1
|
Finn HT, Parono M, Bye EA, Taylor JL, Gandevia SC, Héroux ME, Butler JE. Differential effects of stimulation waveform and intensity on the neural structures activated by lumbar transcutaneous spinal cord stimulation. J Neurophysiol 2025; 133:447-463. [PMID: 39718492 DOI: 10.1152/jn.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. TSS was paired with transcranial magnetic stimulation (TMS) over the contralateral motor cortex at relative interstimulus intervals (ISIs) (-10 ms to 11 ms), centered on the ISI when TSS and TMS inputs simultaneously activated VM motoneurons. Doublet TSS was delivered at 80-ms ISI. For VM, the area of the combined response evoked by paired TMS and TSS was not facilitated at any ISI. For TA and MG, combined responses were facilitated by ∼40-100% when TMS activated the motoneurons before or at a similar time as TSS, particularly with suprathreshold TSS. Additionally, for TA, there was greater suppression of the second sEMR evoked by TSS doublets using suprathreshold conventional TSS compared to high-frequency burst TSS (P < 0.001). The results suggest that for VM TSS activated predominantly motor axons, but for TA and MG facilitation of the sEMR by TMS suggests that TSS activated sensory axons. Stimulation waveforms had similar outcomes in most conditions.NEW & NOTEWORTHY Transcutaneous spinal cord stimulation (TSS) can evoke muscle responses by activation of sensory and/or motor axons. The relative contribution of these varies across the muscles tested. We found evidence for activation of sensory axons with TSS for tibialis anterior and medial gastrocnemius but not for vastus medialis. In cases where sensory axons were activated, conventional TSS activated relatively more sensory axons than high-frequency burst TSS.
Collapse
Affiliation(s)
- Harrison T Finn
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Marel Parono
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth A Bye
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon C Gandevia
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Martin E Héroux
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing transcutaneous spinal stimulation: excitability of evoked spinal reflexes is dependent on electrode montage. J Neuroeng Rehabil 2025; 22:2. [PMID: 39762915 PMCID: PMC11702053 DOI: 10.1186/s12984-024-01524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. METHODS Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5 cm caudal (DM-C), and [6] cathode over T11/12, anode 5 cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. RESULTS Lower reflex thresholds (mA) for dominant (D) and nondominant (ND) soleus muscles were elicited in DV-U (D: 46.7[33.9, 59.4], ND: 45.4[32.5, 58.2]) and DV-I (D: 48.1[35.3, 60.8], ND: 45.4[32.5, 58.2]) montages compared to DV-PU (D: 64.3[51.4, 77.1], ND:61.7[48.8, 74.6]), DV-PI (D:64.9[52.1, 77.7], ND:61.4[48.5, 75.5]), DM-C(D:60.0[46.9, 73.1], ND:63.6[50.8, 76.5]), and DM-R(D:63.1[50.3, 76.0], ND:62.6[49.8, 75.5]). DV-U and DV-I montages demonstrated larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. CONCLUSIONS Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments. CLINICAL TRIAL NUMBER NCT04243044.
Collapse
Affiliation(s)
- Kelly Lynn Thatcher
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
| | - Karen Emily Nielsen
- Department of Population Health Sciences, Georgia State University, 140 Decatur Street, Atlanta, GA, USA
| | - Evan Blake Sandler
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA
| | - Oliver John Daliet
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Jennifer Ann Iddings
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA
| | - Edelle Carmen Field-Fote
- Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
- Department of Applied Physiology, Georgia Institute of Technology, 555 14th Street NW, Atlanta, GA, USA.
- Department of Physical Therapy, Emory University, 1462 Clifton Road NE, Atlanta, GA, USA.
| |
Collapse
|
3
|
Takano K, Yamaguchi T, Kikuma K, Okuyama K, Katagiri N, Sato T, Tanabe S, Kondo K, Fujiwara T. Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals. Exp Brain Res 2024; 242:2645-2652. [PMID: 39331051 DOI: 10.1007/s00221-024-06926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Collapse
Affiliation(s)
- Keita Takano
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kano Kikuma
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
Kaneko N, Sasaki A, Fok KL, Yokoyama H, Nakazawa K, Masani K. Motor point stimulation activates fewer Ia-sensory nerves than peripheral nerve stimulation in human soleus muscle. J Neurophysiol 2024; 132:1142-1155. [PMID: 39196676 DOI: 10.1152/jn.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/30/2024] Open
Abstract
Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) are noninvasive techniques used to induce muscle contraction, aiding motor function restoration in individuals with neurological disorders. Understanding sensory inputs from PNS and MPS is crucial for facilitating neuroplasticity and restoring impaired motor function. Although previous studies suggest that MPS could induce Ia-sensory inputs less than PNS, experimental evidence supporting this claim is insufficient. Here, we implemented a conditioning paradigm combining transcutaneous spinal cord stimulation (tSCS) with PNS or MPS to investigate their Ia-sensory inputs. This paradigm induces postactivation depression of spinal reflexes associated with transient decreases in neurotransmitter release from Ia-afferent terminals, allowing us to examine the Ia-sensory input amount from PNS and MPS based on the depression degree. We hypothesized that MPS would induce less postactivation depression than PNS. Thirteen individuals underwent MPS and PNS on the soleus muscle as conditioning stimuli, with tSCS applied to the skin between the spinous processes (L1-L2) as test stimuli. PNS- and MPS-conditioned spinal reflexes were recorded at five interstimulus intervals (ISIs) and four intensities. Results revealed that all PNS conditioning showed significant decreases in spinal reflex amplitudes, indicating postactivation depression. Furthermore, PNS conditioning exhibited greater depression for shorter ISIs and higher conditioning intensities. In contrast, MPS conditioning demonstrated intensity-dependent depression, but without all-conditioning depression and clear ISI dependency as seen in PNS conditioning. In addition, PNS induced significantly greater depression than MPS across most conditions. Our findings provide experimental evidence supporting the conclusion that MPS activates Ia-sensory nerves less than PNS.NEW & NOTEWORTHY Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) induce neuroplasticity, but differences in their effects on Ia-sensory inputs are unclear. We investigated their Ia-sensory inputs using a conditioning paradigm with spinal reflexes. Results showed that PNS conditioning significantly inhibited spinal reflexes than MPS conditioning, indicating greater postactivation depression due to Ia-sensory nerve activation. These findings provide experimental evidence that MPS activates Ia-sensory nerves to a lesser extent than PNS, enhancing our understanding of neuroplasticity.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sasaki
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Gorman BT, Gill C, Etzelmueller M, O'Keeffe C, Reilly RB, Fleming N. The Influence of Body Position on the Resting Motor Threshold of Posterior Root-Muscle Reflexes Evoked via Transcutaneous Spinal Cord Stimulation. J Clin Med 2024; 13:5008. [PMID: 39274221 PMCID: PMC11396462 DOI: 10.3390/jcm13175008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Thoracolumbar transcutaneous spinal cord stimulation (tSCS) non-invasively evokes posterior root-muscle reflexes (PRMR) with the aim of neuromodulating sensorimotor function following spinal cord injury. Research is still in its infancy regarding the effect of body position on the nature of these spinally evoked responses. Therefore, the aim of this study was to investigate the influence of body position on the nature of PRMR responses during tSCS. Methods: A total of 11 (6M, 5F) participants completed a full PRMR recruitment curve from 10 ma up to 120 ma (10 ma increments) at the T11/12 intervertebral space using a singular 3.2 cm diameter cathode. At each intensity, three paired pulses (50 ms inter-pulse interval), followed by three singular pulses with a six-second delay were applied in each body position (supine, supine 90-90, sitting and standing) in a randomised order. The PRMR responses in lower limb muscles were recorded using wireless electromyographic sensors placed on the Soleus, Tibialis Anterior, Rectus Femoris and Bicep Femoris long head. A two-way (body position × muscle) repeated measures analysis of variance was used to investigate the effect of body position on PRMR-evoked responses. Results: There was a significant main effect of body position on PRMR resting motor threshold (RMT) (p < 0.001), first response peak-to-peak amplitude (p = 0.003) and percentage post-activation depression (%PAD) (p = 0.012). Sitting had significantly higher RMT and significantly lower first response peak-to-peak amplitudes compared to all other positions, but significant differences in %PAD were only detectible between supine and standing. Conclusions: Body position influences the nature of PRMR-evoked responses during tSCS.
Collapse
Affiliation(s)
- Barry T Gorman
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Conor Gill
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Mark Etzelmueller
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Clodagh O'Keeffe
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Neil Fleming
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
6
|
Thatcher KL, Nielsen KE, Sandler EB, Daliet OJ, Iddings JA, Field-Fote EC. Optimizing Transcutaneous Spinal Stimulation: Excitability of Evoked Spinal Reflexes is Dependent on Electrode Montage. RESEARCH SQUARE 2024:rs.3.rs-4719031. [PMID: 39149487 PMCID: PMC11326363 DOI: 10.21203/rs.3.rs-4719031/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages. Additionally, we assessed tolerability of the stimulation during PRM reflex testing. Methods Fifteen adults with intact neurological systems participated in this randomized crossover study. PRM reflexes were evoked transcutaneously using electrode montages with dorsal-ventral (DV) or dorsal-midline (DM) current flow. DV montages included: [1] cathode over T11/T12, anodes over iliac crests (DV-I), [2] cathode over T11/T12, anodes over umbilicus (DV-U), [3] dual paraspinal cathodes at T11/12, anodes over iliac crests (DV-PI), and [4] dual paraspinal cathodes at T11/12, anodes over umbilicus (DV-PU). DM montages included: [5] cathode over T11/12, anode 5cm caudal (DM-C), and [6] cathode over T11/12, anode 5cm rostral (DM-R). PRM reflex recruitment curves were obtained in the soleus muscle of both lower extremities. Results DV-U and DV-I montages elicited bilateral reflexes with lower reflex thresholds and larger recruitment curve area than other montages. There were no differences in response amplitude at 120% of RT(1.2xRT) or tolerability among montages. Conclusions Differences in spinal circuit recruitment are reflected in the response amplitude of the PRM reflexes. DV-I and DV-U montages were associated with lower reflex thresholds, indicating that motor responses can be evoked with lower stimulation intensity. DV-I and DV-U montages therefore have the potential for lower and more tolerable interventional stimulation intensities. Our findings optimize electrode placement for interventional TSS and PRM reflex assessments.
