1
|
Hashitani H, Takeya M, van Helden DF. Commonality and heterogeneity of pacemaker mechanisms in the male reproductive organs. J Physiol 2024. [PMID: 38607187 DOI: 10.1113/jp284756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
During emission, the first phase of ejaculation, smooth muscle in organs of the male reproductive tract (MRT) vigorously contract upon sympathetic nerve excitation to expel semen consisting of sperm and seminal plasma. During inter-ejaculation phases, the epididymis, seminal vesicles and prostate undergo spontaneous phasic contractions (SPCs), this transporting and maintaining the quality of sperm and seminal plasma. Recent studies have revealed platelet-derived growth factor receptor α-expressing (PDGFRα+) subepithelial interstitial cells in seminal vesicles subserve the role of pacemaker cells that electrically drive SPCs in this organ. PDGFRα+ smooth muscle cells in the epididymis also appear to function as pacemaker cells implicating PDGFRα as a potential signature molecule in MRT pacemaking. The dominant mechanism driving pacemaking in these organs is the cytosolic Ca2+ oscillator. This operates through entrainment of the release-refill cycle of Ca2+ stores, the released Ca2+ ions opening Ca2+-activated chloride channels, including in some cases ANO1 (TMEM16A), with the resultant pacemaker potential activating L-type voltage-dependent Ca2+ channels in the smooth muscle causing contraction (viz. SPCs). A second pacemaker mechanism, namely the membrane oscillator also has a role in specific cases. Further investigations into the commonality and heterogeneity of MRT pacemakers will open an avenue for understanding the pathogenesis of male infertility associated with deterioration of seminal plasma.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mitsue Takeya
- Division of Integrated Autonomic Function, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, Faculty of Health, Medicine and Wellbeing & Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
2
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
3
|
Drumm BT, Thornbury KD, Hollywood MA, Sergeant GP. Role of Ano1 Ca 2+-activated Cl - channels in generating urethral tone. Am J Physiol Renal Physiol 2021; 320:F525-F536. [PMID: 33554780 DOI: 10.1152/ajprenal.00520.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Urinary continence is maintained in the lower urinary tract by the contracture of urethral sphincters, including smooth muscle of the internal urethral sphincter. These contractions occlude the urethral lumen, preventing urine leakage from the bladder to the exterior. Over the past 20 years, research on the ionic conductances that contribute to urethral smooth muscle contractility has greatly accelerated. A debate has emerged over the role of interstitial cell of Cajal (ICC)-like cells in the urethra and their expression of Ca2+-activated Cl- channels encoded by anoctamin-1 [Ano1; transmembrane member 16 A (Tmem16a) gene]. It has been proposed that Ano1 channels expressed in urethral ICC serve as a source of depolarization for smooth muscle cells, increasing their excitability and contributing to tone. Although a clear role for Ano1 channels expressed in ICC is evident in other smooth muscle organs, such as the gastrointestinal tract, the role of these channels in the urethra is unclear, owing to differences in the species (rabbit, rat, guinea pig, sheep, and mouse) examined and experimental approaches by different groups. The importance of clarifying this situation is evident as effective targeting of Ano1 channels may lead to new treatments for urinary incontinence. In this review, we summarize the key findings from different species on the role of ICC and Ano1 channels in urethral contractility. Finally, we outline proposals for clarifying this controversial and important topic by addressing how cell-specific optogenetic and inducible cell-specific genetic deletion strategies coupled with advances in Ano1 channel pharmacology may clarify this area in future studies.NEW & NOTEWORTHY Studies from the rabbit have shown that anoctamin-1 (Ano1) channels expressed in urethral interstitial cells of Cajal (ICC) serve as a source of depolarization for smooth muscle cells, increasing excitability and tone. However, the role of urethral Ano1 channels is unclear, owing to differences in the species examined and experimental approaches. We summarize findings from different species on the role of urethral ICC and Ano1 channels in urethral contractility and outline proposals for clarifying this topic using cell-specific optogenetic approaches.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
4
|
Proliferation of Interstitial Cells in the Cyclophosphamide-Induced Cystitis and the Preventive Effect of Imatinib. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3457093. [PMID: 28698872 PMCID: PMC5494099 DOI: 10.1155/2017/3457093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/21/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
Cyclophosphamide- (CYP-) induced cystitis in the rat is a well-known model of bladder inflammation that leads to an overactive bladder, a process that appears to involve enhanced nitric oxide (NO) production. We investigated the changes in the number and distribution of interstitial cells (ICs) and in the expression of endothelial NO synthase (eNOS) in the bladder and urethra of rats subjected to either intermediate or chronic CYP treatment. Pronounced hyperplasia and hypertrophy of ICs were evident within the lamina propria and in the muscle layer. IC immunolabeling with CD34, PDGFRα, and vimentin was enhanced, as reflected by higher colocalization indexes of the distinct pairs of markers. Moreover, de novo expression of eNOS was evident in vimentin and CD34 positive ICs. Pretreatment with the receptor tyrosine kinase inhibitor Imatinib prevented eNOS expression and ICs proliferation, as well as the increased voiding frequency and urinary tract weight provoked by CYP. As similar results were obtained in the urethra, urethritis may contribute to the uropathology of CYP-induced cystitis.
