cell homeostasis. Models of various types, each with their own drawbacks, describe transporter behavior. The aim of this study is to find the link between the biophysically based and empirical models to face and solve their specific problems. Instead of decreasing the number of states and using few complex rate constants as is usually done, we use the number of states as great as possible. Then, each transition in the cycle can represent an elementary process and we can apply the mass action law, according to which if rate constants depend on concentrations the dependence is linear. Thus, the expression for the steady state transporter current can be transformed from a function of rate constants into a function of concentrations. When transporter states form a single cycle, it can be characterized by two modes of action - forward and backward ones. Specific mode is realized depending on the available free energy. Each mode of action is characterized by a set of transporter affinities together with a parameter that describes the maximal turning rate. Except standard affinities corresponding to the substances that are binding to the transporter, affinities for the substances that are released are also defined. Such scheme provides great possibilities to construct approximations as each individual affinity could be estimated from experiments as precisely as possible. The approximations may be used for not only description and study of the transporter current but also in cellular models that attempt to describe wide variety of processes in excitable cells.
Collapse
Affiliation(s)
- A G Dimitrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, Sofia 1113, Bulgaria.
| |
Collapse
|
23
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|
24
|
Song Z, Karma A, Weiss JN, Qu Z. Long-Lasting Sparks: Multi-Metastability and Release Competition in the Calcium Release Unit Network. PLoS Comput Biol 2016; 12:e1004671. [PMID: 26730593 PMCID: PMC4701461 DOI: 10.1371/journal.pcbi.1004671] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
Calcium (Ca) sparks are elementary events of biological Ca signaling. A normal Ca spark has a brief duration in the range of 10 to 100 ms, but long-lasting sparks with durations of several hundred milliseconds to seconds are also widely observed. Experiments have shown that the transition from normal to long-lasting sparks can occur when ryanodine receptor (RyR) open probability is either increased or decreased. Here, we demonstrate theoretically and computationally that long-lasting sparks emerge as a collective dynamical behavior of the network of diffusively coupled Ca release units (CRUs). We show that normal sparks occur when the CRU network is monostable and excitable, while long-lasting sparks occur when the network dynamics possesses multiple metastable attractors, each attractor corresponding to a different spatial firing pattern of sparks. We further highlight the mechanisms and conditions that produce long-lasting sparks, demonstrating the existence of an optimal range of RyR open probability favoring long-lasting sparks. We find that when CRU firings are sparse and sarcoplasmic reticulum (SR) Ca load is high, increasing RyR open probability promotes long-lasting sparks by potentiating Ca-induced Ca release (CICR). In contrast, when CICR is already strong enough to produce frequent firings, decreasing RyR open probability counter-intuitively promotes long-lasting sparks by decreasing spark frequency. The decrease in spark frequency promotes intra-SR Ca diffusion from neighboring non-firing CRUs to the firing CRUs, which helps to maintain the local SR Ca concentration of the firing CRUs above a critical level to sustain firing. In this setting, decreasing RyR open probability further suppresses long-lasting sparks by weakening CICR. Since a long-lasting spark terminates via the Kramers’ escape process over a potential barrier, its duration exhibits an exponential distribution determined by the barrier height and noise strength, which is modulated differently by different ways of altering the Ca release flux strength. Calcium (Ca) sparks, resulting from Ca-induced Ca release, are elementary events of biological Ca signaling. Sparks are normally brief, but long-lasting sparks have been widely observed experimentally under various conditions. The underlying mechanisms of spark duration or termination and the corresponding determinants remain a topic of debate. In this study, we demonstrate theoretically and computationally that normal brief sparks are excitable transients, while long-lasting sparks are multiple metastable states emerging in the diffusively coupled Ca release unit network, as a result of cooperativity and release competition among the Ca release units. Termination of a long-lasting spark is a Kramers’ escape process over a potential barrier, and the spark duration is the first-passage time, exhibiting an exponential distribution.
