1
|
Lim H, Yan S, Dee W, Keefer R, Hameeduddin I, Roth EJ, Rymer WZ, Wu M. Cortical drive may facilitate enhanced use of the paretic leg induced by random constraint force to the non-paretic leg during walking in chronic stroke. Exp Brain Res 2024; 242:2799-2814. [PMID: 39395062 DOI: 10.1007/s00221-024-06932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024]
Abstract
The goal of this study was to determine the effects of applying random vs. constant constraint force to the non-paretic leg during walking on enhanced use of the paretic leg in individuals post-stroke, and examine the underlying brain mechanisms. Twelve individuals with chronic stroke were tested under two conditions while walking on a treadmill: random vs. constant magnitude of constraint force applied to the non-paretic leg during swing phase of gait using a custom designed robotic system. Leg kinematics, muscle activity of the paretic leg, and electroencephalography (EEG) were recorded during treadmill walking. Paretic step length and muscle activity of the paretic ankle plantarflexors significantly increased after walking with random and constant constraint forces. Cortico-cortical connectivity between motor cortices and cortico-muscular connectivity from the lesioned motor cortex to the paretic ankle plantarflexors significantly increased for the random force condition but not for the constant force condition. In addition, individuals post-stroke with greater baseline gait variability showed greater improvements in the paretic step length after walking with random force condition but not with the constant force condition. In conclusion, application of random constraint force to the non-paretic leg may enhance the use of the paretic leg during walking by facilitating cortical drive from the lesioned motor cortex to the paretic ankle plantarflexors. Results from this study may be used for the development of constraint induced locomotor intervention approaches aimed at improving locomotor function in individuals after stroke.
Collapse
Affiliation(s)
- Hyosok Lim
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Shijun Yan
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Weena Dee
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Renee Keefer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Iram Hameeduddin
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Elliot J Roth
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - William Z Rymer
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Ming Wu
- Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Fujio K, Takeda K, Obata H, Kawashima N. Corticocortical and corticomuscular connectivity dynamics in standing posture: electroencephalography study. Cereb Cortex 2024; 34:bhae411. [PMID: 39393919 DOI: 10.1093/cercor/bhae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Cortical mechanism is necessary for human standing control. Previous research has demonstrated that cortical oscillations and corticospinal excitability respond flexibly to postural demands. However, it is unclear how corticocortical and corticomuscular connectivity changes dynamically during standing with spontaneous postural sway and over time. This study investigated the dynamics of sway- and time-varying connectivity using electroencephalography and electromyography. Electroencephalography and electromyography were recorded in sitting position and 3 standing postures with varying base-of-support: normal standing, one-leg standing, and standing on a piece of wood. For sway-varying connectivity, corticomuscular connectivity was calculated based on the timing of peak velocity in anteroposterior sway. For time-varying connectivity, corticocortical connectivity was measured using the sliding-window approach. This study found that corticomuscular connectivity was strengthened at the peak velocity of postural sway in the γ- and β-frequency bands. For time-varying corticocortical connectivity, the θ-connectivity in all time-epoch was classified into 7 clusters including posture-relevant component. In one of the 7 clusters, strong connectivity pairs were concentrated in the mid-central region, and the proportion of epochs under narrow-base standing conditions was significantly higher, indicating a functional role for posture balance. These findings shed light on the connectivity dynamics and cortical oscillation that govern standing balance.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki,Tokorozawa, Saitama, 359-0555, Japan
| | - Kenta Takeda
- Department of Rehabilitation, Faculty of Health Science, Japan Healthcare University, 11-1-50, Tsukisamuhigashi3jyo, Toyohira, Sapporo, Hokkaido, 062-0053, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, 1-1, Sensui, Tobata, Kitakyusyu, Fukuoka, 804-8550, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki,Tokorozawa, Saitama, 359-0555, Japan
| |
Collapse
|
3
|
Xiao B, Liu L, Chen L, Wang X, Zhang X, Liu X, Hou W, Wu X. Neuro-Muscular Responses Adaptation to Dynamic Changes in Grip Strength. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3189-3198. [PMID: 39167521 DOI: 10.1109/tnsre.2024.3447062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Precise control of strength is of significant importance in upper limb functional rehabilitation. Understanding the neuro-muscular response in strength regulation can help optimize the rehabilitation prescriptions and facilitate the relative training process for recovery control. This study aimed to investigate the inherent characteristics of neural-muscular activity during dynamic hand strength adjustment. Four dynamic grip force tracking modes were set by manipulating different magnitude and speed of force variations, and thirteen healthy young individuals took participation in the experiment. Electroencephalography were recorded in the contralateral sensorimotor cortex area, as well as the electromyography from the first dorsal interosseous muscle were collected synchronously. The metrics of the Event-related desynchronization, the electromyography stability index, and the force variation, were used to represent the corresponding cortical neural responses, muscle contraction activities, and the level of strength regulation, respectively; and further neuro-muscular coupling between the sensorimotor cortex and the first dorsal interosseous muscle was investigated by transfer entropy analysis. The results indicated a strong relationship that the increase of force regulation demand would result in a force variation increase as well as a stability reduction in muscle motor unit output. Meanwhile, the intensity of neural response increased in both the α and β frequency bands. As the force regulation demand increased, the strength of bidirectional transfer entropy showed a clear shift from β to the γ frequency band, which facilitate rapid integration of dynamic strength compensation to adapt to motor task changes.
Collapse
|
4
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
5
|
Guo Z, Xu Y, Rosenzweig J, McClelland VM, Rosenzweig I, Cvetkovic Z. Subband Independent Component Analysis for Coherence Enhancement. IEEE Trans Biomed Eng 2024; 71:2402-2413. [PMID: 38412080 DOI: 10.1109/tbme.2024.3370638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Cortico-muscular coherence (CMC) is becoming a common technique for detection and characterization of functional coupling between the motor cortex and muscle activity. It is typically evaluated between surface electromyogram (sEMG) and electroencephalogram (EEG) signals collected synchronously during controlled movement tasks. However, the presence of noise and activities unrelated to observed motor tasks in sEMG and EEG results in low CMC levels, which often makes functional coupling difficult to detect. METHODS In this paper, we introduce Coherent Subband Independent Component Analysis (CoSICA) to enhance synchronous cortico-muscular components in mixtures captured by sEMG and EEG. The methodology relies on filter bank processing to decompose sEMG and EEG signals into frequency bands. Then, it applies independent component analysis along with a component selection algorithm for re-synthesis of sEMG and EEG designed to maximize CMC levels. RESULTS We demonstrate the effectiveness of the proposed method in increasing CMC levels across different signal-to-noise ratios first using simulated data. Using neurophysiological data, we then illustrate that CoSICA processing achieves a pronounced enhancement of original CMC. CONCLUSION Our findings suggest that the proposed technique provides an effective framework for improving coherence detection. SIGNIFICANCE The proposed methodologies will eventually contribute to understanding of movement control and has high potential for translation into clinical practice.