Collapse
|
5
|
Gajewski JB, Rosier PF, Rahnama'i S, Abrams P. Do we assess urethral function adequately in LUTD and NLUTD? ICI-RS 2015. Neurourol Urodyn 2017; 36:935-942. [DOI: 10.1002/nau.23100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/29/2016] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Sajjad Rahnama'i
- Departemnt of Urology; Maastricht University; Maastricht The Netherlands
| | - Paul Abrams
- Department of Urology; Bristol Urological Institute; Bristol United Kingdom
| |
Collapse
|
6
|
Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci 2017; 18:ijms18020397. [PMID: 28208829 PMCID: PMC5343932 DOI: 10.3390/ijms18020397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
- Engineering Faculty, Constantin Brancusi University, Calea Eroilor 30, Targu Jiu 210135, Romania.
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
| | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania.
| | - Dragos Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| | - Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
7
|
Kostin S. Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol 2016; 55:22-30. [PMID: 26912117 DOI: 10.1016/j.semcdb.2016.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022]
|
8
|
Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol 2015; 593:3333-50. [PMID: 26046824 DOI: 10.1113/jp270883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Tonic contractions of rabbit urethra are associated with spontaneous electrical slow waves that are thought to originate in pacemaker cells termed interstitial cells of Cajal (ICC). ICC pacemaker activity results from their ability to generate propagating Ca(2+) waves, although the exact mechanisms of propagation are not understood. In this study, we have identified spontaneous localised Ca(2+) events for the first time in urethral ICC; these were due to Ca(2+) release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) and, while they often remained localised, they sometimes initiated propagating Ca(2+) waves. We show that propagation of Ca(2+) waves in urethral ICC is critically dependent upon Ca(2+) influx via reverse mode NCX. Our data provide a clearer understanding of the intracellular mechanisms involved in the generation of ICC pacemaker activity. Interstitial cells of Cajal (ICC) are putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous propagating Ca(2+) waves that are modulated by [Ca(2+)]o and whose propagation is inhibited by inositol tri-phosphate receptor (IP3 R) blockers. The purpose of this study was to further examine the role of Ca(2+) influx and Ca(2+) release in the propagation of Ca(2+) waves. Intracellular Ca(2+) was measured in Fluo-4-loaded ICC using a Nipkow spinning disc confocal microscope at fast acquisition rates (50 fps). We identified previously undetected localised Ca(2+) events originating from ryanodine receptors (RyRs). Inhibiting Ca(2+) influx by removing [Ca(2+)]o or blocking reverse mode sodium-calcium exchange (NCX) with KB-R 7943 or SEA-0400 abolished Ca(2+) waves, while localised Ca(2+) events persisted. Stimulating RyRs with 1 mm caffeine restored propagation. Propagation was also inhibited when Ca(2+) release sites were uncoupled by buffering intracellular Ca(2+) with EGTA-AM. This was reversed when Ca(2+) influx via NCX was increased by reducing [Na(+)]o to 13 mm. Low [Na(+)]o also increased the frequency of Ca(2+) waves and this effect was blocked by tetracaine and ryanodine but not 2-aminoethoxydiphenyl borate (2-APB). RT-PCR revealed that isolated ICC expressed both RyR2 and RyR3 subtypes. We conclude: (i) RyRs are required for the initiation of Ca(2+) waves, but wave propagation normally depends on activation of IP3 Rs; (ii) under resting conditions, propagation by IP3 Rs requires sensitisation by influx of Ca(2+) via reverse mode NCX; (iii) propagation can be maintained by RyRs if they have been sensitised to Ca(2+).
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.,Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| |
Collapse
|
9
|
Dodds KN, Staikopoulos V, Beckett EAH. Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade. Biol Reprod 2015; 92:141. [PMID: 25926436 DOI: 10.1095/biolreprod.115.129809] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 11/01/2022] Open
Abstract
Mechanisms involved in the generation of spontaneous uterine contractions are not fully understood. Kit-expressing interstitial cells of Cajal are pacemakers of contractile rhythm in other visceral organs, and recent studies describe a role for Ca(2+)-activated Cl(-) currents as the initiating conductance in these cells. The existence and role of similar specialized pacemaker cells in the nonpregnant uterus remains undetermined. Spontaneous contractility patterns were characterized throughout the estrous cycle in isolated, nonpregnant mouse uteri using spatiotemporal mapping and tension recordings. During proestrus, estrus, and diestrus, contraction origin predominated in the oviduct end of the uterus, suggesting the existence of a dominant pacemaker site. Propagation speed of contractions during estrus and diestrus were significantly slower than in proestrus and metestrus. Five major patterns of activity were predominantly exhibited in particular stages: quiescent (diestrus), high-frequency phasic (proestrus), low-frequency phasic (estrus), multivariant (metestrus), and complex. Kit-immunopositive cells reminiscent of pacemaking ICCs were not consistently observed within the uterus. Niflumic acid (10 μM), anthracene-9-carboxylic acid (0.1-1 mM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (10 μM) each reduced the frequency of spontaneous contractions, suggesting involvement of Cl(-) channels in generating spontaneous uterine motor activity. It is unlikely that this conductance is generated by the Ca(2+)-activated Cl(-) channels, anoctamin-1 and CLCA4, as immunohistochemical labeling did not reveal protein expression within muscle or pacemaker cell networks. In summary, these results suggest that spontaneous uterine contractions may be generated by a Kit-negative pacemaker cell type or uterine myocytes, likely involving the activity of a yet-unidentified Cl(-) channel.