Collapse
Affiliation(s)
- Zhen Song
- The UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Alain Karma
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - James N. Weiss
- The UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Zhilin Qu
- The UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JHB, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015; 593:1361-82. [PMID: 25772291 PMCID: PMC4376416 DOI: 10.1113/jphysiol.2014.282319] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Collapse
Affiliation(s)
- Michael J Shattock
- King's College London BHF Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xie Y, Liao Z, Grandi E, Shiferaw Y, Bers DM. Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias. Circ Arrhythm Electrophysiol 2015; 8:1472-80. [PMID: 26407967 DOI: 10.1161/circep.115.003085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Most cardiac arrhythmias occur intermittently. As a cellular precursor of lethal cardiac arrhythmias, early afterdepolarizations (EADs) during action potentials(APs) have been extensively investigated, and mechanisms for the occurrence of EADs on a beat-to-beat basis have been proposed. However, no previous study explains slow fluctuations in EADs, which may underlie intermittency of EAD trains and consequent arrhythmias. We hypothesize that the feedback of intracellular calcium and sodium concentrations ([Na](i) and [Ca](i)) that influence membrane voltage (V) can explain EAD intermittency. METHODS AND RESULTS AP recordings in rabbit ventricular myocytes revealed intermittent EADs, with slow fluctuations between runs of APs with EADs present or absent. We then used dynamical systems analysis and detailed mathematical models of rabbit ventricular myocytes that replicate the observed behavior and investigated the underlying mechanism. We found that a dominance of inward Na-Ca exchanger current (I(NCX)) over Ca-dependent inactivation of L-type Ca current (I(CaL)) forms a positive feedback between [Ca](i) and V, thus resulting in 2 stable AP states, with and without EADs (ie, bistability). Slow changes in [Na](i) determine the transition between these 2 states, forming a bistable on-off switch of EADs. Tissue simulations showed that this bistable switch of cellular EADs provided both a trigger and a functional substrate for intermittent arrhythmias in homogeneous tissues. CONCLUSIONS Our study demonstrates that the interaction among V, [Ca](i), and [Na](i) causes slow on-off switching (or bistability) of AP duration in cardiac myocytes and EAD-mediated arrhythmias and suggests a novel possible mechanism for intermittency of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yuanfang Xie
- From the Department of Pharmacology, University of California Davis (Y.X., Z.L., E.G., D.M.B.); and Department of Physics and Astronomy, California State University, Northridge (Y.S.)
| | - Zhandi Liao
- From the Department of Pharmacology, University of California Davis (Y.X., Z.L., E.G., D.M.B.); and Department of Physics and Astronomy, California State University, Northridge (Y.S.)
| | - Eleonora Grandi
- From the Department of Pharmacology, University of California Davis (Y.X., Z.L., E.G., D.M.B.); and Department of Physics and Astronomy, California State University, Northridge (Y.S.)
| | - Yohannes Shiferaw
- From the Department of Pharmacology, University of California Davis (Y.X., Z.L., E.G., D.M.B.); and Department of Physics and Astronomy, California State University, Northridge (Y.S.)
| | - Donald M Bers
- From the Department of Pharmacology, University of California Davis (Y.X., Z.L., E.G., D.M.B.); and Department of Physics and Astronomy, California State University, Northridge (Y.S.).
| |
Collapse
|
27
|
Lambert R, Srodulski S, Peng X, Margulies KB, Despa F, Despa S. Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport. J Am Heart Assoc 2015; 4:e002183. [PMID: 26316524 PMCID: PMC4599504 DOI: 10.1161/jaha.115.002183] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Intracellular Na+ concentration ([Na+]i) regulates Ca2+ cycling, contractility, metabolism, and electrical stability of the heart. [Na+]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na+]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na+–glucose cotransporter. Methods and Results To test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na+–glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na+]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na+/K+-pump function was similar in HIP and WT cells, suggesting that higher [Na+]i is due to enhanced Na+ entry in diabetic hearts. Indeed, Na+ influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na+–glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na+ influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na+–glucose cotransporter for glucose uptake in T2D hearts. Conclusions Myocyte Na+–glucose cotransport is enhanced in T2D, which increases Na+ influx and causes Na+ overload. Higher [Na+]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts.
Collapse
Affiliation(s)
- Rebekah Lambert
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (R.L., S.S., X.P., F.D., S.D.)
| | - Sarah Srodulski
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (R.L., S.S., X.P., F.D., S.D.)
| | - Xiaoli Peng
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (R.L., S.S., X.P., F.D., S.D.)
| | - Kenneth B Margulies
- Cardiovascular Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA (K.B.M.)
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (R.L., S.S., X.P., F.D., S.D.)
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY (R.L., S.S., X.P., F.D., S.D.)
| |
Collapse
|
28
|
Hoffman NE, Miller BA, Wang J, Elrod JW, Rajan S, Gao E, Song J, Zhang XQ, Hirschler-Laszkiewicz I, Shanmughapriya S, Koch WJ, Feldman AM, Madesh M, Cheung JY. Ca²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am J Physiol Heart Circ Physiol 2015; 308:H637-50. [PMID: 25576627 DOI: 10.1152/ajpheart.00720.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitously expressed Trpm2 channel limits oxidative stress and preserves mitochondrial function. We first demonstrated that intracellular Ca(2+) concentration increase after Trpm2 activation was due to direct Ca(2+) influx and not indirectly via reverse Na(+)/Ca(2+) exchange. To elucidate whether Ca(2+) entry via Trpm2 is required to maintain cellular bioenergetics, we injected adenovirus expressing green fluorescent protein (GFP), wild-type (WT) Trpm2, and loss-of-function (E960D) Trpm2 mutant into left ventricles of global Trpm2 knockout (gKO) or WT hearts. Five days post-injection, gKO-GFP heart slices had higher reactive oxygen species (ROS) levels but lower oxygen consumption rate (OCR) than WT-GFP heart slices. Trpm2 but not E960D decreased ROS and restored OCR in gKO hearts back to normal levels. In gKO myocytes expressing Trpm2 or its mutants, Trpm2 but not E960D reduced the elevated mitochondrial superoxide (O2(.-)) levels in gKO myocytes. After hypoxia-reoxygenation (H/R), Trpm2 but not E906D or P1018L (inactivates Trpm2 current) lowered O2(.-) levels in gKO myocytes and only in the presence of extracellular Ca(2+), indicating sustained Ca(2+) entry is necessary for Trpm2-mediated preservation of mitochondrial function. After ischemic-reperfusion (I/R), cardiac-specific Trpm2 KO hearts exhibited lower maximal first time derivative of LV pressure rise (+dP/dt) than WT hearts in vivo. After doxorubicin treatment, Trpm2 KO mice had worse survival and lower +dP/dt. We conclude 1) cardiac Trpm2-mediated Ca(2+) influx is necessary to maintain mitochondrial function and protect against H/R injury; 2) Ca(2+) influx via cardiac Trpm2 confers protection against H/R and I/R injury by reducing mitochondrial oxidants; and 3) Trpm2 confers protection in doxorubicin cardiomyopathy.