Collapse
|
6
|
Zhou L, Wu B, Qin B, Gao F, Li W, Hu H, Zhu Q, Qian Z. Cortico-muscular coherence of time-frequency and spatial characteristics under movement observation, movement execution, and movement imagery. Cogn Neurodyn 2024; 18:1079-1096. [PMID: 39553842 PMCID: PMC11561224 DOI: 10.1007/s11571-023-09970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 11/19/2024] Open
Abstract
Studies show that movement observation (MO), movement imagery (MI), or movement execution (ME) based brain-computer interface systems are promising in promoting the rehabilitation and reorganization of damaged motor function. This study was aimed to explore and compare the motor function rehabilitation mechanism among MO, MI, and ME. 64-channel electroencephalogram and 4-channel electromyogram data were collected from 39 healthy participants (25 males, 14 females; 18-23 years old) during MO, ME, and MI. We analyzed and compared the inter-cortical, inter-muscular, cortico-muscular, and spatial coherence under MO, ME, and MI. Under MO, ME, and MI, cortico-muscular coherence was strongest at the beta-lh band, which means the beta frequency band for cortical signals and the lh frequency band for muscular signals. 56.25-96.88% of the coherence coefficients were significantly larger than 0.5 (ps < 0.05) at the beta-lh band. MO and ME had a contralateral advantage in the spatial coherence between cortex and muscle, while MI had an ipsilateral advantage in the spatial coherence between cortex and muscle. Our results show that the cortico-muscular beta-lh band plays a critical role in the synchronous coupling between cortex and muscle. Also, our findings suggest that the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor cortex (PMC) are the specific regions of MO, ME, and MI. However, their pathways of regulating muscles are different under MO, ME, and MI. This study is important for better understanding the motor function rehabilitation mechanism in MO, MI, and ME.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Biao Wu
- Electronic Information Department, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Haixu Hu
- Sports Training Academy, Nanjing Sport Institute, Nanjing, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China
| |
Collapse
|
7
|
Santos PCRD, Heimler B, Koren O, Flash T, Plotnik M. Dopamine improves defective cortical and muscular connectivity during bilateral control of gait in Parkinson's disease. Commun Biol 2024; 7:495. [PMID: 38658666 PMCID: PMC11043351 DOI: 10.1038/s42003-024-06195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Parkinson's Disease (PD)-typical declines in gait coordination are possibly explained by weakness in bilateral cortical and muscular connectivity. Here, we seek to determine whether this weakness and consequent decline in gait coordination is affected by dopamine levels. To this end, we compare cortico-cortical, cortico-muscular, and intermuscular connectivity and gait outcomes between body sides in people with PD under ON and OFF medication states, and in older adults. In our study, participants walked back and forth along a 12 m corridor. Gait events (heel strikes and toe-offs) and electrical cortical and muscular activities were measured and used to compute cortico-cortical, cortico-muscular, and intermuscular connectivity (i.e., coherences in the alpha, beta, and gamma bands), as well as features characterizing gait performance (e.g., the step-timing coordination, length, and speed). We observe that people with PD, mainly during the OFF medication, walk with reduced step-timing coordination. Additionally, our results suggest that dopamine intake in PD increases the overall cortico-muscular connectivity during the stance and swing phases of gait. We thus conclude that dopamine corrects defective feedback caused by impaired sensory-information processing and sensory-motor integration, thus increasing cortico-muscular coherences in the alpha bands and improving gait.
Collapse
Affiliation(s)
- Paulo Cezar Rocha Dos Santos
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- IDOR/Pioneer Science Initiative, Rio de Janeiro, Brazil.
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Or Koren
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Gao Z, Lv S, Ran X, Wang Y, Xia M, Wang J, Qiu M, Wei Y, Shao Z, Zhao Z, Zhang Y, Zhou X, Yu Y. Influencing factors of corticomuscular coherence in stroke patients. Front Hum Neurosci 2024; 18:1354332. [PMID: 38562230 PMCID: PMC10982423 DOI: 10.3389/fnhum.2024.1354332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Stroke, also known as cerebrovascular accident, is an acute cerebrovascular disease with a high incidence, disability rate, and mortality. It can disrupt the interaction between the cerebral cortex and external muscles. Corticomuscular coherence (CMC) is a common and useful method for studying how the cerebral cortex controls muscle activity. CMC can expose functional connections between the cortex and muscle, reflecting the information flow in the motor system. Afferent feedback related to CMC can reveal these functional connections. This paper aims to investigate the factors influencing CMC in stroke patients and provide a comprehensive summary and analysis of the current research in this area. This paper begins by discussing the impact of stroke and the significance of CMC in stroke patients. It then proceeds to elaborate on the mechanism of CMC and its defining formula. Next, the impacts of various factors on CMC in stroke patients were discussed individually. Lastly, this paper addresses current challenges and future prospects for CMC.
Collapse
Affiliation(s)
- Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengsheng Xia
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhenpeng Shao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yehong Zhang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
9
|
Ades C, Abd MA, Hutchinson DT, Tognoli E, Du E, Wei J, Engeberg ED. Biohybrid Robotic Hand to Investigate Tactile Encoding and Sensorimotor Integration. Biomimetics (Basel) 2024; 9:78. [PMID: 38392124 PMCID: PMC10886511 DOI: 10.3390/biomimetics9020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
For people who have experienced a spinal cord injury or an amputation, the recovery of sensation and motor control could be incomplete despite noteworthy advances with invasive neural interfaces. Our objective is to explore the feasibility of a novel biohybrid robotic hand model to investigate aspects of tactile sensation and sensorimotor integration with a pre-clinical research platform. Our new biohybrid model couples an artificial hand with biological neural networks (BNN) cultured in a multichannel microelectrode array (MEA). We decoded neural activity to control a finger of the artificial hand that was outfitted with a tactile sensor. The fingertip sensations were encoded into rapidly adapting (RA) or slowly adapting (SA) mechanoreceptor firing patterns that were used to electrically stimulate the BNN. We classified the coherence between afferent and efferent electrodes in the MEA with a convolutional neural network (CNN) using a transfer learning approach. The BNN exhibited the capacity for functional specialization with the RA and SA patterns, represented by significantly different robotic behavior of the biohybrid hand with respect to the tactile encoding method. Furthermore, the CNN was able to distinguish between RA and SA encoding methods with 97.84% ± 0.65% accuracy when the BNN was provided tactile feedback, averaged across three days in vitro (DIV). This novel biohybrid research platform demonstrates that BNNs are sensitive to tactile encoding methods and can integrate robotic tactile sensations with the motor control of an artificial hand. This opens the possibility of using biohybrid research platforms in the future to study aspects of neural interfaces with minimal human risk.
Collapse
Affiliation(s)
- Craig Ades
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Moaed A Abd
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Emmanuelle Tognoli
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Jianning Wei
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Erik D Engeberg
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
10
|
Wang G, Yang Y, Dong K, Hua A, Wang J, Liu J. Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis. Neurosci Bull 2024; 40:79-89. [PMID: 37989834 PMCID: PMC10774487 DOI: 10.1007/s12264-023-01143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/16/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Collapse
Affiliation(s)
- Guozheng Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Kangli Dong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Anke Hua
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China.
- Center for Psychological Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
11
|
Zipser-Mohammadzada F, Scheffers MF, Conway BA, Halliday DM, Zipser CM, Curt A, Schubert M. Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed. Exp Brain Res 2023; 241:1675-1689. [PMID: 37199775 DOI: 10.1007/s00221-023-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17.
Collapse
Affiliation(s)
| | - Marjelle Fredie Scheffers
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - David M Halliday
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Carl Moritz Zipser
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
Sun J, Jia T, Li Z, Li C, Ji L. Enhancement of EEG-EMG coupling detection using corticomuscular coherence with spatial-temporal optimization. J Neural Eng 2023; 20:036001. [PMID: 37068482 DOI: 10.1088/1741-2552/accd9b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Objective. Corticomuscular coherence (CMC) is widely used to detect and quantify the coupling between motor cortex and effector muscles. It is promisingly used in human-machine interaction (HMI) supported rehabilitation training to promote the closed-loop motor control for stroke patients. However, suffering from weak coherence features and low accuracy in contingent neurofeedback, its application to HMI rehabilitation robots is currently limited. In this paper, we propose the concept of spatial-temporal CMC (STCMC), which is the coherence by refining CMC with delay compensation and spatial optimization.Approach. The proposed STCMC method measures the coherence between electroencephalogram (EEG) and electromyogram (EMG) in the multivariate spaces. Specifically, we combined delay compensation and spatial optimization to maximize the absolute value of the coherence. Then, we tested the reliability and effectiveness of STCMC on neurophysiological data of force tracking tasks.Main results. Compared with CMC, STCMC not only enhanced the coherence significantly between brain and muscle signals, but also produced higher classification accuracy. Further analysis showed that temporal and spatial parameters estimated by the STCMC reflected more detailed brain topographical patterns, which emphasized the different roles between the contralateral and ipsilateral hemisphere.Significance. This study integrates delay compensation and spatial optimization to give a new perspective for corticomuscular coupling analysis. It is also feasible to design robotic neurorehabilitation paradigms by the proposed method.