Collapse
|
7
|
Arai S, Sasaki A, Tsugaya S, Nomura T, Milosevic M. Inhibition of tibialis anterior spinal reflex circuits using frequency-specific neuromuscular electrical stimulation. Artif Organs 2024; 48:891-901. [PMID: 38436108 DOI: 10.1111/aor.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) can generate muscle contractions and elicit excitability of neural circuits. However, the optimal stimulation frequency for effective neuromodulation remains unclear. METHODS Eleven able-bodied individuals participated in our study to examine the effects of: (1) low-frequency NMES at 25 Hz, (2) high-frequency NMES at 100 Hz; and (3) mixed-frequency NMES at 25 and 100 Hz switched every second. NMES was delivered to the right tibialis anterior (TA) muscle for 1 min in each condition. The order of interventions was pseudorandomized between participants with a washout of at least 15 min between conditions. Spinal reflexes were elicited using single-pulse transcutaneous spinal cord stimulation applied over the lumbar enlargement to evoke responses in multiple lower-limb muscles bilaterally and maximum motor responses (Mmax) were elicited in the TA muscle by stimulating the common peroneal nerve to assess fatigue at the baseline and immediately, 5, 10, and 15 min after each intervention. RESULTS Our results showed that spinal reflexes were significantly inhibited immediately after the mixed-frequency NMES, and for at least 15 min in follow-up. Low-frequency NMES inhibited spinal reflexes 5 min after the intervention, and also persisted for at least 10 min. These effects were present only in the stimulated TA muscle, while other contralateral and ipsilateral muscles were unaffected. Mmax responses were not affected by any intervention. CONCLUSIONS Our results indicate that even a short-duration (1 min) NMES intervention using low- and mixed-frequency NMES could inhibit spinal reflex excitability of the TA muscle without inducing fatigue.
Collapse
Affiliation(s)
- Suzufumi Arai
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Shota Tsugaya
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
8
|
Gravholt A, Pfenninger C, Grospretre S, Martin A, Lapole T. Do soleus responses to transcutaneous spinal cord stimulation show similar changes to H-reflex in response to Achilles tendon vibration? Eur J Appl Physiol 2024; 124:1821-1833. [PMID: 38252303 DOI: 10.1007/s00421-023-05406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION/PURPOSE Recently, the use of transcutaneous spinal cord stimulation (TSCS) has been proposed as a viable alternative to the H-reflex. The aim of the current study was to investigate to what extent the two modes of spinal cord excitability investigation would be similarly sensitive to the well-known vibration-induced depression. METHODS Fourteen healthy participants (8 men and 6 women; age: 26.7 ± 4.8 years) were engaged in the study. The right soleus H-reflex and TSCS responses were recorded at baseline (PRE), during right Achilles tendon vibration (VIB) and following 20 min of vibration exposure (POST-VIB). Care was taken to match H-reflex and TSCS responses amplitude at PRE and to maintain effective stimulus intensities constant throughout time points. RESULTS The statistical analysis showed a significant effect of time for the H-reflex, with VIB (13 ± 5% of maximal M-wave (Mmax) and POST-VIB (36 ± 4% of Mmax) values being lower than PRE-values (48 ± 6% of Mmax). Similarly, TSCS responses changed over time, VIB (9 ± 5% of Mmax) and POST-VIB (27 ± 5% of Mmax) values being lower than PRE-values (46 ± 6% of Mmax). Pearson correlation analyses revealed positive correlation between H-reflex and TSCS responses PRE-to-VIB changes, but not for PRE- to POST-VIB changes. CONCLUSION While the sensitivity of TSCS seems to be similar to the gold standard H-reflex to highlight the vibratory paradox, both responses showed different sensitivity to the effects of prolonged vibration, suggesting slightly different pathways may actually contribute to evoked responses of both stimulation modalities.
Collapse
Affiliation(s)
- Anders Gravholt
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| | - Clara Pfenninger
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France
| | - Sidney Grospretre
- C3S Laboratory (Culture, Sport, , Health and Society; EA 4660), Department Sport & Performance, University of Franche-Comté, Besançon, France
| | - Alain Martin
- Laboratoire INSERM U1093, Université de Bourgogne, Faculté des Sciences du Sport (UFR Staps), BP 27877, 21078, Dijon, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, 42023, Saint-Etienne, France.
| |
Collapse
|
9
|
Sayed Ahmad AM, Raphael M, Han JF, Ahmed Y, Moustafa M, Solomon SK, Skiadopoulos A, Knikou M. Soleus H-reflex amplitude modulation during walking remains physiological during transspinal stimulation in humans. Exp Brain Res 2024; 242:1267-1276. [PMID: 38366214 DOI: 10.1007/s00221-024-06779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
The soleus H-reflex modulation pattern was investigated during stepping following transspinal stimulation over the thoracolumbar region at 15, 30, and 50 Hz with 10 kHz carry-over frequency above and below the paresthesia threshold. The soleus H-reflex was elicited by posterior tibial nerve stimulation with a single 1 ms pulse at an intensity that the M-wave amplitudes ranged from 0 to 15% of the maximal M-wave evoked 80 ms after the test stimulus, and the soleus H-reflex was half the size of the maximal H-reflex evoked on the ascending portion of the recruitment curve. During treadmill walking, the soleus H-reflex was elicited every 2 or 3 steps, and stimuli were randomly dispersed across the step cycle which was divided in 16 equal bins. For each subject and condition, the soleus M-wave and H-reflex were normalized to the maximal M-wave. The soleus background electromyographic (EMG) activity was estimated as the linear envelope for 50 ms duration starting at 100 ms before posterior tibial nerve stimulation for each bin. The gain was determined as the slope of the relationship between the soleus H-reflex and the soleus background EMG activity. The soleus H-reflex phase-dependent amplitude modulation remained unaltered during transspinal stimulation, regardless frequency, or intensity. Similarly, the H-reflex slope and intercept remained the same for all transspinal stimulation conditions tested. Locomotor EMG activity was increased in knee extensor muscles during transspinal stimulation at 30 and 50 Hz throughout the step cycle while no effects were observed in flexor muscles. These findings suggest that transspinal stimulation above and below the paresthesia threshold at 15, 30, and 50 Hz does not block or impair spinal integration of proprioceptive inputs and increases activity of thigh muscles that affect both hip and knee joint movement. Transspinal stimulation may serve as a neurorecovery strategy to augment standing or walking ability in upper motoneuron lesions.