Collapse
Affiliation(s)
- Nicholas E Hoffman
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Barbara A Miller
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - John W Elrod
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sudasan Rajan
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | - Santhanam Shanmughapriya
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Walter J Koch
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Arthur M Feldman
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania; Division of Nephrology, Temple University School of Medicine, Philadelphia, Pennsylvania;
| |
Collapse
|
29
|
Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 2014; 593:1459-77. [PMID: 25416623 DOI: 10.1113/jphysiol.2014.283226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Greiser M, Kerfant BG, Williams GS, Voigt N, Harks E, Dibb KM, Giese A, Meszaros J, Verheule S, Ravens U, Allessie MA, Gammie JS, van der Velden J, Lederer WJ, Dobrev D, Schotten U. Tachycardia-induced silencing of subcellular Ca2+ signaling in atrial myocytes. J Clin Invest 2014; 124:4759-72. [PMID: 25329692 PMCID: PMC4347234 DOI: 10.1172/jci70102] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/28/2014] [Indexed: 01/06/2023] Open
Abstract
Atrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling. Ca2+ sparks, arrhythmogenic Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and SR Ca2+ content were largely unaltered. Based on computational analysis, these findings were consistent with a higher Ca2+ leak due to PKA-dependent phosphorylation of SR Ca2+ channels (RyR2s), fewer RyR2s, and smaller RyR2 clusters in the SR. We determined that less Ca2+ release per [Ca2+]i transient, increased Ca2+ buffering strength, shortened action potentials, and reduced L-type Ca2+ current contribute to a stunning reduction of intracellular Na+ concentration following rapid atrial pacing. In both patients with AF and in our rabbit model, this silencing led to failed propagation of the [Ca2+]i signal to the myocyte center. We conclude that sustained high atrial rates alone silence Ca2+ signaling and do not produce Ca2+ signaling instability, consistent with an adaptive molecular and cellular response to atrial tachycardia.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Benoît-Gilles Kerfant
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - George S.B. Williams
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Niels Voigt
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Erik Harks
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Katharine M. Dibb
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anne Giese
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Janos Meszaros
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ursula Ravens
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Maurits A. Allessie
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - James S. Gammie
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - W. Jonathan Lederer
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Dobromir Dobrev
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, the Netherlands. Center for Biomedical Engineering and Technology, Laboratory of Molecular Cardiology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany. Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom. Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany. Division of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA. Laboratory for Physiology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Lewalle A, Niederer SA, Smith NP. Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration. J Physiol 2014; 592:5355-71. [PMID: 25362154 DOI: 10.1113/jphysiol.2014.279810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Na(+)/K(+) ATPase (NKA) plays a critical role in maintaining ionic homeostasis and dynamic function in cardiac myocytes, within both the in vivo cell and in silico models. Physiological conditions differ significantly between mammalian species. However, most existing formulations of NKA used to simulate cardiac function in computational models are derived from a broad range of experimental sources spanning many animal species. The resultant inability of these models to discern species-specific features is a significant obstacle to achieving a detailed quantitative and comparative understanding of physiological behaviour in different biological contexts. Here we present a framework for characterising the steady-state NKA current using a biophysical mechanistic model specifically designed to provide a mechanistic explanation of the NKA flux supported by self-consistent species-specific data. We thus compared NKA kinetics specific to guinea- pig and rat ventricular myocytes. We observe that the apparent binding affinity for sodium in the rat is significantly lower, whereas the overall pump cycle rate is doubled, in comparison to the guinea pig. This sensitivity of NKA to its regulatory substrates compensates for the differences in Na(+) concentrations between the cell types. NKA is thereby maintained within its dynamic range over a wide range of pacing frequencies in these two species, despite significant disparities in sodium concentration. Hence, by replacing a conventional generic NKA model with our rat-specific NKA formula into a whole-cell simulation, we have, for the first time, been able to accurately reproduce the action potential duration and the steady-state sodium concentration as functions of pacing frequency.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas's Hospital, London, SE1 7EH, UK
| | - Steven A Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas's Hospital, London, SE1 7EH, UK
| | - Nicolas P Smith
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas's Hospital, London, SE1 7EH, UK
| |
Collapse
|
32
|
Roder P, Hille C. ANG-2 for quantitative Na(+) determination in living cells by time-resolved fluorescence microscopy. Photochem Photobiol Sci 2014; 13:1699-710. [PMID: 25311309 DOI: 10.1039/c4pp00061g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sodium ions (Na(+)) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na(+) concentrations ([Na(+)]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na(+)-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na(+)-sensitivity appropriate for recordings in living cells. The Na(+)-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na(+)]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na(+)]i rise in cockroach salivary gland cells, which was dependent on a Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.