Collapse
Affiliation(s)
- Jingyao Sun
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
| | - Tianyu Jia
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
| | - Zhibin Li
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
| | - Chong Li
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
- School of Clinical Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Linhong Ji
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Glories D, Duclay J. Recurrent inhibition contribution to corticomuscular coherence modulation between contraction types. Scand J Med Sci Sports 2023; 33:597-608. [PMID: 36609914 DOI: 10.1111/sms.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Recent findings provided evidence that spinal regulatory mechanisms were involved in corticomuscular coherence (CMC) modulation between contraction types. Although their relative contributions could not be precisely identified, it was suggested that recurrent inhibition (RI) could modulate CMC by regulating the synchronization of spinal motoneuron activity. To confirm this hypothesis, concurrent modulations of RI and CMC for the soleus (SOL) were compared during submaximal isometric, shortening and lengthening plantar flexions. Submaximal contraction intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the nonrectified SOL EMG signal. The RI was quantified through the paired Hoffmann (H) reflex technique by comparing the modulations of the test and conditioning H-reflexes (H' and H1 , respectively). Both beta-band CMC and the ratio between H' and H1 amplitudes were significantly lower in SOL during lengthening compared with isometric and shortening contractions. Furthermore, we observed a negative linear correlation between the RI and beta-band CMC. Finally, a higher RI increase during lengthening contractions compared to either isometric or shortening ones was correlated with a larger decrease in CMC. Collectively, these novel findings provide robust evidence that the RI acts as a neural "filter" that contributes to the modulation of corticomuscular interactions between contraction types, possibly by disrupting the oscillatory muscle activation.
Collapse
Affiliation(s)
- Dorian Glories
- Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Zipser-Mohammadzada F, Conway BA, Halliday DM, Zipser CM, Easthope CA, Curt A, Schubert M. Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control. Front Hum Neurosci 2022; 16:927704. [PMID: 35992941 PMCID: PMC9387543 DOI: 10.3389/fnhum.2022.927704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals regaining reliable day-to-day walking function after incomplete spinal cord injury (iSCI) report persisting unsteadiness when confronted with walking challenges. However, quantifiable measures of walking capacity lack the sensitivity to reveal underlying impairments of supra-spinal locomotor control. This study investigates the relationship between intramuscular coherence and corticospinal dynamic balance control during a visually guided Target walking treadmill task. In thirteen individuals with iSCI and 24 controls, intramuscular coherence and cumulant densities were estimated from pairs of Tibialis anterior surface EMG recordings during normal treadmill walking and a Target walking task. The approximate center of mass was calculated from pelvis markers. Spearman rank correlations were performed to evaluate the relationship between intramuscular coherence, clinical parameters, and center of mass parameters. In controls, we found that the Target walking task results in increased high-frequency (21–44 Hz) intramuscular coherence, which negatively related to changes in the center of mass movement, whereas this modulation was largely reduced in individuals with iSCI. The impaired modulation of high-frequency intramuscular coherence during the Target walking task correlated with neurophysiological and functional readouts, such as motor-evoked potential amplitude and outdoor mobility score, as well as center of mass trajectory length. The Target walking effect, the difference between Target and Normal walking intramuscular coherence, was significantly higher in controls than in individuals with iSCI [F(1.0,35.0) = 13.042, p < 0.001]. Intramuscular coherence obtained during challenging walking in individuals with iSCI may provide information on corticospinal gait control. The relationships between biomechanics, clinical scores, and neurophysiology suggest that intramuscular coherence assessed during challenging tasks may be meaningful for understanding impaired supra-spinal control in individuals with iSCI.
Collapse
Affiliation(s)
- Freschta Zipser-Mohammadzada
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- *Correspondence: Freschta Zipser-Mohammadzada,
| | - Bernard A. Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - David M. Halliday
- Department of Electronic Engineering, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Chris A. Easthope
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Cereneo Foundation, Center for Interdisciplinary Research, Vitznau, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
15
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
16
|
Keihani A, Mohammadi AM, Marzbani H, Nafissi S, Haidari MR, Jafari AH. Sparse representation of brain signals offers effective computation of cortico-muscular coupling value to predict the task-related and non-task sEMG channels: A joint hdEEG-sEMG study. PLoS One 2022; 17:e0270757. [PMID: 35776772 PMCID: PMC9249190 DOI: 10.1371/journal.pone.0270757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Cortico-muscular interactions play important role in sensorimotor control during motor task and are commonly studied by cortico-muscular coherence (CMC) method using joint electroencephalogram-surface electromyogram (EEG-sEMG) signals. As noise and time delay between the two signals weaken the CMC value, coupling difference between non-task sEMG channels is often undetectable. We used sparse representation of EEG channels to compute CMC and detect coupling for task-related and non-task sEMG signals. High-density joint EEG-sEMG (53 EEG channels, 4 sEMG bipolar channels) signals were acquired from 15 subjects (30.26 ± 4.96 years) during four specific hand and foot contraction tasks (2 dynamic and 2 static contraction). Sparse representations method was applied to detect projection of EEG signals on each sEMG channel. Bayesian optimization was employed to select best-fitted method with tuned hyperparameters on the input feeding data while using 80% data as the train set and 20% as test set. K-fold (K = 5) cross-validation method was used for evaluation of trained model. Two models were trained separately, one for CMC data and the other from sparse representation of EEG channels on each sEMG channel. Sensitivity, specificity, and accuracy criteria were obtained for test dataset to evaluate the performance of task-related and non-task sEMG channels detection. Coupling values were significantly different between grand average of task-related compared to the non-task sEMG channels (Z = -6.33, p< 0.001, task-related median = 2.011, non-task median = 0.112). Strong coupling index was found even in single trial analysis. Sparse representation approach (best fitted model: SVM, Accuracy = 88.12%, Sensitivity = 83.85%, Specificity = 92.45%) outperformed CMC method (best fitted model: KNN, Accuracy = 50.83%, Sensitivity = 52.17%, Specificity = 49.47%). Sparse representation approach offers high performance to detect CMC for discerning the EMG channels involved in the contraction tasks and non-tasks.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Amin Mohammad Mohammadi
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- Department of Electrical and Computer Engineering, University of Tehran, Tehran, I.R. Iran
| | - Hengameh Marzbani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, I.R. Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohsen Reza Haidari
- Section of Neuroscience, Department of Neurology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| | - Amir Homayoun Jafari
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran, I.R. Iran
- * E-mail: (AHJ); (MRH)
| |
Collapse
|
17
|
Corticomuscular coherence dependence on body side and visual feedback. Neuroscience 2022; 490:144-154. [DOI: 10.1016/j.neuroscience.2022.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022]
|
18
|
Simoneau M, Pialasse JP, Mercier P, Blouin JS. Adolescents with idiopathic scoliosis show decreased intermuscular coherence in lumbar paraspinal muscles: a new pathophysiological perspective. Clin Neurophysiol 2022; 138:38-51. [DOI: 10.1016/j.clinph.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
19
|
Tisseyre J, Cremoux S, Amarantini D, Tallet J. Increased intensity of unintended mirror muscle contractions after cervical spinal cord injury is associated with changes in interhemispheric and corticomuscular coherences. Behav Brain Res 2022; 417:113563. [PMID: 34499938 DOI: 10.1016/j.bbr.2021.113563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