Collapse
Affiliation(s)
- Kelsi N Dodds
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Vasiliki Staikopoulos
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Elizabeth A H Beckett
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Drumm BT, Sergeant GP, Hollywood MA, Thornbury KT, Matsuda TT, Baba A, Harvey BJ, McHale NG. The effect of high [K(+)]o on spontaneous Ca(2+) waves in freshly isolated interstitial cells of Cajal from the rabbit urethra. Physiol Rep 2014; 2:e00203. [PMID: 24744882 PMCID: PMC3967686 DOI: 10.1002/phy2.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 11/20/2022] Open
Abstract
Interstitial cells of Cajal (ICC) act as putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous global Ca2+ waves that can be increased in frequency by raising external [K+]. The purpose of this study was to elucidate the mechanism of this response. Intracellular [Ca2+] was measured in fluo‐4‐loaded smooth muscle cells (SMCs) and ICC using a Nipkow spinning disk confocal microscope. Increasing [K+]o to 60 mmol/L caused an increase in [Ca2+]i accompanied by contraction in SMCs. Raising [K+]o did not cause contraction in ICC, but the frequency of firing of spontaneous calcium waves increased. Reducing [Ca2+]o to 0 mmol/L abolished the response in both cell types. Nifedipine of 1 μmol/L blocked the response of SMC to high [K+]o, but did not affect the increase in firing in ICC. This latter effect was blocked by 30 μmol/L NiCl2 but not by the T‐type Ca2+ channel blocker mibefradil (300 nmol/L). However, inhibition of Ca2+ influx via reverse‐mode sodium/calcium exchange (NCX) using either 1 μmol/L SEA0400 or 5 μmol/L KB‐R7943 did block the effect of high [K+]o on ICC. These data suggest that high K+ solution increases the frequency of calcium waves in ICC by increasing Ca2+ influx through reverse‐mode NCX. Pacemaker activity in ICC results from spontaneous global Ca2+ waves that can be increased in frequency by raising external [K+]. The experiments described support the hypothesis that high K+ solution increases the frequency of calcium waves in ICC by increasing Ca2+ influx through reverse‐mode NCX.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, DundalkCo. Louth, Ireland ; Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, DundalkCo. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, DundalkCo. Louth, Ireland
| | - Keith T Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, DundalkCo. Louth, Ireland
| | - Toshio T Matsuda
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akemichi Baba
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, DundalkCo. Louth, Ireland
| |
Collapse
|
11
|
Li ZP, Qiu Y, Peng Y. Relationship between interstitial cells of Cajal and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2013; 21:3965-3970. [DOI: 10.11569/wcjd.v21.i35.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interstitial cells of Cajal are the pacemaker of gastrointestinal tract, which can generate electrical signals, conduct slow waves and regulate neurotransmitters. Irritable bowel syndrome (IBS) is a common gastrointestinal disease whose pathogenesis is very complicated, involving gastrointestinal motility disorders, visceral hypersensitivity, infection and abnormal secretion of gastrointestinal hormones. In recent years, it has been found that there are associations between interstitial cells of Cajal and gastrointestinal motility disorders, visceral hypersensitivity and abnormal secretion of gastrointestinal hormones. In this paper, we will review the recent progress in understanding the relationship between interstitial cells of Cajal and IBS.
Collapse
|
12
|
Al-Shboul OA. The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi J Gastroenterol 2013; 19:3-15. [PMID: 23319032 PMCID: PMC3603487 DOI: 10.4103/1319-3767.105909] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal (GI) motility function and its regulation is a complex process involving collaboration and communication of multiple cell types such as enteric neurons, interstitial cells of Cajal (ICC), and smooth muscle cells. Recent advances in GI research made a better understanding of ICC function and their role in the GI tract, and studies based on different types of techniques have shown that ICC, as an integral part of the GI neuromuscular apparatus, transduce inputs from enteric motor neurons, generate intrinsic electrical rhythmicity in phasic smooth muscles, and have a mechanical sensation ability. Absence or improper function of these cells has been linked to some GI tract disorders. This paper provides a general overview of ICC; their discovery, subtypes, function, locations in the GI tract, and some disorders associated with their loss or disease, and highlights some controversial issues with regard to the importance of ICC in the GI tract.