Collapse
Affiliation(s)
- Phillip Roder
- Physical Chemistry/Applied Laser Sensing in Complex Biosystems (ALS ComBi), Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | | |
Collapse
|
33
|
Springer CS, Li X, Tudorica LA, Oh KY, Roy N, Chui SYC, Naik AM, Holtorf ML, Afzal A, Rooney WD, Huang W. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR IN BIOMEDICINE 2014; 27:760-73. [PMID: 24798066 PMCID: PMC4174415 DOI: 10.1002/nbm.3111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 05/10/2023]
Abstract
Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here - transcytolemmal water exchange - is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while K(trans) (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)(2), parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 10(13) H2O molecules s(-1)/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW (active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na(+), K(+)-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy.
Collapse
Affiliation(s)
- Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence to: C. S. Springer, Jr, Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA. E-mail:
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Luminita A Tudorica
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Karen Y Oh
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Nicole Roy
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Diagnostic Radiology, Oregon Health and Science UniversityPortland, OR, USA
| | - Stephen Y-C Chui
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Hematology/Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Arpana M Naik
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Department of Surgical Oncology, Oregon Health and Science UniversityPortland, OR, USA
| | - Megan L Holtorf
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
- Clinical Trials Office, Oregon Health and Science UniversityPortland, OR, USA
| | - Aneela Afzal
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortland, OR, USA
- Knight Cancer Institute, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
34
|
Katoh D, Hongo K, Ito K, Yoshino T, Kayama Y, Kawai M, Date T, Yoshimura M. Corticosteroids increase intracellular free sodium ion concentration via glucocorticoid receptor pathway in cultured neonatal rat cardiomyocytes. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VESSELS 2014; 3:49-56. [PMID: 29450170 PMCID: PMC5801272 DOI: 10.1016/j.ijchv.2014.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022]
Abstract
Background Glucocorticoids as well as mineralocorticoid have been shown to play essential roles in the regulation of electrical and mechanical activities in cardiomyocytes. Excess of these hormones is an independent risk factor for cardiovascular disease. Intracellular sodium ([Na+]i) kinetics are involved in cardiac diseases, including ischemia, heart failure and hypertrophy. However, intrinsic mediators that regulate [Na+]i in cardiomyocytes have not been widely discussed. Moreover, the quantitative estimation of altered [Na+]i in cultured cardiomyocytes and the association between the level of [Na+]i and the severity of pathological conditions, such as hypertrophy, have not been precisely reported. Methods and results We herein demonstrate the quantitative estimation of [Na+]i in cultured neonatal rat cardiomyocytes following 24 h of treatment with corticosterone, aldosterone and dexamethasone. The physiological concentration of glucocorticoids increased [Na+]i up to approximately 2.5 mM (an almost 1.5-fold increase compared to the control) in a dose-dependent manner; this effect was blocked by a glucocorticoid receptor (GR) antagonist but not a mineralocorticoid receptor antagonist. Furthermore, glucocorticoids induced cardiac hypertrophy, and the hypertrophic gene expression was positively and significantly correlated with the level of [Na+]i. Dexamethasone induced the upregulation of Na+/Ca2 + exchanger 1 at the mRNA and protein levels. Conclusions The physiological concentration of glucocorticoids increases [Na+]i via GR. The dexamethasone-induced upregulation of NCX1 is partly involved in the glucocorticoid-induced alteration of [Na+]i in cardiomyocytes. These results provide new insight into the mechanisms by which glucocorticoid excess within a physiological concentration contributes to the development of cardiac pathology.