Mirror contractions refer to unintended contractions of the contralateral homologous muscles during voluntary unilateral contractions or movements. Exaggerated mirror contractions have been found in several neurological diseases and indicate dysfunction or lesion of the cortico-spinal pathway. The present study investigates mirror contractions and the associated interhemispheric and corticomuscular interactions in adults with spinal cord injury (SCI) - who present a lesion of the cortico-spinal tract - compared to able-bodied participants (AB). Eight right-handed adults with chronic cervical SCI and ten age-matched right-handed able-bodied volunteers performed sets of right elbow extensions at 20% of maximal voluntary contraction. Electromyographic activity (EMG) of the right and left elbow extensors, interhemispheric coherence over cerebral sensorimotor regions evaluated by electroencephalography (EEG) and corticomuscular coherence between signals over the cerebral sensorimotor regions and each extensor were quantified. Overall, results revealed that participants with SCI exhibited (1) increased EMG activity of both active and unintended active limbs, suggesting more mirror contractions, (2) reduced corticomuscular coherence between signals over the left sensorimotor region and the right active limb and increased corticomuscular coherence between the right sensorimotor region and the left unintended active limb, (3) decreased interhemispheric coherence between signals over the two sensorimotor regions. The increased corticomuscular communication and decreased interhemispheric communication may reflect a reduced inhibition leading to increased communication with the unintended active limb, possibly resulting to exacerbated mirror contractions in SCI. Finally, mirror contractions could represent changes of neural and neuromuscular communication after SCI.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - Sylvain Cremoux
- CerCo, CNRS, UMR5549, Université de Toulouse, 31052 Toulouse, France
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
20
|
Maitland S, Escobedo-Cousin E, Schofield I, O'Neill A, Baker S, Whittaker R. Electrical cross-sectional imaging of human motor units in vivo. Clin Neurophysiol 2022; 136:82-92. [DOI: 10.1016/j.clinph.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/03/2022]
|
21
|
Beck MM, Spedden ME, Lundbye-Jensen J. Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood. Sci Rep 2021; 11:22870. [PMID: 34819532 PMCID: PMC8613204 DOI: 10.1038/s41598-021-01903-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
How does the neural control of fine movements develop from childhood to adulthood? Here, we investigated developmental differences in functional corticomuscular connectivity using coherence analyses in 111 individuals from four different age groups covering the age range 8-30 y. EEG and EMG were recorded while participants performed a uni-manual force-tracing task requiring fine control of force in a precision grip with both the dominant and non-dominant hand. Using beamforming methods, we located and reconstructed source activity from EEG data displaying peak coherence with the EMG activity of an intrinsic hand muscle during the task. Coherent cortical sources were found anterior and posterior to the central sulcus in the contralateral hemisphere. Undirected and directed corticomuscular coherence was quantified and compared between age groups. Our results revealed that coherence was greater in adults (20-30 yo) than in children (8-10 yo) and that this difference was driven by greater magnitudes of descending (cortex-to-muscle), rather than ascending (muscle-to-cortex), coherence. We speculate that the age-related differences reflect maturation of corticomuscular networks leading to increased functional connectivity with age. We interpret the greater magnitude of descending oscillatory coupling as reflecting a greater degree of feedforward control in adults compared to children. The findings provide a detailed characterization of differences in functional sensorimotor connectivity for individuals at different stages of typical ontogenetic development that may be related to the maturational refinement of dexterous motor control.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark.
| | - Meaghan Elizabeth Spedden
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Nørre Alle 51, 2200, Copenhagen N, Denmark
| |
Collapse
|
22
|
Du S, Yu Q, Dai W, McClelland V, Cvetkovic Z. Dictionary Learning Strategies for Cortico-Muscular Coherence Detection and Estimation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:240-244. [PMID: 34891281 DOI: 10.1109/embc46164.2021.9630090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spectral method of cortico-muscular coherence (CMC) can reveal the communication patterns between the cerebral cortex and muscle periphery, thus providing guidelines for the development of new therapies for movement disorders and insights into fundamental motor neuroscience. The method is applied to electroencephalogram (EEG) and surface electromyogram (sEMG) recorded synchronously during a motor task. However, synchronous EEG and sEMG components are typically too weak compared to additive noise and background activities making significant coherence very difficult to detect. Dictionary learning and sparse representation have been proved effective in enhancing CMC levels. In this paper, we explore the potential of a recently proposed dictionary learning algorithm in combination with an improved component selection algorithm for CMC enhancement. The effectiveness of the method was demonstrated using neurophysiological data where it achieved considerable improvements in CMC levels.
Collapse
|
23
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
24
|
Koseki T, Kudo D, Katagiri N, Nanba S, Nito M, Tanabe S, Yamaguchi T. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurosci 2021; 22:61. [PMID: 34645385 PMCID: PMC8513252 DOI: 10.1186/s12868-021-00665-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. Results No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES. Conclusions Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.
Collapse
Affiliation(s)
- Tadaki Koseki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Natsuki Katagiri
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Shigehiro Nanba
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata, 990-2212, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
25
|
Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med 2021; 137:104801. [PMID: 34481180 DOI: 10.1016/j.compbiomed.2021.104801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been widely utilized in post-stroke motor restoration. However, its impact on the closed-loop sensorimotor control process remains largely unclear. This is the first study to investigate the directional changes in cortico-muscular interactions after repetitive rehabilitation training by measuring the noninvasive electroencephalogram (EEG) and electromyography (EMG) signals. In this study, 10 subjects with chronic stroke received 20 sessions of NMES-pedaling interventions, and each training session included three 10-min NMES-driven pedaling trials. In addition, pre- and post-intervention assessments of lower limb isometric contraction were conducted before and after the whole NMES-pedaling interventions. The EEG (128 channels) and EMG (3 bilateral lower limb sensors) signals were collected during the isometric contraction tasks for the paretic and non-paretic lower limbs. Both the cortico-muscular coherence (CMC) and generalized partial directed coherence (GPDC) values were analyzed between eight selected EEG channels in the central primary motor cortex and EMG channels. The results revealed significant clinical improvements. Additionally, rehabilitation training facilitated cortico-muscular interaction of the ipsilesional brain and paretic lower limbs (p = 0.004). Moreover, both the descending and ascending cortico-muscular pathways were altered after NMES-training (p = 0.001, p < 0.001). Therefore, the results implied potential applications of EEG-EMG in understanding neuromuscular changes during the post-stroke motor rehabilitation process.
Collapse
|
26
|
Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z. Multiscale Wavelet Transfer Entropy with Application to Corticomuscular Coupling Analysis. IEEE Trans Biomed Eng 2021; 69:771-782. [PMID: 34398749 DOI: 10.1109/tbme.2021.3104969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Functional coupling between the motor cortex and muscle activity is commonly detected and quantified by cortico-muscular coherence (CMC) or Granger causality (GC) analysis, which are applicable only to linear couplings and are not sufficiently sensitive: some healthy subjects show no significant CMC and GC, and yet have good motor skills. The objective of this work is to develop measures of functional cortico-muscular coupling that have improved sensitivity and are capable of detecting both linear and non-linear interactions. METHODS A multiscale wavelet transfer entropy (TE) methodology is proposed. The methodology relies on a dyadic stationary wavelet transform to decompose electroencephalogram (EEG) and electromyogram (EMG) signals into functional bands of neural oscillations. Then, it applies TE analysis based on a range of embedding delay vectors to detect and quantify intra- and cross-frequency band cortico-muscular coupling at different time scales. RESULTS Our experiments with neurophysiological signals substantiate the potential of the developed methodologies for detecting and quantifying information flow between EEG and EMG signals for subjects with and without significant CMC or GC, including non-linear cross-frequency interactions, and interactions across different temporal scales. The obtained results are in agreement with the underlying sensorimotor neurophysiology. CONCLUSION These findings suggest that the concept of multiscale wavelet TE provides a comprehensive framework for analyzing cortex-muscle interactions. SIGNIFICANCE The proposed methodologies will enable developing novel insights into movement control and neurophysiological processes more generally.