Collapse
Affiliation(s)
- Abdullah M Sayed Ahmad
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Meghan Raphael
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Jessy Feng Han
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Yoseph Ahmed
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Mohamed Moustafa
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Shammah K Solomon
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, DPT Department, Graduate Center of The City University of New York and College of Staten Island, Staten Island, NY, USA.
| |
Collapse
|
10
|
Moritz C, Field-Fote EC, Tefertiller C, van Nes I, Trumbower R, Kalsi-Ryan S, Purcell M, Janssen TWJ, Krassioukov A, Morse LR, Zhao KD, Guest J, Marino RJ, Murray LM, Wecht JM, Rieger M, Pradarelli J, Turner A, D'Amico J, Squair JW, Courtine G. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 2024; 30:1276-1283. [PMID: 38769431 PMCID: PMC11108781 DOI: 10.1038/s41591-024-02940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .
Collapse
Affiliation(s)
- Chet Moritz
- Departments of Rehabilitation Medicine, Electrical & Computer Engineering, Physiology & Biophysics and Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ilse van Nes
- Sint Maartenskliniek, Revalidatiegeneeskunde, Nijmegen, The Netherlands
| | - Randy Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute|Toronto Rehab, University Health Network, Toronto, Ontario, Canada
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas W J Janssen
- Amsterdam Rehabilitation Research Center | Reade, Amsterdam, The Netherlands
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Andrei Krassioukov
- ICORD and Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kristin D Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - James Guest
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Project to Cure Paralysis, Miami, FL, USA
| | - Ralph J Marino
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Lynda M Murray
- Departments of Rehabilitation and Human Performance and Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill M Wecht
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Jessica D'Amico
- ONWARD Medical, Lausanne, Switzerland
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Squair
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gregoire Courtine
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Kanakis AK, Benetos IS, Evangelopoulos DS, Vlamis J, Vasiliadis ES, Kotroni A, Pneumaticos SG. Electrical Stimulation and Motor Function Rehabilitation in Spinal Cord Injury: A Systematic Review. Cureus 2024; 16:e61436. [PMID: 38947571 PMCID: PMC11214755 DOI: 10.7759/cureus.61436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Spinal cord injury (SCI) often leads to devastating motor impairments, significantly affecting the quality of life of affected individuals. Over the last decades, spinal cord electrical stimulation seems to have encouraging effects on the motor recovery of impacted patients. This review aimed to identify clinical trials focused on motor function recovery through the application of epidural electrical stimulation, transcutaneous electrical stimulation, and functional electrical stimulation. Several clinical trials met these criteria, focusing on the impact of the aforementioned interventions on walking, standing, swimming, trunk stability, and upper extremity functionality, particularly grasp. After a thorough PubMed online database research, 37 clinical trials were included in this review, with a total of 192 patients. Many of them appeared to have an improvement in function, either clinically assessed or recorded through electromyography. This review outlines the various ways electrical stimulation techniques can aid in the motor recovery of SCI patients. It stresses the ongoing need for medical research to refine these techniques and ultimately enhance rehabilitation results in clinical settings.
Collapse
Affiliation(s)
- Asterios K Kanakis
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Ioannis S Benetos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | | | - John Vlamis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Elias S Vasiliadis
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| | - Aikaterini Kotroni
- Department of Physical Medicine and Rehabilitation, KAT Hospital, Athens, GRC
| | - Spyros G Pneumaticos
- 3rd Department of Orthopaedic Surgery, National and Kapodistrian University of Athens (NKUA) KAT Hospital, Athens, GRC
| |
Collapse
|
12
|
Nakagawa K, Kakehata G, Kaneko N, Masugi Y, Osu R, Iso S, Kanosue K, Nakazawa K. Reciprocal inhibition of the thigh muscles in humans: A study using transcutaneous spinal cord stimulation. Physiol Rep 2024; 12:e16039. [PMID: 38740563 DOI: 10.14814/phy2.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Department of Sports and Health Management, Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Gaku Kakehata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Shigeo Iso
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
13
|
Kawai K, Tazoe T, Yanai T, Kazuyuki K, Nishimura Y. Transsynaptic activation of human lumbar spinal motoneurons by transvertebral magnetic stimulation. Neurosci Res 2024; 200:20-27. [PMID: 37793496 DOI: 10.1016/j.neures.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Noninvasive spinal stimulation has been increasingly used in research on motor control and neurorehabilitation. Despite advances in percutaneous electrical stimulation techniques, magnetic stimulation is not as commonly used as electrical stimulation. Therefore, it is still under discussion what neuronal elements are activated by magnetic stimulation of the human spinal cord. In this study, we demonstrated that transvertebral magnetic stimulation (TVMS) induced transsynaptic activation of spinal motoneuron pools in the lumbar cord. In healthy humans, paired-pulse TVMS was given over an intervertebral space between the L1-L2 vertebrae with an interpulse interval of 100 ms, and the stimulus-evoked electromyographic (EMG) responses were recorded in the lower limb muscles. The results show that the evoked EMG responses after the 2nd pulse were clearly suppressed compared with the widespread responses evoked after the 1st pulse in the muscles of the lower extremity, indicating that the transsynaptic activation of spinal motoneurons by the 2nd pulse was suppressed by the effects produced by the 1st pulse. The inconsistent modulation of response suppression to stimulus intensity across individuals suggests that the TVMS-evoked EMG responses are composed of the compound potentials mediated by the direct activation of motor axons and the transsynaptic activation of motoneuron pools through sensory afferents and that the recruitment order of those fibers by TVMS may be nonhomogeneous across individuals.