Collapse
Affiliation(s)
- Daisuke Katoh
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kenichi Hongo
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Keiichi Ito
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Takuya Yoshino
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yosuke Kayama
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Taro Date
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
35
|
Morotti S, Edwards AG, McCulloch AD, Bers DM, Grandi E. A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. J Physiol 2014; 592:1181-97. [PMID: 24421356 DOI: 10.1113/jphysiol.2013.266676] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) hyperactivity in heart failure causes intracellular Na(+) ([Na(+)]i) loading (at least in part by enhancing the late Na(+) current). This [Na(+)]i gain promotes intracellular Ca(2+) ([Ca(2+)]i) overload by altering the equilibrium of the Na(+)-Ca(2+) exchanger to impair forward-mode (Ca(2+) extrusion), and favour reverse-mode (Ca(2+) influx) exchange. In turn, this Ca(2+) overload would be expected to further activate CaMKII and thereby form a pathological positive feedback loop of ever-increasing CaMKII activity, [Na(+)]i, and [Ca(2+)]i. We developed an ionic model of the mouse ventricular myocyte to interrogate this potentially arrhythmogenic positive feedback in both control conditions and when CaMKIIδC is overexpressed as in genetically engineered mice. In control conditions, simulation of increased [Na(+)]i causes the expected increases in [Ca(2+)]i, CaMKII activity, and target phosphorylation, which degenerate into unstable Ca(2+) handling and electrophysiology at high [Na(+)]i gain. Notably, clamping CaMKII activity to basal levels ameliorates but does not completely offset this outcome, suggesting that the increase in [Ca(2+)]i per se plays an important role. The effect of this CaMKII-Na(+)-Ca(2+)-CaMKII feedback is more striking in CaMKIIδC overexpression, where high [Na(+)]i causes delayed afterdepolarizations, which can be prevented by imposing low [Na(+)]i, or clamping CaMKII phosphorylation of L-type Ca(2+) channels, ryanodine receptors and phospholamban to basal levels. In this setting, Na(+) loading fuels a vicious loop whereby increased CaMKII activation perturbs Ca(2+) and membrane potential homeostasis. High [Na(+)]i is also required to produce instability when CaMKII is further activated by increased Ca(2+) loading due to β-adrenergic activation. Our results support recent experimental findings of a synergistic interaction between perturbed Na(+) fluxes and CaMKII, and suggest that pharmacological inhibition of intracellular Na(+) loading can contribute to normalizing Ca(2+) and membrane potential dynamics in heart failure.
Collapse
Affiliation(s)
- S Morotti
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, GBSF rm 3502, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
36
|
Katoh D, Hongo K, Ito K, Yoshino T, Kayama Y, Komukai K, Kawai M, Date T, Yoshimura M. A technique for quantifying intracellular free sodium ion using a microplate reader in combination with sodium-binding benzofuran isophthalate and probenecid in cultured neonatal rat cardiomyocytes. BMC Res Notes 2013; 6:556. [PMID: 24369990 PMCID: PMC3879185 DOI: 10.1186/1756-0500-6-556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022] Open
Abstract
Background Intracellular sodium ([Na+]i) kinetics are involved in cardiac diseases including ischemia, heart failure, and hypertrophy. Because [Na+]i plays a crucial role in modulating the electrical and contractile activity in the heart, quantifying [Na+]i is of great interest. Using fluorescent microscopy with sodium-binding benzofuran isophthalate (SBFI) is the most commonly used method for measuring [Na+]i. However, one limitation associated with this technique is that the test cannot simultaneously evaluate the effects of several types or various concentrations of compounds on [Na+]i. Moreover, there are few reports on the long-term effects of compounds on [Na+]i in cultured cells, although rapid changes in [Na+]i during a period of seconds or several minutes have been widely discussed. Findings We established a novel technique for quantifying [Na+]i in cultured neonatal rat cardiomyocytes attached to a 96-well plate using a microplate reader in combination with SBFI and probenecid. We showed that probenecid is indispensable for the accurate measurement because it prevents dye leakage from the cells. We further confirmed the reliability of this system by quantifying the effects of ouabain, which is known to transiently alter [Na+]i. To illustrate the utility of the new method, we also examined the chronic effects of aldosterone on [Na+]i in cultured cardiomyocytes. Conclusions Our technique can rapidly measure [Na+]i with accuracy and sensitivity comparable to the traditional microscopy based method. The results demonstrated that this 96-well plate based measurement has merits, especially for screening test of compounds regulating [Na+]i, and is useful to elucidate the mechanisms and consequences of altered [Na+]i handling in cardiomyocytes.