Collapse
|
27
|
Suzuki R, Ushiyama J. Context-Dependent Modulation of Corticomuscular Coherence in a Series of Motor Initiation and Maintenance of Voluntary Contractions. Cereb Cortex Commun 2021; 1:tgaa074. [PMID: 34296134 PMCID: PMC8152874 DOI: 10.1093/texcom/tgaa074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
For our precise motor control, we should consider "motor context," which involves the flow from feedforward to feedback control. The present study focused on corticomuscular coherence (CMC) to physiologically evaluate how the sensorimotor integration is modulated in a series of movements depending on the motor context. We evaluated CMC between electroencephalograms over the sensorimotor cortex and rectified electromyograms from the tibialis anterior muscle during intermittent contractions with 2 contraction intensities in 4 experiments. Although sustained contractions with weak-to-moderate intensities led to no difference in CMC between intensities, intermittent ballistic-and-hold contractions with 2 intensities (10% and 15% or 25% of the maximal voluntary contraction, MVC) presented in a randomized order resulted in greater magnitude of CMC for the weaker intensity. Moreover, the relative amount of initial error was larger for trials with 10% of MVC, which indicated that initial motor output was inaccurate during weaker contractions. However, this significant difference in CMC vanished in the absence of trial randomization or the application of intermittent ramp-and-hold contractions with slower torque developments. Overall, CMC appears to be modulated context-dependently and is especially enhanced when active sensorimotor integration is required in feedback control periods because of the complexity and inaccuracy of preceding motor control.
Collapse
Affiliation(s)
- Rina Suzuki
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
28
|
Fauvet M, Gasq D, Chalard A, Tisseyre J, Amarantini D. Temporal Dynamics of Corticomuscular Coherence Reflects Alteration of the Central Mechanisms of Neural Motor Control in Post-Stroke Patients. Front Hum Neurosci 2021; 15:682080. [PMID: 34366811 PMCID: PMC8342994 DOI: 10.3389/fnhum.2021.682080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The neural control of muscular activity during a voluntary movement implies a continuous updating of a mix of afferent and efferent information. Corticomuscular coherence (CMC) is a powerful tool to explore the interactions between the motor cortex and the muscles involved in movement realization. The comparison of the temporal dynamics of CMC between healthy subjects and post-stroke patients could provide new insights into the question of how agonist and antagonist muscles are controlled related to motor performance during active voluntary movements. We recorded scalp electroencephalography activity, electromyography signals from agonist and antagonist muscles, and upper limb kinematics in eight healthy subjects and seventeen chronic post-stroke patients during twenty repeated voluntary elbow extensions and explored whether the modulation of the temporal dynamics of CMC could contribute to motor function impairment. Concomitantly with the alteration of elbow extension kinematics in post-stroke patients, dynamic CMC analysis showed a continuous CMC in both agonist and antagonist muscles during movement and highlighted that instantaneous CMC in antagonist muscles was higher for post-stroke patients compared to controls during the acceleration phase of elbow extension movement. In relation to motor control theories, our findings suggest that CMC could be involved in the online control of voluntary movement through the continuous integration of sensorimotor information. Moreover, specific alterations of CMC in antagonist muscles could reflect central command alterations of the selectivity in post-stroke patients.
Collapse
Affiliation(s)
- Maxime Fauvet
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Gasq
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital Rangueil, Toulouse, France
| | - Alexandre Chalard
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,California Rehabilitation Institute, Los Angeles, CA, United States
| | - Joseph Tisseyre
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - David Amarantini
- ToNIC-Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
29
|
Tun NN, Sanuki F, Iramina K. Electroencephalogram-Electromyogram Functional Coupling and Delay Time Change Based on Motor Task Performance. SENSORS 2021; 21:s21134380. [PMID: 34206753 PMCID: PMC8271984 DOI: 10.3390/s21134380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022]
Abstract
Synchronous correlation brain and muscle oscillations during motor task execution is termed as functional coupling. Functional coupling between two signals appears with a delay time which can be used to infer the directionality of information flow. Functional coupling of brain and muscle depends on the type of muscle contraction and motor task performance. Although there have been many studies of functional coupling with types of muscle contraction and force level, there has been a lack of investigation with various motor task performances. Motor task types play an essential role that can reflect the amount of functional interaction. Thus, we examined functional coupling under four different motor tasks: real movement, intention, motor imagery and movement observation tasks. We explored interaction of two signals with linear and nonlinear information flow. The aim of this study is to investigate the synchronization between brain and muscle signals in terms of functional coupling and delay time. The results proved that brain–muscle functional coupling and delay time change according to motor tasks. Quick synchronization of localized cortical activity and motor unit firing causes good functional coupling and this can lead to short delay time to oscillate between signals. Signals can flow with bidirectionality between efferent and afferent pathways.
Collapse
Affiliation(s)
- Nyi Nyi Tun
- Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| | - Fumiya Sanuki
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Keiji Iramina
- Faulty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Correspondence: (N.N.T.); (K.I.); Tel.: +81-80-9392-9429 (N.N.T.); Fax: +81-92-802-3581 (N.N.T.)
| |
Collapse
|
30
|
Ibáñez J, Del Vecchio A, Rothwell JC, Baker SN, Farina D. Only the Fastest Corticospinal Fibers Contribute to β Corticomuscular Coherence. J Neurosci 2021; 41:4867-4879. [PMID: 33893222 PMCID: PMC8260170 DOI: 10.1523/jneurosci.2908-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Human corticospinal transmission is commonly studied using brain stimulation. However, this approach is biased to activity in the fastest conducting axons. It is unclear whether conclusions obtained in this context are representative of volitional activity in mild-to-moderate contractions. An alternative to overcome this limitation may be to study the corticospinal transmission of endogenously generated brain activity. Here, we investigate in humans (N = 19; of either sex), the transmission speeds of cortical β rhythms (∼20 Hz) traveling to arm (first dorsal interosseous) and leg (tibialis anterior; TA) muscles during tonic mild contractions. For this purpose, we propose two improvements for the estimation of corticomuscular β transmission delays. First, we show that the cumulant density (cross-covariance) is more accurate than the commonly-used directed coherence to estimate transmission delays in bidirectional systems transmitting band-limited signals. Second, we show that when spiking motor unit activity is used instead of interference electromyography, corticomuscular transmission delay estimates are unaffected by the shapes of the motor unit action potentials (MUAPs). Applying these improvements, we show that descending corticomuscular β transmission is only 1-2 ms slower than expected from the fastest corticospinal pathways. In the last part of our work, we show results from simulations using estimated distributions of the conduction velocities for descending axons projecting to lower motoneurons (from macaque histologic measurements) to suggest two scenarios that can explain fast corticomuscular transmission: either only the fastest corticospinal axons selectively transmit β activity, or else the entire pool does. The implications of these two scenarios for our understanding of corticomuscular interactions are discussed.SIGNIFICANCE STATEMENT We present and validate an improved methodology to measure the delay in the transmission of cortical β activity to tonically-active muscles. The estimated corticomuscular β transmission delays obtained with this approach are remarkably similar to those expected from transmission in the fastest corticospinal axons. A simulation of β transmission along a pool of corticospinal axons using an estimated distribution of fiber diameters suggests two possible mechanisms by which fast corticomuscular transmission is achieved: either a very small fraction of the fastest descending axons transmits β activity to the muscles or, alternatively, the entire population does and natural cancellation of slow channels occurs because of the distribution of axon diameters in the corticospinal tract.