Collapse
Affiliation(s)
- Othman A Al-Shboul
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan.
| |
Collapse
|
13
|
Kanai A, Zabbarova I, Oefelein M, Radziszewski P, Ikeda Y, Andersson KE. Mechanisms of action of botulinum neurotoxins, β3-adrenergic receptor agonists, and PDE5 inhibitors in modulating detrusor function in overactive bladders: ICI-RS 2011. Neurourol Urodyn 2012; 31:300-8. [DOI: 10.1002/nau.21246] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/07/2011] [Indexed: 01/01/2023]
|
14
|
Sancho M, García-Pascual A, Triguero D. Presence of the Ca2+-activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. Am J Physiol Renal Physiol 2011; 302:F390-400. [PMID: 22114201 DOI: 10.1152/ajprenal.00344.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the cellular distribution of the calcium-activated chloride channel (CaCC), anoctamin 1, in the urethra of mice, rats, and sheep by both immunofluorescence and PCR. We studied its role in urethral contractility by examining the effects of chloride-free medium and of several CaCC inhibitors on noradrenergic and cholinergic excitatory responses, and on nitrergic relaxations in urethral preparations. In all species analyzed, CaCC played a key role in urethral contractions, influencing smooth muscle cells activated by increases in intracellular calcium, probably due to calcium influx but with a minor contribution by IP(3)-mediated calcium release. The participation of CaCC in relaxant responses was negligible. Strong anoctamin 1 immunoreactivity was detected in the smooth muscle cells and urothelia of sheep, rat, and mouse urethra, but not in the interstitial cells of Cajal (ICC) in any of these species. RT-PCR confirmed the expression of anoctamin 1 mRNA in the rat urethra. This anoctamin 1 in urethral smooth muscle probably mediates the activity of chloride in contractile responses in different species, However, the lack of anoctamin 1 in ICCs challenges its proposed role in regulating urethral contractility in a manner similar to that observed in the gut.
Collapse
Affiliation(s)
- Maria Sancho
- Dept. of Physiology, Veterinary School, Madrid, Spain
| | | | | |
Collapse
|
15
|
Lowie BJ, Wang XY, White EJ, Huizinga JD. On the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol 2011; 301:G835-45. [PMID: 21836058 DOI: 10.1152/ajpgi.00077.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium oscillations in the ICC-MP are primarily regulated by the sarcoplasmic reticulum (SR) calcium release system. With the use of calcium imaging, study of the effect of T-type calcium channel blocker mibefradil revealed that T-type channels did not play a major role in generating the calcium transients. 2-Aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate receptor (IP(3)R) inhibitor, and U73122, a phospholipase C inhibitor, both drastically decreased the frequency of calcium oscillations, suggesting a major role of IP(3) and IP(3)-induced calcium release from the SR. Immunohistochemistry proved the expression of IP(3)R type I (IP(3)R-I), but not type II (IP(3)R-II) and type III (IP(3)R-III) in ICC-MP, indicating the involvement of the IP(3)R-I subtype in calcium release from the SR. Cyclopiazonic acid, a SR/endoplasmic reticulum calcium ATPase pump inhibitor, strongly reduced or abolished calcium oscillations. The Na-Ca exchanger (NCX) in reverse mode is likely involved in refilling the SR because the NCX inhibitor KB-R7943 markedly reduced the frequency of calcium oscillations. Immunohistochemistry revealed 100% colocalization of NCX and c-Kit in ICC-MP. Testing a mitochondrial NCX inhibitor, we were unable to show an essential role for mitochondria in regulating calcium oscillations in the ICC-MP. In summary, ongoing IP(3) synthesis and IP(3)-induced calcium release from the SR, via the IP(3)R-I, are the major drivers of the calcium transients associated with ICC pacemaker activity. This suggests that a biochemical clock intrinsic to ICC determines the pacemaker frequency, which is likely directly linked to kinetics of the IP(3)-activated SR calcium channel and IP(3) metabolism.
Collapse
Affiliation(s)
- Bobbi-Jo Lowie
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Dixon RE, Britton FC, Baker SA, Hennig GW, Rollings CM, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent on extracellular and intracellular calcium sources. Am J Physiol Cell Physiol 2011; 301:C1458-69. [PMID: 21881003 DOI: 10.1152/ajpcell.00293.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneous contractions of the myosalpinx are critical for oocyte transport along the oviduct. Slow waves, the electrical events that underlie myosalpinx contractions, are generated by a specialized network of pacemaker cells called oviduct interstitial cells of Cajal (ICC-OVI). The ionic basis of oviduct pacemaker activity is unknown. Intracellular recordings and Ca(2+) imaging were performed to examine the role of extracellular and intracellular Ca(2+) sources in slow wave generation. RT-PCR was performed to determine the transcriptional expression of Ca(2+) channels. Molecular studies revealed most isoforms of L- and T-type calcium channels (Cav1.2,1.3,1.4,3.1,3.2,3.3) were expressed in myosalpinx. Reduction of extracellular Ca(2+) concentration ([Ca(2+)](o)) resulted in the abolition of slow waves and myosalpinx contractions without significantly affecting resting membrane potential (RMP). Spontaneous Ca(2+) waves spread through ICC-OVI cells at a similar frequency to slow waves and were inhibited by reduced [Ca(2+)](o). Nifedipine depolarized RMP and inhibited slow waves; however, pacemaker activity returned when the membrane was repolarized with reduced extracellular K(+) concentration ([K(+)](o)). Ni(2+) also depolarized RMP but failed to block slow waves. The importance of ryanodine and inositol 1,4,5 trisphosphate-sensitive stores were examined using ryanodine, tetracaine, caffeine, and 2-aminoethyl diphenylborinate. Results suggest that although both stores are involved in regulation of slow wave frequency, neither are exclusively essential. The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor cyclopiazonic acid inhibited pacemaker activity and Ca(2+) waves suggesting that a functional SERCA pump is necessary for pacemaker activity. In conclusion, results from this study suggest that slow wave generation in the oviduct is voltage dependent, occurs in a membrane potential window, and is dependent on extracellular calcium and functional SERCA pumps.