Collapse
Affiliation(s)
- Kazutake Kawai
- College of Sports Sciences, Nihon University, Setagaya, Tokyo 154-8513, Japan; Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Toshiki Tazoe
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan.
| | - Toshimasa Yanai
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Kanosue Kazuyuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Yukio Nishimura
- Neural Prosthetics Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
14
|
Choi J, Díaz-Baamonde A, Sánchez Roldán MDLÁ, Mirallave Pescador A, Kim JS, Téllez MJ, Park KS, Deletis V. Advancing Intraoperative Neurophysiological Monitoring With Human Reflexes. J Clin Neurol 2024; 20:119-130. [PMID: 38433484 PMCID: PMC10921042 DOI: 10.3988/jcn.2023.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 03/05/2024] Open
Abstract
Human reflexes are simple motor responses that are automatically elicited by various sensory inputs. These reflexes can provide valuable insights into the functioning of the nervous system, particularly the brainstem and spinal cord. Reflexes involving the brainstem, such as the blink reflex, laryngeal adductor reflex, trigeminal hypoglossal reflex, and masseter H reflex, offer immediate information about the cranial-nerve functionality and the overall state of the brainstem. Similarly, spinal reflexes such as the H reflex of the soleus muscle, posterior root muscle reflexes, and sacral reflexes provide crucial information about the functionality of the spinal cord and peripheral nerves. One of the critical benefits of reflex monitoring is that it can provide continuous feedback without disrupting the surgical process due to no movement being induced in the surgical field. These reflexes can be monitored in real time during surgical procedures to assess the integrity of the nervous system and detect potential neurological damage. It is particularly noteworthy that the reflexes provide motor and sensory information on the functional integrity of nerve fibers and nuclei. This article describes the current techniques used for monitoring various human reflexes and their clinical significance in surgery. We also address important methodological considerations and their impact on surgical safety and patient outcomes. Utilizing these methodologies has the potential to advance or even revolutionize the field of intraoperative continuous monitoring, ultimately leading to improved surgical outcomes and enhanced patient care.
Collapse
Affiliation(s)
- Jongsuk Choi
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Alba Díaz-Baamonde
- Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, UK
| | | | | | - Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Maria J Téllez
- Department of Intraoperative Neuromonitoring, Mount Sinai West Hospital, New York, NY, USA.
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | - Vedran Deletis
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia and Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
16
|
Mundra A, Varma Kalidindi K, Chhabra HS, Manghwani J. Spinal cord stimulation for spinal cord injury - Where do we stand? A narrative review. J Clin Orthop Trauma 2023; 43:102210. [PMID: 37663171 PMCID: PMC10470322 DOI: 10.1016/j.jcot.2023.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
Recovery of function following a complete spinal cord injury (SCI) or an incomplete SCI where recovery has plateaued still eludes us despite extensive research. Epidural spinal cord stimulation (SCS) was initially used for managing neuropathic pain. It has subsequently demonstrated improvement in motor function in otherwise non-recovering chronic spinal cord injury in animal and human trials. The mechanisms of how it is precisely effective in doing so will need further research, which would help refine the technology for broader application. Transcutaneous spinal cord stimulation (TSCS) is also emerging as a modality to improve the functional outcome in SCI individuals, especially when coupled with appropriate rehabilitation. Apart from motor recovery, ESCS and TSCS have also shown improvement in autonomic, metabolic, genitourinary, and pulmonary function. Since the literature on this is still in its infancy, with no large-scale randomised trials and different studies using different protocols in a wide range of patients, a review of the present literature is imperative to better understand the latest developments in this field. This article examines the existing literature on the use of SCS for SCI individuals with the purpose of enabling functional recovery. It also examines the voids in the present research, thus providing future directions.