Collapse
Affiliation(s)
- J Ibáñez
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - A Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen 91052, Germany
| | - J C Rothwell
- Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - S N Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - D Farina
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Norton JA. Intermuscular Coherence in the Presence of Electrical Stimulation. Front Syst Neurosci 2021; 15:647430. [PMID: 34017239 PMCID: PMC8129195 DOI: 10.3389/fnsys.2021.647430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The nervous system uses oscillations to convey information efficiently. Inter-muscular coherence in the 15-35 Hz range is thought to represent common cortical drive to muscles, but is also in the frequency band in which electrical stimulation is applied to restore movement following neurological disease or injury. We wished to determine if, when stimulation is applied at the peak frequency of the coherence spectra it was still possible to determine voluntary effort. Using healthy human subjects we stimulated muscles in the arms and legs, separate experiments, while recording EMG activity from pairs of muscles including the stimulated muscles. Offline coherence analysis was performed. When stimulation is greater than motor threshold, and applied at the peak of the coherence spectra a new peak appears in the spectra, presumably representing a new frequency of oscillation within the nervous system. This does not appear at lower stimulation levels, or with lower frequencies. The nervous system is capable of switching oscillatory frequencies to account for noise in the environment.
Collapse
Affiliation(s)
- Jonathan A Norton
- Division of Neurosurgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Glories D, Soulhol M, Amarantini D, Duclay J. Specific modulation of corticomuscular coherence during submaximal voluntary isometric, shortening and lengthening contractions. Sci Rep 2021; 11:6322. [PMID: 33737659 PMCID: PMC7973785 DOI: 10.1038/s41598-021-85851-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
During voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time-frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.
Collapse
Affiliation(s)
- Dorian Glories
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - Mathias Soulhol
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - David Amarantini
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| | - Julien Duclay
- grid.15781.3a0000 0001 0723 035XToNIC, Université de Toulouse, Inserm, UPS, Toulouse, France ,grid.15781.3a0000 0001 0723 035XFaculty of Sport Science, University Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Compression Sleeve Changes Corticomuscular Connectivity and Sensorimotor Function. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Rong P, Pattee GL. A potential upper motor neuron measure of bulbar involvement in amyotrophic lateral sclerosis using jaw muscle coherence. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:368-379. [PMID: 33522298 DOI: 10.1080/21678421.2021.1874993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To identify a novel, quantitative bulbar measure in amyotrophic lateral sclerosis (ALS) based on jaw muscle coherence. Methods: The myoelectric activities of masseter, anterior temporalis, and anterior belly of digastric were recorded bilaterally during a speech task in 12 individuals with ALS and 10 neurologically healthy controls, using surface electromyography. Coherence and directed coherence were calculated for all muscle pairs. The muscle pairs showing significant coherence and directed coherence in the beta-band (15-35 Hz) were identified and their mean beta-band coherence were (1) correlated with the kinematic (i.e. jaw acceleration time) and functional speech (i.e. speaking rate) measures that have been previously identified to be affected by bulbar ALS, across all participants, and (2) evaluated in terms of their efficacy in differentiating individuals with ALS from healthy controls. Results: Beta-band coherence was in general reduced in ALS relative to healthy controls, with the antagonistic and homologous muscle pairs being more affected than the agonistic pairs. Among all muscle pairs, the coherence between masseter and digastric (1) showed the strongest correlations with jaw acceleration time and speaking rate, and (2) differentiated individuals with ALS from healthy controls with the highest sensitivity (i.e. 0.92) and specificity (i.e. 0.90). Conclusions: Reduced beta-band coherence between masseter and digastric in ALS reflects weakened neural linkage between these muscles resulting from the disrupted cortical drive to the bulbar musculature. These findings provide preliminary evidence for jaw muscle coherence as a novel, quantitative measure of corticobulbar involvement, designed to improve bulbar assessment in ALS.
Collapse
Affiliation(s)
- Panying Rong
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
35
|
Aikio R, Laaksonen K, Sairanen V, Parkkonen E, Abou Elseoud A, Kujala J, Forss N. CMC is more than a measure of corticospinal tract integrity in acute stroke patients. NEUROIMAGE: CLINICAL 2021; 32:102818. [PMID: 34555801 PMCID: PMC8458977 DOI: 10.1016/j.nicl.2021.102818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/06/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
CMC is weaker and occurs at lower frequencies in acute stroke patients. Both afferent and efferent input signals contribute to CMC. CMC should not be used as a direct measure of corticospinal tract integrity.
In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15–30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magnetoencephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13–30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.
Collapse
|
36
|
Tomassini A, Maris E, Hilt P, Fadiga L, D’Ausilio A. Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biol 2020; 18:e3000898. [PMID: 33079930 PMCID: PMC7598921 DOI: 10.1371/journal.pbio.3000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Movements overtly sample sensory information, making sensory analysis an active-sensing process. In this study, we show that visual information sampling is not just locked to the (overt) movement dynamics but to the internal (covert) dynamics of cortico-motor control. We asked human participants to perform continuous isometric contraction while detecting unrelated and unpredictable near-threshold visual stimuli. The motor output (force) shows zero-lag coherence with brain activity (recorded via electroencephalography) in the beta-band, as previously reported. In contrast, cortical rhythms in the alpha-band systematically forerun the motor output by 200 milliseconds. Importantly, visual detection is facilitated when cortico-motor alpha (not beta) synchronization is enhanced immediately before stimulus onset, namely, at the optimal phase relationship for sensorimotor communication. These findings demonstrate an ongoing coupling between visual sampling and motor control, suggesting the operation of an internal and alpha-cycling visuomotor loop.