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Dept. of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Mónica FZ, Reges R, Cohen D, Silva FH, De Nucci G, D'Ancona CA, Antunes E. Long-term administration of BAY 41-2272 prevents bladder dysfunction in nitric oxide-deficient rats. Neurourol Urodyn 2010; 30:456-60. [DOI: 10.1002/nau.20992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 07/06/2010] [Indexed: 11/10/2022]
|
18
|
D'Ancona CAL, Mónica FZT, Reges R, Cohen D, Silva FHD, Nucci GD, Antunes E. Administration of BAY 41-2272 prevents bladder dysfunction in nitric-oxide deficient rats. EINSTEIN-SAO PAULO 2010; 8:404-9. [PMID: 26760319 DOI: 10.1590/s1679-45082010ao1789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE to evaluate the protective effects of BAY 41-2272, a soluble guanylate cyclase activator, on changes in cystometric parameters in rats deficient in nitric oxide (NO). METHODS Rats were divided into the following groups: (a) control; (b) DMSO; (c) L-NAME; (d) BAY 41-2272 alone; (e) L-NAME + BAY 41-2272. The NO synthase blocker L-NAME (20 mg/rat/day) was given in drinking water concomitantly or not with BAY 41-2272 (10 mg/kg/day, given by gavage). RESULTS Chronic L-NAME treatment markedly increased the mean arterial blood pressure, and co-treatment with BAY 41-2272 nearly reversed L-NAME-induced rise on mean arterial blood pressure. Non-void contractions were significantly increased in L-NAME group (0.90 ± 0.1 number/minute) compared with either DMSO or control group (0.49 ± 0.1 number/minute), which were prevented by co-treatment with BAY 41-2272 (0.56 ± 025 number/minute; p < 0.05). The threshold and peak pressure increased by 70 and 44%, respectively, after chronic L-NAME treatment, while co-treatment with BAY 41-2272 largely attenuated both effects (27 and 22% increase, respectively). The frequency of micturition cycles decreased by about of 50% in L-NAME-treated rats compared with control animals, and co-treatment with BAY 41-2272 normalized this parameter. CONCLUSIONS Our data show that long-term oral administration of BAY 41-2272 counteracts the bladder dysfunction seen in NO-deficient rats, indicating that restoration of the NO-cGMP pathway by this compound may be of beneficial value to treat bladder symptoms.
Collapse
Affiliation(s)
| | | | - Ricardo Reges
- Universidade Estadual de Campinas - UNICAMP, Campinas, SP, BR
| | - David Cohen
- Universidade Estadual de Campinas - UNICAMP, Campinas, SP, BR
| | | | | | - Edson Antunes
- Universidade Estadual de Campinas - UNICAMP, Campinas, SP, BR
| |
Collapse
|
19
|
Bayguinov PO, Hennig GW, Smith TK. Ca2+ imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine. J Physiol 2010; 588:4453-74. [PMID: 20876203 DOI: 10.1113/jphysiol.2010.196824] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Colonic migrating motor complexes (CMMCs) are neurally mediated, cyclical contractile and electrical events, which typically propagate along the colon every 2-3 min in the mouse. We examined the interactions between myenteric neurons, interstitial cells of Cajal in the myenteric region (ICC-MY) and smooth muscle cells during CMMCs using Ca(2+) imaging. CMMCs occurred spontaneously or were evoked by stimulating the mucosa locally, or by brushing it at either end of the colon. Between CMMCs, most ICC-MY were often quiescent; their lack of activity was correlated with ongoing Ca(2+) transients in varicosities on the axons of presumably inhibitory motor neurons that were on or surrounded ICC-MY. Ca(2+) transients in other varicosities initiated intracellular Ca(2+) waves in adjacent ICC-MY, which were blocked by atropine, suggesting they were on the axons of excitatory motor neurons. Following TTX (1 μM), or blockade of inhibitory neurotransmission with N(ω)-nitro-L-arginine (L-NA, a NO synthesis inhibitor, 10 μM) and MRS 2500 (a P2Y(1) antagonist, 1 μM), ongoing spark/puff like activity and rhythmic intracellular Ca(2+) waves (38.1 ± 2.9 cycles min(-1)) were observed, yet this activity was uncoupled, even between ICC-MY in close apposition. During spontaneous or evoked CMMCs there was an increase in the frequency (62.9 ± 1.4 cycles min(-1)) and amplitude of Ca(2+) transients in ICC-MY and muscle, which often had synchronized activity. At the same time, activity in varicosites along excitatory and inhibitory motor nerve fibres increased and decreased respectively, leading to an overall excitation of ICC-MY. Atropine (1 μM) reduced the evoked responses in ICC-MY, and subsequent addition of an NK1 antagonist (RP 67580, 500 nM) completely blocked the responses to stimulation, as did applying these drugs in reverse order. An NKII antagonist (MEN 10,376, 500 nM) had no effect on the evoked responses in ICC-MY. Following TTX application, carbachol (1 μM), substance P (1 μM) and an NKI agonist (GR73632, 100 nM) produced the fast oscillations superimposed on a slow increase in Ca(2+) in ICC-MY, whereas SNP (an NO donor, 10 μM) abolished all activity in ICC-MY. In conclusion, ICC-MY, which are under tonic inhibition, are pacemakers whose activity can be synchronized by excitatory nerves to couple the longitudinal and circular muscles during the CMMC. ICC-MY receive excitatory input from motor neurons that release acetylcholine and tachykinins acting on muscarinic and NK1 receptors, respectively.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|