Collapse
Affiliation(s)
- Anuj Mundra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | | | - Harvinder Singh Chhabra
- Department of Spine and Rehabilitation, Sri Balaji Action Medical Institute, New Delhi, 110063, India
| | - Jitesh Manghwani
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
| |
Collapse
|
17
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer J, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. J Neural Eng 2023; 20:10.1088/1741-2552/ace552. [PMID: 37419109 PMCID: PMC10481387 DOI: 10.1088/1741-2552/ace552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective.Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation.Approach.In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS.Results.Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position.Significance. Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
Affiliation(s)
- Noah Bryson
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Lorenzo Lombardi
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rachel Hawthorn
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Jie Fei
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - Rodolfo Keesey
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
| | - J.D. Peiffer
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Biomedical Engineering, Northwestern University
| | - Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis
- Division of Neurotechnology, Washington University School of Medicine in St. Louis
- Neurosurgery, Washington University School of Medicine in St. Louis
| |
Collapse
|
18
|
Bryson N, Lombardi L, Hawthorn R, Fei J, Keesey R, Peiffer JD, Seáñez I. Enhanced selectivity of transcutaneous spinal cord stimulation by multielectrode configuration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534835. [PMID: 37034788 PMCID: PMC10081184 DOI: 10.1101/2023.03.30.534835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Objective Transcutaneous spinal cord stimulation (tSCS) has been gaining momentum as a non-invasive rehabilitation approach to restore movement to paralyzed muscles after spinal cord injury (SCI). However, its low selectivity limits the types of movements that can be enabled and, thus, its potential applications in rehabilitation. Approach In this cross-over study design, we investigated whether muscle recruitment selectivity of individual muscles could be enhanced by multielectrode configurations of tSCS in 16 neurologically intact individuals. We hypothesized that due to the segmental innervation of lower limb muscles, we could identify muscle-specific optimal stimulation locations that would enable improved recruitment selectivity over conventional tSCS. We elicited leg muscle responses by delivering biphasic pulses of electrical stimulation to the lumbosacral enlargement using conventional and multielectrode tSCS. Results Analysis of recruitment curve responses confirmed that multielectrode configurations could improve the rostrocaudal and lateral selectivity of tSCS. To investigate whether motor responses elicited by spatially selective tSCS were mediated by posterior root-muscle reflexes, each stimulation event was a paired pulse with a conditioning-test interval of 33.3 ms. Muscle responses to the second stimulation pulse were significantly suppressed, a characteristic of post-activation depression suggesting that spatially selective tSCS recruits proprioceptive fibers that reflexively activate muscle-specific motor neurons in the spinal cord. Moreover, the combination of leg muscle recruitment probability and segmental innervation maps revealed a stereotypical spinal activation map in congruence with each electrode's position. Significance Improvements in muscle recruitment selectivity could be essential for the effective translation into stimulation protocols that selectively enhance single-joint movements in neurorehabilitation.
Collapse
|
19
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agarwal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. Trials 2023; 24:145. [PMID: 36841773 PMCID: PMC9960224 DOI: 10.1186/s13063-023-07193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Grace O. Famodimu
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA
| | - Shammah K. Solomon
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Parul Agarwal
- grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Noam Y. Harel
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA ,grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA. .,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA. .,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Manhattan & Staten Island, NY, USA.
| |
Collapse
|
20
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agrawal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. RESEARCH SQUARE 2023:rs.3.rs-2527617. [PMID: 36824823 PMCID: PMC9949167 DOI: 10.21203/rs.3.rs-2527617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.
Collapse
Affiliation(s)
| | | | | | - Parul Agrawal
- Icahn School of Medicine at Mount Sinai Department of Population Health Science and Policy
| | - Noam Y Harel
- James J Peters VAMC: James J Peters VA Medical Center
| | - Maria Knikou
- College of Staten Island School of Health Sciences
| |
Collapse
|
21
|
Fleming N, Taylor C, Etzelmueller M, Gill C, O’Keeffe C, Mahony N, Reilly RB. Contralateral Selectivity of Upper-Limb Motor Pools via Targeted Stimulation of the Cervical Spinal Cord. Biomedicines 2023; 11:biomedicines11020332. [PMID: 36830867 PMCID: PMC9952898 DOI: 10.3390/biomedicines11020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) at the cervical level may facilitate improved upper-limb function in those with incomplete tetraplegia. While clinical trials are ongoing, there is still much debate regarding the transmission pathway as well as appropriate stimulation parameters. This study aimed to explore the extent to which cervical tSCS can induce mono-synaptic reflexes in discrete upper-limb motor pools and examine the effects of altering stimulus location and intensity. METHODS Fourteen participants with intact nervous systems completed two laboratory visits, during which posterior root-muscle reflexes (PRMRs) were evoked via a 3 × 3 cathode matrix applied over the cervical spine. An incremental recruitment curve at the C7 vertebral level was initially performed to attain resting motor threshold (RMT) in each muscle. Paired pulses (1 ms square monophasic with inter-pulse interval of 50 ms) were subsequently delivered at a frequency of 0.25 Hz at two intensities (RMT and RMT + 20%) across all nine cathode positions. Evoked responses to the 1st (PRMR1) and 2nd (PRMR2) stimuli were recorded in four upper-limb muscles. RESULTS A significant effect of the spinal level was observed in all muscles for PRMR1, with greater responses being recorded caudally. Contralateral stimulation significantly increased PRMR1 in Biceps Brachii (p < 0.05, F = 4.9, η2 = 0.29), Flexor Carpi Radialis (p < 0.05, F = 4.9, η2 = 0.28) and Abductor Pollicis Brevis (p < 0.01, F = 8.9, η2 = 0.89). Post-activation depression (PAD) was also significantly increased with contralateral stimulation in Biceps Brachii (p = 0.001, F = 9.3, η2 = 0.44), Triceps Brachii (p < 0.05, F = 5.4, η2 = 0.31) and Flexor Carpi Radialis (p < 0.001, F = 17.4, η2 = 0.59). CONCLUSIONS A level of unilateral motor pool selectivity may be attained by altering stimulus intensity and location during cervical tSCS. Optimising these parameters may improve the efficacy of this neuromodulation method in clinical cohorts.