Collapse
Affiliation(s)
- Alice Tomassini
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- * E-mail:
| | - Eric Maris
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Nijmegen, The Netherlands
| | - Pauline Hilt
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| | - Alessandro D’Ausilio
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| |
Collapse
|
37
|
Watanabe T, Nojima I, Mima T, Sugiura H, Kirimoto H. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. Neuroimage 2020; 220:117089. [DOI: 10.1016/j.neuroimage.2020.117089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022] Open
|
38
|
Yokoyama H, Yoshida T, Zabjek K, Chen R, Masani K. Defective corticomuscular connectivity during walking in patients with Parkinson's disease. J Neurophysiol 2020; 124:1399-1414. [PMID: 32938303 DOI: 10.1152/jn.00109.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gait disturbances are common in individuals with Parkinson's disease (PD). Although the basic patterns of walking are thought to be controlled by the brainstem and spinal networks, recent studies have found significant corticomuscular coherence in healthy individuals during walking. However, it still remains unknown how PD affects the cortical control of muscles during walking. As PD typically develops in older adults, it is important to investigate the effects of both aging and PD when examining disorders in patients with PD. Here, we assessed the effects of PD and aging on corticomuscular communication during walking by investigating corticomuscular coherence. We recorded electroencephalographic and electromyographic signals in 10 individuals with PD, 9 healthy older individuals, and 15 healthy young individuals. We assessed the corticomuscular coherence between the motor cortex and two lower leg muscles, tibialis anterior (TA) and medial gastrocnemius, during walking. Older and young groups showed sharp peaks in muscle activation patterns at specific gait phases, whereas the PD group showed prolonged patterns. Smaller corticomuscular coherence was found in the PD group compared with the healthy older group in the α band (8-12 Hz) for both muscles, and in the β band (16-32 Hz) for TA. Older and young groups did not differ in the magnitude of corticomuscular coherence. Our results indicated that PD decreased the corticomuscular coherence during walking, whereas it was not affected by aging. This lower corticomuscular coherence in PD may indicate lower-than-normal corticomuscular communication, although direct or indirect communication is unknown, and may cause impaired muscle control during walking.NEW & NOTEWORTHY Mechanisms behind how Parkinson's disease (PD) affects cortical control of muscles during walking remain unclear. As PD typically develops in the elderly, investigation of aging effects is important to examine deficits regarding PD. Here, we demonstrated that PD causes weak corticomuscular synchronization during walking, but aging does not. This lower-than-normal corticomuscular communication may cause impaired muscle control during walking.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takashi Yoshida
- Applied Rehabilitation Technology Lab (ART-Lab), University Medical Center Göttingen, Göttingen, Germany
| | - Karl Zabjek
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, Ontario, Canada
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Zhang X, Li H, Xie T, Liu Y, Chen J, Long J. Movement speed effects on beta-band oscillations in sensorimotor cortex during voluntary activity. J Neurophysiol 2020; 124:352-359. [PMID: 32579410 DOI: 10.1152/jn.00238.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-band oscillations are a dominant feature in the sensorimotor system, which includes movement-related beta desynchronization (MRBD) during the preparation and execution phases of movement and postmovement beta synchronization (PMBS) on movement cessation. Many studies have linked this rhythm to motor functions. However, its associations to the movement speed are still unclear. We make a hypothesis that PMBS will be modulated with increasing of movement speeds. We assessed the MRBD and PMBS during isotonic slower self-paced and ballistic movements with 15 healthy subjects. Furthermore, we conduct an additional control experiment with the isometric contraction with two levels of forces to match those in the isotonic slower self-paced and ballistic movements separately. We found that the amplitude of PMBS but not MRBD in motor cortex is modulated by the speed during voluntary movement. PMBS was positively correlated with movement speed and acceleration through the partial correlation analysis. However, there were no changes in the PMBS and MRBD during the isometric contraction with two levels of forces. These results demonstrate a different function of PMBS and MRBD to the movement speed during voluntary activity and suggest that the movement speed would affect the amplitude of PMBS.NEW & NOTEWORTHY Beta-band oscillations are a dominant feature in the sensorimotor system that associate to the motor function. We found that the movement-related postmovement beta synchronization (PMBS) over the contralateral sensorimotor cortex was positively correlated with the speed of a voluntary movement, but the movement-related beta desynchronization (MRBD) was not. Our results show a differential response of the PMBS and MRBD to the movement speed during voluntary movement.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hualiang Li
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Tingjun Xie
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Yuzhong Liu
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Juan Chen
- School of Psychology, Center for the Study of Applied Psychology, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong Province, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Chikara RK, Lo WC, Ko LW. Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence. SENSORS 2020; 20:s20061722. [PMID: 32204504 PMCID: PMC7147711 DOI: 10.3390/s20061722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022]
Abstract
Inhibitory control is a cognitive process that inhibits a response. It is used in everyday activities, such as driving a motorcycle, driving a car and playing a game. The effect of this process can be compared to the red traffic light in the real world. In this study, we investigated brain connectivity under human inhibitory control using the phase lag index and inter-trial coherence (ITC). The human brain connectivity gives a more accurate representation of the functional neural network. Results of electroencephalography (EEG), the data sets were generated from twelve healthy subjects during left and right hand inhibitions using the auditory stop-signal task, showed that the inter-trial coherence in delta (1-4 Hz) and theta (4-7 Hz) band powers increased over the frontal and temporal lobe of the brain. These EEG delta and theta band activities neural markers have been related to human inhibition in the frontal lobe. In addition, inter-trial coherence in the delta-theta and alpha (8-12 Hz) band powers increased at the occipital lobe through visual stimulation. Moreover, the highest brain connectivity was observed under inhibitory control in the frontal lobe between F3-F4 channels compared to temporal and occipital lobes. The greater EEG coherence and phase lag index in the frontal lobe is associated with the human response inhibition. These findings revealed new insights to understand the neural network of brain connectivity and underlying mechanisms during human response inhibition.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Cheng Lo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: (W.-C.L.); (L.-W.K.)
| | - Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan
- The Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (W.-C.L.); (L.-W.K.)
| |
Collapse
|
41
|
Pattern Reorganization of Corticomuscular Connection with the Tactile Stimulation. Ann Biomed Eng 2019; 48:834-847. [PMID: 31811473 DOI: 10.1007/s10439-019-02421-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Sensitivity to tactile stimuli is an indispensable feedback in human motion control. However, previous studies on tactile stimulation mainly focused on the effects of superficial tactile stimulation on the motor cortex, but the role of deep tactile feedback stimulation in motor tasks is not clear. Corticomuscular coherence (CMC) is an effective method for studying dynamic motion tasks. Recent evidence suggests that CMC is enhanced by tactile stimulation in the beta-band. But, the mechanism of tactile stimulation in dynamic motor tasks is still undetermined. In order to explore the role of tactile stimulation in dynamic motion tasks, we examined the correlation between EEG/EMG in a motor task with tactile stimulus input, including the corticomuscular coherence and the causal connections (convergent cross mapping, CCM). In this study, seventeen subjects were recruited to complete stimuli and non-stimuli motor tasks. After the experiment, the time-frequency analysis of CMC showed that the somatosensory association cortex was clearly involved in the dynamic motor tasks. During the contraction of hand muscles, the activity of CMC was concentrated in gamma band, while in the maintenance process, it was concentrated in beta-band. After eliminating the distractors of attention, we did not find a similar result as previous studies had found-tactile stimuli lead to increased CMC activity in gamma band. On the contrary, CCM causality analysis showed that tactile stimulation could significantly enhance the connection between the cerebral cortex and a muscle. We speculate that tactile stimulation can enhance the corticomuscular causal relationship, and that the effect of tactile stimulation on corticomuscular coherence may have more complex mechanisms. This study provides new insights into neural mechanism of tactile feedback and provides more information about the causality of brain networks in tactile feedback task.
Collapse
|
42
|
Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. Neuroimage 2019; 203:116177. [DOI: 10.1016/j.neuroimage.2019.116177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023] Open
|
43
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Macerollo A, Limousin P, Korlipara P, Foltynie T, Edwards MJ, Kilner J. Dopaminergic Modulation of Sensory Attenuation in Parkinson's Disease: Is There an Underlying Modulation of Beta Power? Front Neurol 2019; 10:1001. [PMID: 31620072 PMCID: PMC6759719 DOI: 10.3389/fneur.2019.01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Pathological high amplitude of beta oscillations is thought as the underlying mechanism of motor symptoms in Parkinson's disease (PD), in particular with regard to bradykinesia. In addition, abnormality in a neurophysiological phenomenon labeled sensory attenuation has been found in patients with PD. The current study explored the hypothesis that the abnormal sensory attenuation has a causal link with the typical abnormality in beta oscillations in PD. Methods: The study tested sixteen right-handed patients with a diagnosis of PD and 22 healthy participants, which were matched by age and gender. Somatosensory evoked potentials were elicited through electrical stimulation of the median nerve at the wrist. Electrical activity was recorded at the scalp using a 128 channels EEG. Somatosensory evoked potentials were recorded in 2 conditions: at rest and at the onset of a voluntary movement, which was a self-paced abduction movement of the right thumb. Results: Healthy participants showed a reduction of the N20-P25 amplitude at the onset of the right thumb abduction compared to the rest condition (P < 0.05). When patients were OFF medication, they showed mild reduction of the N20-P25 component at movement onset (P < 0.05). On the contrary, they did show greater attenuation of the N20-P25 component at the onset of movement compared to the rest condition when ON medication (P < 0.05). There was no significant evidence of a link between the degree of sensory attenuation and the change in beta oscillations in our cohort of patients. Conclusion: These results confirmed a significant link between dopaminergic modulation and sensory attenuation. However, the sensory attenuation and beta oscillations were found as two independent phenomena.