20
|
Takaki M, Suzuki H, Nakayama S. Recent advances in studies of spontaneous activity in smooth muscle: ubiquitous pacemaker cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:129-35. [PMID: 20553741 DOI: 10.1016/j.pbiomolbio.2010.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
Abstract
The general and specific properties of pacemaker cells, including Kit-negative cells, that are distributed in gastrointestinal, urethral and uterine smooth muscle tissues, are discussed herein. In intestinal tissues, interstitial cells of Cajal (ICC) are heterogeneous in both their forms and roles. ICC distributed in the myenteric layer (ICC-MY) act as primary pacemaker cells for intestinal mechanical and electrical activity. ICC distributed in muscle bundles play a role as mediators of signals from autonomic nerves to smooth muscle cells. A group of ICC also appears to act as a stretch sensor. Intracellular Ca2+ dynamics play a crucial role in ICC-MY pacemaking; intracellular Ca2+ ([Ca2+](i)) oscillations periodically activate plasmalemmal Ca2+-activated ion channels, such as Ca2+-activated Cl(-) channels and/or non-selective cation channels, although the relative contributions of these channels are not defined. With respect to gut motility, both the ICC network and enteric nervous system, including excitatory and inhibitory enteric neurons, play an essential role in producing highly coordinated peristalsis.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan.
| | | | | |
Collapse
|
21
|
Triguero D, Sancho M, García-Flores M, García-Pascual A. Presence of cyclic nucleotide-gated channels in the rat urethra and their involvement in nerve-mediated nitrergic relaxation. Am J Physiol Renal Physiol 2009; 297:F1353-60. [PMID: 19710238 DOI: 10.1152/ajprenal.00403.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have addressed the distribution of cGMP-gated channels (CNG) in the rat urethra for the first time, as well as their putative role in mediating of the relaxation elicited by electrical field stimulation of nitrergic nerves. Functional studies have shown that specifically blocking CNG with L-cis-diltiazem leads to the rapid inhibition of urethral relaxation induced either by nitric oxide (NO) released by the nerves or by soluble guanylate cyclase activated with YC-1. By contrast, nerve-mediated noradrenergic contractions were only slowly and mildly reduced by L-cis-diltiazem. This effect was mimicked by lower concentrations of the D-diltiazem isomer, probably due to the nonspecific inhibition of voltage-dependent calcium channels. However, D-diltiazem did not affect relaxation responses. The expression of heteromeric retinal-like CNGA1 channels was demonstrated by conventional PCR on mRNA from the rat urethra. These channels were located in a subpopulation of intramuscular interstitial cells of Cajal (ICC) as well as in smooth muscle cells, although they were less abundant in the latter. CNG channels could not be visualized in any nervous structure within the urethral wall, in agreement with the emerging view that a subset of ICC serves as a target for NO. These channels could provide a suitable ionic mechanism to associate the changes in cytosolic calcium with the activation of the nitric NO-cGMP pathway and relaxation although the precise mechanisms involved remain to be elucidated.
Collapse
Affiliation(s)
- Domingo Triguero
- Department of Physiology, Veterinary School, Complutense University, Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Roosen A, Wu C, Sui G, Chowdhury RA, Patel PM, Fry CH. Characteristics of Spontaneous Activity in the Bladder Trigone. Eur Urol 2009; 56:346-53. [DOI: 10.1016/j.eururo.2008.06.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/12/2008] [Indexed: 11/29/2022]
|
23
|
Garcia-Lopez P, Garcia-Marin V, Martínez-Murillo R, Freire M. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal. ACTA ACUST UNITED AC 2009; 61:154-69. [PMID: 19520112 DOI: 10.1016/j.brainresrev.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 12/11/2022]
Abstract
Since their discovery by Cajal in 1889, the Interstitial Cells of Cajal (ICC) have generated much controversy in the scientific community. Indeed, the nervous, muscle or fibroblastic nature of the ICC has remained under debate for more than a century, as has their possible physiological function. Cajal and his colleagues considered them to be neurons, while contemporary histologists like Kölliker and Dogiel categorized these cells as fibroblasts. More recently, the role of ICC in the origin of slow-wave peristaltism has been elucidated, and several studies have shown that they participate in neurotransmission (intercalation theory). The fact that ICC assemble in the circular muscular layer and that they originate from cells which emerge from the ventral neural tube (VENT cells), a source of neurons, glia and ICC precursors other than the neural crest, suggests a neural origin for this particular subset of ICC. The discovery that ICC express the Kit protein, a type III tyrosine kinase receptor encoded by the proto-oncogene c-kit, has helped better understand their physiological role and implication in pathological conditions. Gleevec, a novel molecule designed to inhibit the mutant activated version of c-Kit receptors, is the drug of choice to treat the so-called gastrointestinal stromal tumours (GIST), the most common non-epithelial neoplasm of the gastrointestinal tract. Here we review Cajal's original contributions with the aid of unique images taken from Cajal's histological slides (preserved at the Cajal Museum, Cajal Institute, CSIC). In addition, we present a historical review of the concepts associated with this particular cell type, emphasizing current data that has advanced our understanding of the role these intriguing cells fulfil.