Collapse
Affiliation(s)
- Neil Fleming
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Correspondence: ; Tel.: +353-18961412
| | - Clare Taylor
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Mark Etzelmueller
- School of Engineering, Trinity College, The University of Dublin, D08 XW7X Dublin, Ireland
- Discipline of Gerontology School of Medicine, Trinity College, The University of Dublin, D02 R590 Dublin, Ireland
| | - Conor Gill
- School of Engineering, Trinity College, The University of Dublin, D08 XW7X Dublin, Ireland
- Discipline of Gerontology School of Medicine, Trinity College, The University of Dublin, D02 R590 Dublin, Ireland
| | - Clodagh O’Keeffe
- School of Engineering, Trinity College, The University of Dublin, D08 XW7X Dublin, Ireland
- Discipline of Gerontology School of Medicine, Trinity College, The University of Dublin, D02 R590 Dublin, Ireland
| | - Nicholas Mahony
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Richard B. Reilly
- School of Engineering, Trinity College, The University of Dublin, D08 XW7X Dublin, Ireland
- Discipline of Gerontology School of Medicine, Trinity College, The University of Dublin, D02 R590 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
22
|
Singh G, Lucas K, Keller A, Martin R, Behrman A, Vissarionov S, Gerasimenko YP. Transcutaneous Spinal Stimulation From Adults to Children: A Review. Top Spinal Cord Inj Rehabil 2022; 29:16-32. [PMID: 36819932 PMCID: PMC9936896 DOI: 10.46292/sci21-00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuromodulation via spinal stimulation is a promising therapy that can augment the neuromuscular capacity for voluntary movements, standing, stepping, and posture in individuals with spinal cord injury (SCI). The spinal locomotor-related neuronal network known as a central pattern generator (CPG) can generate a stepping-like motor output in the absence of movement-related afferent signals from the limbs. Using epidural stimulation (EP) in conjunction with activity-based locomotor training (ABLT), the neural circuits can be neuromodulated to facilitate the recovery of locomotor functions in persons with SCI. Recently, transcutaneous spinal stimulation (scTS) has been developed as a noninvasive alternative to EP. Early studies of scTS at thoracolumbar, coccygeal, and cervical regions have demonstrated its effectiveness in producing voluntary leg movements, posture control, and independent standing and improving upper extremity function in adults with chronic SCI. In pediatric studies, the technology of spinal neuromodulation is not yet widespread. There are a limited number of publications reporting on the use of scTS in children and adolescents with either cerebral palsy, spina bifida, or SCI.
Collapse
Affiliation(s)
- Goutam Singh
- Kosair Charities School of Physical Therapy, Spalding University, Louisville, Kentucky
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kathryn Lucas
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Anastasia Keller
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Rebecca Martin
- International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea Behrman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Sergey Vissarionov
- Turner Scientific Research Institute for Children's Orthopedics, St. Petersburg, Russia
| | - Yury P Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, University of Louisville, Louisville, Kentucky
- Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
23
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
24
|
Tansey KE, Farrell BJ, Bruce JA, McKay WB. Soleus H and Lower Limb Posterior Root Muscle Reflexes During Stepping After Incomplete SCI. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:789333. [PMID: 36188913 PMCID: PMC9397667 DOI: 10.3389/fresc.2022.789333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
The goal of this study was to examine and compare the step cycle related modulation of the soleus H and posterior root muscle (PRM) reflexes in subjects with and without spinal cord injury. Ten subjects without neurological injury and fifteen subjects with spinal cord injury (SCI) underwent soleus H reflex and lower limb PRM reflex testing while standing and stepping in a robotic gait orthosis. Reflex amplitudes were evaluated during standing, mid stance and mid swing to determine if speed and/or injury altered step cycle related neuromodulation. H and PRM reflexes in the soleus underwent step cycle related modulation in injured and uninjured subjects though the degree of modulation differed between the two reflexes with the H reflex showing more step cycle related modulation. We found in the SCI group that both the soleus H and soleus PRM reflex amplitudes were higher relative to the non-injured group and modulated less during the step cycle. We also found that modulation of the soleus H reflex, but not soleus PRM reflex, correlated to the lower extremity motor scores in individuals with SCI. Our evidence suggests that the inability to provide appropriate step cycle related reflex modulation may be due to decreased supra-spinal regulation of motoneuron and spinal excitability and could be an indicator of the severity of injury as it relates to clinically measured lower extremity motor scores.
Collapse
Affiliation(s)
- Keith E. Tansey
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, United States
- *Correspondence: Keith E. Tansey
| | | | | | | |
Collapse
|
25
|
Brain and spinal cord paired stimulation coupled with locomotor training affects polysynaptic flexion reflex circuits in human spinal cord injury. Exp Brain Res 2022; 240:1687-1699. [PMID: 35513720 DOI: 10.1007/s00221-022-06375-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
Neurorecovery from locomotor training is well established in human spinal cord injury (SCI). However, neurorecovery resulting from combined interventions has not been widely studied. In this randomized clinical trial, we established the tibialis anterior (TA) flexion reflex modulation pattern when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal cord (transspinal) stimulation over the thoracolumbar region during assisted step training. Single pulses of TMS were delivered either before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Eight individuals with chronic incomplete or complete SCI received at least 20 sessions of paired stimulation during assisted step training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic-assisted step training with the Lokomat6 Pro®. Body weight support, leg guidance force and treadmill speed were adjusted based on each participant's ability to step without knee buckling or toe dragging. Both the early and late TA flexion reflex remained unaltered after TMS-transspinal and locomotor training. In contrast, the early and late TA flexion reflexes were significantly depressed during stepping after transspinal-TMS and locomotor training. Reflex changes occurred at similar slopes and intercepts before and after training. Our findings support that targeted brain and spinal cord stimulation coupled with locomotor training reorganizes the function of flexion reflex pathways, which are a part of locomotor networks, in humans with varying levels of sensorimotor function after SCI.Trial registration number NCT04624607; Registered on November 12, 2020.