Collapse
Affiliation(s)
- Daisuke Katoh
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Synchronized SR calcium (Ca) release is critical to normal cardiac myocyte excitation-contraction coupling, and ideally this release shuts off completely between heartbeats. However, other SR Ca release events are referred to collectively as SR Ca leak (which includes Ca sparks and waves as well as smaller events not detectable as Ca sparks). Much, but not all, of the SR Ca leak occurs via ryanodine receptors and can be exacerbated in pathological states such as heart failure. The extent of SR Ca leak is important because it can (a) reduce SR Ca available for release, causing systolic dysfunction; (b) elevate diastolic [Ca]i, contributing to diastolic dysfunction; (c) cause triggered arrhythmias; and (d) be energetically costly because of extra ATP used to repump Ca. This review addresses quantitative aspects and manifestations of SR Ca leak and its measurement, and how leak is modulated by Ca, associated proteins, and posttranslational modifications in health and disease.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California, Davis, California 95616;
| |
Collapse
|
38
|
Aronsen JM, Swift F, Sejersted OM. Cardiac sodium transport and excitation-contraction coupling. J Mol Cell Cardiol 2013; 61:11-9. [PMID: 23774049 DOI: 10.1016/j.yjmcc.2013.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 01/12/2023]
Abstract
The excitation-contraction coupling (EC-coupling) links membrane depolarization with contraction in cardiomyocytes. Ca(2+) induced opening of ryanodine receptors (RyRs) leads to Ca(2+) induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) into the dyadic cleft between the t-tubules and SR. Ca(2+) is removed from the cytosol by the SR Ca(2+) ATPase (SERCA2) and the Na,Ca-exchanger (NCX). The NCX connects cardiac Ca(2+) and Na(+)-transport, leading to Na(+)-dependent regulation of EC-coupling by several mechanisms of which some still lack firm experimental evidence. Firstly, NCX might contribute to CICR during an action potential (AP) as Na(+)-accumulation at the intracellular site together with depolarization will trigger reverse mode exchange bringing Ca(2+) into the dyadic cleft. The controversial issue is the nature of the compartment in which Na(+) accumulates. It seems not to be the bulk cytosol, but is it part of a widespread subsarcolemmal space, a localized microdomain ("fuzzy space"), or as we propose, a more localized "spot" to which only a few membrane proteins have shared access (nanodomains)? Also, there seems to be spots where the Na,K-pump (NKA) will cause local Na(+) depletion. Secondly, Na(+) determines the rate of cytosolic Ca(2+) removal and SR Ca(2+) load by regulating the SERCA2/NCX-balance during the decay of the Ca(2+) transient. The aim of this review is to describe available data and current concepts of Na(+)-mediated regulation of cardiac EC-coupling, with special focus on subcellular microdomains and the potential roles of Na(+) transport proteins in regulating CICR and Ca(2+) extrusion in cardiomyocytes. We propose that voltage gated Na(+) channels, NCX and the NKA α2-isoform all regulate cardiac EC-coupling through control of the "Na(+) concentration in specific subcellular nanodomains in cardiomyocytes. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."
Collapse
Affiliation(s)
- J M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
39
|
Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 2013; 99:600-11. [PMID: 23752976 DOI: 10.1093/cvr/cvt145] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review presents the roles of cardiac sodium channel NaV1.5 late current (late INa) in generation of arrhythmic activity. The assumption of the authors is that proper Na(+) channel function is necessary to the maintenance of the transmembrane electrochemical gradient of Na(+) and regulation of cardiac electrical activity. Myocyte Na(+) channels' openings during the brief action potential upstroke contribute to peak INa and initiate excitation-contraction coupling. Openings of Na(+) channels outside the upstroke contribute to late INa, a depolarizing current that persists throughout the action potential plateau. The small, physiological late INa does not appear to be critical for normal electrical or contractile function in the heart. Late INa does, however, reduce the net repolarizing current, prolongs action potential duration, and increases cellular Na(+) loading. An increase of late INa, due to acquired conditions (e.g. heart failure) or inherited Na(+) channelopathies, facilitates the formation of early and delayed afterpolarizations and triggered arrhythmias, spontaneous diastolic depolarization, and cellular Ca(2+) loading. These in turn increase the spatial and temporal dispersion of repolarization time and may lead to reentrant arrhythmias.
Collapse
Affiliation(s)
- John C Shryock
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Foster City, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Wang J, Gao E, Chan TO, Zhang XQ, Song J, Shang X, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of Na(+)/Ca(2+) exchanger does not aggravate myocardial dysfunction induced by transverse aortic constriction. J Card Fail 2013; 19:60-70. [PMID: 23273595 DOI: 10.1016/j.cardfail.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alterations in expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) have been implicated in the pathogenesis of heart failure. METHODS AND RESULTS Using transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15-18 weeks after TAC (age 23-26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca(2+)-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na(+)/Ca(2+) exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca(2+)](i) transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca(2+) dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol. CONCLUSIONS In pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca(2+)](i) transient abnormalities but did not aggravate or improve myocardial dysfunction.
Collapse
Affiliation(s)
- Jufang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Despa S, Bers DM. Na⁺ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol 2013; 61:2-10. [PMID: 23608603 DOI: 10.1016/j.yjmcc.2013.04.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology, University of California, Davis, CA, USA.
| | | |
Collapse
|
42
|
Galougahi KK, Liu CC, Garcia A, Fry NAS, Hamilton EJ, Rasmussen HH, Figtree GA. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. J Physiol 2013; 591:2999-3015. [PMID: 23587884 DOI: 10.1113/jphysiol.2013.252817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.