Collapse
Affiliation(s)
- P Garcia-Lopez
- Cajal Institute, CSIC, Avda Doctor Arce 37, 28002 - Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Exintaris B, Nguyen DTT, Lam M, Lang RJ. Inositol trisphosphate-dependent Ca stores and mitochondria modulate slow wave activity arising from the smooth muscle cells of the guinea pig prostate gland. Br J Pharmacol 2009; 156:1098-106. [PMID: 19243382 DOI: 10.1111/j.1476-5381.2009.00130.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca(2+) compartments in regulating slow wave activity in the guinea pig prostate. EXPERIMENTAL APPROACH Standard intracellular membrane potential recording techniques were used. KEY RESULTS The majority (89%) of impaled cells displayed 'slow wave' activity. Cyclopiazonic acid (10 micromol.L(-1)) transiently depolarized (3-9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20-30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol.L(-1)) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP(3)R)-mediated Ca(2+) release with 2-aminoethoxy-diphenylborate (60 micromol.L(-1)) or Xestospongin C (3 micromol.L(-1)) or inhibiting phospholipase C and IP(3) formation using U73122 (5 micromol.L(-1)) or neomycin (1 and 4 mmol.L(-1)) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1-10 micromol.L(-1)), carbonyl cyanide m-chlorophenylhydrazone (1-3 micromol.L(-1)) or rotenone (10 micromol.L(-1)), depolarized the membrane (8-10 mV) before abolishing electrical activity. CONCLUSION AND IMPLICATIONS These results suggest that slow wave activity was dependent on the cyclical release of Ca(2+) from IP(3)-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.
Collapse
Affiliation(s)
- Betty Exintaris
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
25
|
Collins C, Klausner AP, Herrick B, Koo HP, Miner AS, Henderson SC, Ratz PH. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J Cell Mol Med 2009; 13:3236-50. [PMID: 19243470 PMCID: PMC4516481 DOI: 10.1111/j.1582-4934.2009.00714.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder.
Collapse
Affiliation(s)
- Clinton Collins
- Department of Surgery, Urology Division, Virginia Commonwealth University School of Medicine, VA 23298-0614, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Dernison M, Kusters J, Peters P, van Meerwijk W, Ypey D, Gielen C, van Zoelen E, Theuvenet A. Local induction of pacemaking activity in a monolayer of electrically coupled quiescent NRK fibroblasts. Cell Calcium 2008; 44:429-40. [DOI: 10.1016/j.ceca.2008.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/22/2007] [Accepted: 02/11/2008] [Indexed: 11/30/2022]
|
27
|
Abstract
Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs.
Collapse
|
28
|
Abstract
The gastrointestinal tract serves the physiological function of digesting and absorbing nutrients from food and physically mixing and propelling these contents in an oral to anal direction. These functions require the coordinated interaction of several cell types, including enteric nerves, immune cells and smooth muscle. Interstitial cells of Cajal (ICC) are now recognized as another cell type that are required for the normal functioning of the gastrointestinal tract. Abnormalities in ICC numbers and networks are associated with several gastrointestinal motility disorders. This review will describe what is known about the function and role of ICC both in health and in a variety of motility disorders with a focus on unresolved issues pertaining to their role in the control of gastrointestinal motility.
Collapse
Affiliation(s)
- G Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Lammers WJEP, Stephen B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol 2007; 93:334-46. [PMID: 18156170 DOI: 10.1113/expphysiol.2007.039180] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pattern of propagation of slow waves in the small intestine is not clear. Specifically, it is not known whether propagation is determined by a single dominant ICC-MP (Interstitial cells of Cajal located in the Myenteric Plexus) pacemaker unit or whether there are multiple active pacemakers. To determine this pattern of propagation, waveforms were recorded simultaneously from 240 electrodes distributed along the whole length of the intact isolated feline small intestine. After the experiments, the propagation patterns of successive individual slow waves were analysed. In the intact small intestine, there was only a single slow wave pacemaker unit active, and this was located at or 6-10 cm from the pyloric junction. From this site, slow waves propagated in the aboral direction at gradually decreasing velocities. The majority of slow waves (73%) reached the ileocaecal junction while the remaining waves were blocked. Ligation of the intestine at one to four locations led to: (a) decrease in the distal frequencies; (b) disappearance of distal propagation blocks; (c) increase in velocities; (d) emergence of multiple and unstable pacemaker sites; and (e) propagation from these sites in the aboral and oral directions. In conclusion, in the quiescent feline small intestine a single pacemaker unit dominates the organ, with occasional propagation blocks of the slow waves, thereby producing the well-known frequency gradient.