Collapse
Affiliation(s)
- Antonella Macerollo
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.,School of Psychology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom.,National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Patricia Limousin
- National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Prasad Korlipara
- National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Tom Foltynie
- National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Institute of Neurology, University College of London, London, United Kingdom
| | - Mark J Edwards
- Department of Neurology, St George's University of London, London, United Kingdom
| | - James Kilner
- Institute of Neurology, University College of London, London, United Kingdom
| |
Collapse
|
45
|
Chikara RK, Ko LW. Modulation of the Visual to Auditory Human Inhibitory Brain Network: An EEG Dipole Source Localization Study. Brain Sci 2019; 9:E216. [PMID: 31461954 PMCID: PMC6770157 DOI: 10.3390/brainsci9090216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Auditory alarms are used to direct people's attention to critical events in complicated environments. The capacity for identifying the auditory alarms in order to take the right action in our daily life is critical. In this work, we investigate how auditory alarms affect the neural networks of human inhibition. We used a famous stop-signal or go/no-go task to measure the effect of visual stimuli and auditory alarms on the human brain. In this experiment, go-trials used visual stimulation, via a square or circle symbol, and stop trials used auditory stimulation, via an auditory alarm. Electroencephalography (EEG) signals from twelve subjects were acquired and analyzed using an advanced EEG dipole source localization method via independent component analysis (ICA) and EEG-coherence analysis. Behaviorally, the visual stimulus elicited a significantly higher accuracy rate (96.35%) than the auditory stimulus (57.07%) during inhibitory control. EEG theta and beta band power increases in the right middle frontal gyrus (rMFG) were associated with human inhibitory control. In addition, delta, theta, alpha, and beta band increases in the right cingulate gyrus (rCG) and delta band increases in both right superior temporal gyrus (rSTG) and left superior temporal gyrus (lSTG) were associated with the network changes induced by auditory alarms. We further observed that theta-alpha and beta bands between lSTG-rMFG and lSTG-rSTG pathways had higher connectivity magnitudes in the brain network when performing the visual tasks changed to receiving the auditory alarms. These findings could be useful for further understanding the human brain in realistic environments.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Wei Ko
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Swartz Center for Computational Neuroscience, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
46
|
Canonical maximization of coherence: A novel tool for investigation of neuronal interactions between two datasets. Neuroimage 2019; 201:116009. [PMID: 31302256 DOI: 10.1016/j.neuroimage.2019.116009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing synchronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG (electromyographic)/LFP (local field potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. This allows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.
Collapse
|
47
|
Corticospinal control of normal and visually guided gait in healthy older and younger adults. Neurobiol Aging 2019; 78:29-41. [DOI: 10.1016/j.neurobiolaging.2019.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 01/18/2023]
|
48
|
Cognitive and White-Matter Compartment Models Reveal Selective Relations between Corticospinal Tract Microstructure and Simple Reaction Time. J Neurosci 2019; 39:5910-5921. [PMID: 31123103 PMCID: PMC6650993 DOI: 10.1523/jneurosci.2954-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
The speed of motor reaction to an external stimulus varies substantially between individuals and is slowed in aging. However, the neuroanatomical origins of interindividual variability in reaction time (RT) remain unclear. Here, we combined a cognitive model of RT and a biophysical compartment model of diffusion-weighted MRI (DWI) to characterize the relationship between RT and microstructure of the corticospinal tract (CST) and the optic radiation (OR), the primary motor output and visual input pathways associated with visual-motor responses. We fitted an accumulator model of RT to 46 female human participants' behavioral performance in a simple reaction time task. The non-decision time parameter (T er) derived from the model was used to account for the latencies of stimulus encoding and action initiation. From multi-shell DWI data, we quantified tissue microstructure of the CST and OR with the neurite orientation dispersion and density imaging (NODDI) model as well as the conventional diffusion tensor imaging model. Using novel skeletonization and segmentation approaches, we showed that DWI-based microstructure metrics varied substantially along CST and OR. The T er of individual participants was negatively correlated with the NODDI measure of the neurite density in the bilateral superior CST. Further, we found no significant correlation between the microstructural measures and mean RT. Thus, our findings suggest a link between interindividual differences in sensorimotor speed and selective microstructural properties in white-matter tracts.SIGNIFICANCE STATEMENT How does our brain structure contribute to our speed to react? Here, we provided anatomically specific evidence that interindividual differences in response speed is associated with white-matter microstructure. Using a cognitive model of reaction time (RT), we estimated the non-decision time, as an index of the latencies of stimulus encoding and action initiation, during a simple reaction time task. Using an advanced microstructural model for diffusion MRI, we estimated the tissue properties and their variations along the corticospinal tract and optic radiation. We found significant location-specific correlations between the microstructural measures and the model-derived parameter of non-decision time but not mean RT. These results highlight the neuroanatomical signature of interindividual variability in response speed along the sensorimotor pathways.
Collapse
|
49
|
Liu J, Sheng Y, Liu H. Corticomuscular Coherence and Its Applications: A Review. Front Hum Neurosci 2019; 13:100. [PMID: 30949041 PMCID: PMC6435838 DOI: 10.3389/fnhum.2019.00100] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Corticomuscular coherence (CMC) is an index utilized to indicate coherence between brain motor cortex and associated body muscles, conventionally. As an index of functional connections between the cortex and muscles, CMC research is the focus of neurophysiology in recent years. Although CMC has been extensively studied in healthy subjects and sports disorders, the purpose of its applications is still ambiguous, and the magnitude of CMC varies among individuals. Here, we aim to investigate factors that modulate the variation of CMC amplitude and compare significant CMC between these factors to find a well-developed research prospect. In the present review, we discuss the mechanism of CMC and propose a general definition of CMC. Factors affecting CMC are also summarized as follows: experimental design, band frequencies and force levels, age correlation, and difference between healthy controls and patients. In addition, we provide a detailed overview of the current CMC applications for various motor disorders. Further recognition of the factors affecting CMC amplitude can clarify the physiological mechanism and is beneficial to the implementation of CMC clinical methods.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Hwang IS, Hu CL, Yang ZR, Lin YT, Chen YC. Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms. Front Physiol 2019; 10:131. [PMID: 30842742 PMCID: PMC6391708 DOI: 10.3389/fphys.2019.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Although error amplification (EA) feedback has been shown to improve performance on visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant information that may impair visuomotor control. The purpose of this study was to improve the force control in a static task by preclusion of high-oscillatory components in EA feedback that cannot be timely used for error correction by the visuomotor system. Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc) were modeled with non-linear SDA to contrast the reliance of the feedback process and underlying neurophysiological mechanisms by using real feedback, EA, and low-frequency error amplification (LF-EA). During the static force task in the experiment, the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did not channel high-frequency errors above 0.8 Hz into the amplification process. The results showed that task accuracy was greater with the LF-EA than with the real and EA feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term effective diffusion coefficient, and short-term exponent scaling) than did real feedback and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but decreased the RMS of the mean discharge rate, estimated with pooled MU spike trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition were the greatest among the three feedback conditions. In summary, amplification of low-frequency errors improves force control by shifting the relative significances of the feedforward and feedback processes. The functional benefit arises from the increase in the common descending drive to promote a stable state of MU discharges.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zong-Ru Yang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|