Collapse
|
43
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
44
|
Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol 2013; 58:125-33. [PMID: 23306007 DOI: 10.1016/j.yjmcc.2012.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/01/2012] [Accepted: 12/28/2012] [Indexed: 01/02/2023]
Abstract
Mitochondrial Ca signaling contributes to the regulation of cellular energy metabolism, and mitochondria participate in cardiac excitation-contraction coupling (ECC) through their ability to store Ca, shape the cytosolic Ca signals and generate ATP required for contraction. The mitochondrial inner membrane is equipped with an elaborate system of channels and transporters for Ca uptake and extrusion that allows for the decoding of cytosolic Ca signals, and the storage of Ca in the mitochondrial matrix compartment. Controversy, however remains whether the fast cytosolic Ca transients underlying ECC in the beating heart are transmitted rapidly into the matrix compartment or slowly integrated by the mitochondrial Ca transport machinery. This review summarizes established and novel findings on cardiac mitochondrial Ca transport and buffering, and discusses the evidence either supporting or arguing against the idea that Ca can be taken up rapidly by mitochondria during ECC.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
45
|
Cheung JY, Zhang XQ, Song J, Gao E, Chan TO, Rabinowitz JE, Koch WJ, Feldman AM, Wang J. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:175-90. [PMID: 23224879 DOI: 10.1007/978-1-4614-4756-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mitochondria Na(+)-Ca (2+) exchange in cardiomyocytes and lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:193-201. [PMID: 23224880 DOI: 10.1007/978-1-4614-4756-6_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria Na(+)-Ca(2+) exchange (NCX(mit)) was first discovered by Carafoli et al. in 1974. Thereafter, the mechanisms and roles of NCX(mit) have been extensively studied. We review NCX(mit) in cardiomyocytes and lymphocytes by presenting our recent studies on it. Studies of NCX(mit) in rat ventricular cells demonstrated that NCX(mit) is voltage dependent and electrogenic. A targeted knockdown and knockout of NCLX in HL-1 cardiomyocytes and B lymphocytes, respectively, significantly reduced the NCX(mit) activity, indicating that NCLX is a major component of NCX(mit) in these cells. The store-operated Ca(2+) entry was greatly attenuated in NCLX knockout lymphocytes, suggesting that substantial amount of Ca(2+) enters into mitochondria and is released to cytosol via NCX(mit). NCX(mit) or NCLX has pivotal roles in Ca(2+) handling in mitochondria and cytoplasm.
Collapse
|
47
|
Kaese S, Verheule S. Cardiac electrophysiology in mice: a matter of size. Front Physiol 2012; 3:345. [PMID: 22973235 PMCID: PMC3433738 DOI: 10.3389/fphys.2012.00345] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/09/2012] [Indexed: 12/27/2022] Open
Abstract
Over the last decade, mouse models have become a popular instrument for studying cardiac arrhythmias. This review assesses in which respects a mouse heart is a miniature human heart, a suitable model for studying mechanisms of cardiac arrhythmias in humans and in which respects human and murine hearts differ. Section I considers the issue of scaling of mammalian cardiac (electro) physiology to body mass. Then, we summarize differences between mice and humans in cardiac activation (section II) and the currents underlying the action potential in the murine working myocardium (section III). Changes in cardiac electrophysiology in mouse models of heart disease are briefly outlined in section IV, while section V discusses technical considerations pertaining to recording cardiac electrical activity in mice. Finally, section VI offers general considerations on the influence of cardiac size on the mechanisms of tachy-arrhythmias.
Collapse
Affiliation(s)
- Sven Kaese
- Division of Experimental and Clinical Electrophysiology, Department of Cardiology and Angiology, University Hospital Münster Münster, Germany
| | | |
Collapse
|
48
|
Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One 2011; 6:e23662. [PMID: 21858195 PMCID: PMC3156227 DOI: 10.1371/journal.pone.0023662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/22/2011] [Indexed: 02/03/2023] Open
Abstract
Enhanced airway contractility following inflammation by cytokines such as tumor necrosis factor alpha (TNFα) or interleukin-13 (IL-13) involves increased intracellular Ca2+ ([Ca2+]i) levels in airway smooth muscle (ASM). In ASM, plasma membrane Ca2+ fluxes form a key component of [Ca2+]i regulation. There is now growing evidence that the bidirectional plasma membrane Na+/Ca2+ exchanger (NCX) contributes to ASM [Ca2+]i regulation. In the present study, we examined NCX expression and function in human ASM cells under normal conditions, and following exposure to TNFα or IL-13. Western blot analysis showed significant expression of the NCX1 isoform, with increased NCX1 levels by both cytokines, effects blunted by inhibitors of nuclear factor NF-κB or mitogen-activated protein kinase. Cytokine-mediated increase in NCX1 involved enhanced transcription followed by protein synthesis. NCX2 and NCX3 remained undetectable even in cytokine-stimulated ASM. In fura-2 loaded human ASM cells, NCX-mediated inward Ca2+ exchange as well as outward exchange (measured as rates of change in [Ca2+]i) was elicited by altering extracellular Na+ and Ca2+ levels. Contribution of NCX was verified by measuring [Na+]i using the fluorescent Na+ indicator SBFI. NCX-mediated inward exchange was verified by demonstrating prevention of rising [Ca2+]i or falling [Na+]i in the presence of the NCX inhibitor KBR7943. Inward exchange-mode NCX was increased by both TNFα and IL-13 to a greater extent than outward exchange. NCX siRNA transfection substantially blunted outward exchange and inward exchange modes. Finally, inhibition of NCX expression or function blunted peak [Ca2+]i and rate of fall of [Ca2+]i following histamine stimulation. These data suggest that NCX-mediated Ca2+ fluxes normally exist in human ASM (potentially contributing to rapid Ca2+ fluxes), and contribute to enhanced [Ca2+]i regulation in airway inflammation.