Collapse
Affiliation(s)
- Wim J E P Lammers
- Department of Physiology, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates.
| | | |
Collapse
|
30
|
Meng F, To W, Kirkman-Brown J, Kumar P, Gu Y. Calcium oscillations induced by ATP in human umbilical cord smooth muscle cells. J Cell Physiol 2007; 213:79-87. [PMID: 17477379 DOI: 10.1002/jcp.21092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial smooth muscle cells exhibit vasomotion, related to oscillations in intracellular Ca(2+) concentration, but the origin and function of these has not yet been fully determined. We measured intracellular Ca(2+) using conventional fluorescent methods in primary cultured, human umbilical cord artery smooth muscle cells (HUCASMC). Spontaneous oscillations in Ca(2+) was found in only 1% of all cells but exogenous, micromolar concentrations of ATP could induce Ca(2+) oscillations in 70% of cells with the most common pattern being one of regular amplitude and frequency with a return to basal levels between each peak. The P2Y agonist, UTP, but not the P2X agonist alphabeta-methylene ATP, could also induce Ca(2+) oscillations. Once induced, these oscillations could not be blocked by G-protein, PLC, VGCC or TRP channel antagonists applied individually, but could be prevented when antagonists were applied together. In the presence of EGTA, micromolar concentrations of ATP induced an elevation in intracellular Ca(2+) but did not induce Ca(2+) oscillations. The oscillation frequency induced by ATP was affected by bath Ca(2+) concentration. Taken together, these data suggest that external Ca(2+) entry maintains the Ca(2+) oscillation induced by activation of P2Y receptors. Once induced, multiple mechanisms are involved to maintain the oscillation and the oscillation frequency is determined by the speed of Ca(2+) refilling. Chronic hypoxia enhanced the Ca(2+) response and altered the oscillation frequency. We suggest that these oscillations may play a role in the maintenance of umbilical blood flow during situations in which GPCR are activated.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Arachidonic Acid/pharmacology
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Hypoxia/drug effects
- Cell Hypoxia/physiology
- Cells, Cultured
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Purinergic P2 Receptor Agonists
- Receptors, Purinergic P2/classification
- Receptors, Purinergic P2/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Fei Meng
- Department of Physiology, School of Medicine, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
31
|
Hashitani H, Suzuki H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol 2007; 583:505-19. [PMID: 17615099 PMCID: PMC2277017 DOI: 10.1113/jphysiol.2007.136697] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interstitial cells of Cajal-like cells (ICC-LCs) in the urethra may act as electrical pacemakers of spontaneous contractions. However, their properties in situ and their interaction with neighbouring urethral smooth muscle cells (USMCs) remain to be elucidated. To further explore the physiological role of ICC-LCs, spontaneous changes in [Ca(2+)](i) (Ca(2+) transients) were visualized in fluo-4 loaded preparations of rabbit urethral smooth muscle. ICC-LCs were sparsely distributed, rather than forming an extensive network. Ca(2+) transients in ICC-LCs had a lower frequency and a longer half-width than those of USMCs. ICC-LCs often exhibited Ca(2+) transients synchronously with each other, but did not often show a close temporal relationship with Ca(2+) transients in USMCs. Nicardipine (1 microm) suppressed Ca(2+) transients in USMCs but not in ICC-LCs. Ca(2+) transients in ICC-LCs were abolished by cyclopiazonic acid (10 microm), ryanodine (50 microm) and caffeine (10 mm) or by removing extracellular Ca(2+), and inhibited by 2-aminoethoxydiphenyl borate (50 microm) and 3-morpholino-sydnonimine (SIN-1; 10 microm), but facilitated by increasing extracellular Ca(2+) or phenylephrine (1-10 microm). These results indicated that Ca(2+) transients in urethral ICC-LCs in situ rely on both Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through non-L-type Ca(2+) channel pathways. ICC-LCs may not act as a coordinated pacemaker electrical network as do ICC in the gastrointestinal (GI) tract. Rather they may randomly increase excitability of USMCs to maintain the tone of urethral smooth muscles.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Boron Compounds/pharmacology
- Caffeine/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Calcium-Transporting ATPases/antagonists & inhibitors
- Calcium-Transporting ATPases/metabolism
- Enzyme Inhibitors/pharmacology
- Indoles/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/drug effects
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Membrane Potentials
- Molsidomine/analogs & derivatives
- Molsidomine/pharmacology
- Muscle Contraction/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Nicardipine/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Phenylephrine/pharmacology
- Rabbits
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Time Factors
- Urethra/cytology
- Urethra/drug effects
- Urethra/enzymology
- Urethra/metabolism
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Regulatory Cell Physiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | |
Collapse
|
32
|
Involvement of interstitial cells of Cajal in the control of smooth muscle excitability. Proceedings of a symposium. July 22, 2006. Okayama, Japan. J Physiol 2006; 576:651-721. [PMID: 16990407 PMCID: PMC1890402 DOI: 10.1113/jphysiol.2006.121178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|