Collapse
|
49
|
Ramirez RJ, Sah R, Liu J, Rose RA, Backx PH. Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials. Basic Res Cardiol 2011; 106:967-77. [PMID: 21779914 DOI: 10.1007/s00395-011-0202-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/22/2011] [Accepted: 07/04/2011] [Indexed: 02/03/2023]
Abstract
Excitation-contraction coupling (ECC) in cardiac myocytes involves triggering of Ca(2+) release from the sarcoplasmic reticulum (SR) by L-type Ca channels, whose activity is strongly influenced by action potential (AP) profile. The contribution of Ca(2+) entry via the Na(+)/Ca(2+) exchanger (NCX) to trigger SR Ca(2+) release during ECC in response to an AP remains uncertain. To isolate the contribution of NCX to SR Ca(2+) release, independent of effects on SR Ca(2+) load, Ca(2+) release was determined by recording Ca(2+) spikes using confocal microscopy on patch-clamped rat ventricular myocytes with [Ca(2+)](i) fixed at 150 nmol/L. In response to AP clamps, normalized Ca(2+) spike amplitudes (ΔF/F (0)) increased sigmoidally and doubled as [Na(+)](i) was elevated from 0 to 20 mmol/L with an EC(50) of ~10 mmol/L. This [Na(+)](i)-dependence was independent of I (Na) as well as SR Ca(2+) load, which was unchanged under our experimental conditions. However, NCX inhibition using either KB-R7943 or XIP reduced ΔF/F (0) amplitude in myocytes with 20 mmol/L [Na(+)](i), but not with 5 mmol/L [Na(+)](i). SR Ca(2+) release was complete before the membrane repolarized to -15 mV, indicating Ca(2+) entry into the dyad (not reduced extrusion) underlies [Na(+)](i)-dependent enhancement of ECC. Because I (Ca,L) inhibition with 50 mmol/L Cd(2+) abolished Ca(2+) spikes, our results demonstrate that during cardiac APs, NCX enhances SR Ca(2+) release by synergistically increasing the efficiency of I (Ca,L)-mediated ECC.
Collapse
Affiliation(s)
- Rafael J Ramirez
- Department of Physiology, University of Toronto, Heart and Stroke/Richard Lewar Centre of Excellence, Fitzgerald Building, 150 College Street, Room 68, Toronto, ON M5S 3E2, Canada
| | | | | | | | | |
Collapse
|
50
|
Han F, Bossuyt J, Martin JL, Despa S, Bers DM. Role of phospholemman phosphorylation sites in mediating kinase-dependent regulation of the Na+-K+-ATPase. Am J Physiol Cell Physiol 2010; 299:C1363-9. [PMID: 20861470 DOI: 10.1152/ajpcell.00027.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholemman (PLM) is a major target for phosphorylation mediated by both PKA (at Ser68) and PKC (at both Ser63 and Ser68) in the heart. In intact cardiac myocytes, PLM associates with and inhibits Na(+)-K(+)-ATPase (NKA), mainly by reducing its affinity for internal Na(+). The inhibition is relieved upon PLM phosphorylation by PKA or PKC. The aim here was to distinguish the role of the Ser63 and Ser68 PLM phosphorylation sites in mediating kinase-induced modulation of NKA function. We expressed wild-type (WT) PLM and S63A, S68A, and AA (Ser63 and Ser68 to alanine double mutant) PLM mutants in HeLa cells that stably express rat NKA-α(1) and we measured the effect of PKA and PKC activation on NKA-mediated intracellular Na(+) concentration decline. PLM expression (WT or mutant) significantly decreased the apparent NKA affinity for internal Na(+) and had no significant effect on the maximum pump rate (V(max)). PKA activation with forskolin (20 μM) restored NKA Na(+) affinity in cells expressing WT but not AA PLM and did not affect V(max) in either case. Similarly, PKC activation with 300 nM phorbol 12,13-dibutyrate increased NKA Na(+) affinity in cells expressing WT, S63A, and S68A PLM and had no effect in cells expressing AA PLM. Neither forskolin nor phorbol 12,13-dibutyrate affected NKA function in the absence of PLM. We conclude that PLM phosphorylation at either Ser63 or Ser68 is both necessary and sufficient for completely relieving the PLM-induced NKA inhibition.
Collapse
Affiliation(s)
- Fei Han
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|