Collapse
|
26
|
Atkinson DA, Steele AG, Manson GA, Sheynin J, Oh J, Gerasimenko YP, Sayenko DG. Characterization of interlimb interaction via transcutaneous spinal stimulation of cervical and lumbar spinal enlargements. J Neurophysiol 2022; 127:1075-1085. [PMID: 35320019 PMCID: PMC8993515 DOI: 10.1152/jn.00456.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
The use of transcutaneous electrical spinal stimulation (TSS) to modulate sensorimotor networks after neurological insult has garnered much attention from both researchers and clinicians in recent years. Although many different stimulation paradigms have been reported, the interlimb effects of these neuromodulation techniques have been little studied. The effects of multisite TSS on interlimb sensorimotor function are of particular interest in the context of neurorehabilitation, as these networks have been shown to be important for functional recovery after neurological insult. The present study utilized a condition-test paradigm to investigate the effects of interenlargement TSS on spinal motor excitability in both cervical and lumbosacral motor pools. Additionally, comparison was made between the conditioning effects of lumbosacral and cervical TSS and peripheral stimulation of the fibular nerve and ulnar nerve, respectively. In 16/16 supine, relaxed participants, facilitation of spinally evoked motor responses (sEMRs) in arm muscles was seen in response to lumbosacral TSS or fibular nerve stimulation, whereas facilitation of sEMRs in leg muscles was seen in response to cervical TSS or ulnar nerve stimulation. The decreased latency between TSS- and peripheral nerve-evoked conditioning implicates interlimb networks in the observed facilitation of motor output. The results demonstrate the ability of multisite TSS to engage interlimb networks, resulting in the bidirectional influence of cervical and lumbosacral motor output. The engagement of interlimb networks via TSS of the cervical and lumbosacral enlargements represents a feasible method for engaging spinal sensorimotor networks in clinical populations with compromised motor function.NEW & NOTEWORTHY Bidirectional interlimb modulation of spinal motor excitability can be evoked by transcutaneous spinal stimulation over the cervical and lumbosacral enlargements. Multisite transcutaneous spinal stimulation engages spinal sensorimotor networks thought to be important in the recovery of function after spinal cord injury.
Collapse
Affiliation(s)
- D. A. Atkinson
- Doctor of Physical Therapy program, University of St. Augustine for Health Sciences, Austin, Texas
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - A. G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - G. A. Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - J. Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Houston, Texas
| | - J. Oh
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Y. P. Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, University of Louisville, Louisville, Kentucky
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - D. G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
27
|
Kaneko N, Fok KL, Nakazawa K, Masani K. Motor point stimulation induces more robust F-waves than peripheral nerve stimulation. Eur J Neurosci 2022; 55:1614-1628. [PMID: 35178805 DOI: 10.1111/ejn.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/27/2022]
Abstract
The F-wave is a motor response induced by electrical stimulation of peripheral nerves via the antidromic firing of motor nerves, which reflects the motoneuron excitability. To induce F-waves, transcutaneous peripheral nerve stimulation (PNS) is used, which activates nerve branches via transcutaneous electrodes over the nerve branches. An alternative method to activate peripheral nerves, i.e., motor point stimulation (MPS) which delivers electrical stimulation over the muscle belly, has not been used to induce F-waves. In our previous studies, we observed that MPS induced F-wave like responses, i.e., motor responses at the latency of F-waves at a supramaximal stimulation. Here we further investigated the F-wave like responses induced by MPS in comparison to PNS in the soleus muscle. Thirteen individuals participated in this study. We applied MPS and PNS on the participant's left soleus muscle. Using a monopolar double-pulse stimulation, the amplitude of the second H-reflex induced by PNS decreased, while the amplitude of the motor response at the F-wave latency induced by MPS did not decrease. These results suggest that the motor response at the F-wave latency induced by MPS was not an H-reflex but an F-wave. We also found that the F-wave induced by MPS had a greater amplitude, higher persistence, and caused less pain when compared to the F-waves induced using PNS. We conclude that MPS evokes antidromic firing inducing F-waves more consistently compared to PNS.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
28
|
Steele AG, Atkinson DA, Varghese B, Oh J, Markley RL, Sayenko DG. Characterization of Spinal Sensorimotor Network Using Transcutaneous Spinal Stimulation during Voluntary Movement Preparation and Performance. J Clin Med 2021; 10:jcm10245958. [PMID: 34945253 PMCID: PMC8709482 DOI: 10.3390/jcm10245958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Transcutaneous electrical spinal stimulation (TSS) can be used to selectively activate motor pools based on their anatomical arrangements in the lumbosacral enlargement. These spatial patterns of spinal motor activation may have important clinical implications, especially when there is a need to target specific muscle groups. However, our understanding of the net effects and interplay between the motor pools projecting to agonist and antagonist muscles during the preparation and performance of voluntary movements is still limited. The present study was designed to systematically investigate and differentiate the multi-segmental convergence of supraspinal inputs on the lumbosacral neural network before and during the execution of voluntary leg movements in neurologically intact participants. During the experiments, participants (N = 13) performed isometric (1) knee flexion and (2) extension, as well as (3) plantarflexion and (4) dorsiflexion. TSS consisting of a pair pulse with 50 ms interstimulus interval was delivered over the T12-L1 vertebrae during the muscle contractions, as well as within 50 to 250 ms following the auditory or tactile stimuli, to characterize the temporal profiles of net spinal motor output during movement preparation. Facilitation of evoked motor potentials in the ipsilateral agonists and contralateral antagonists emerged as early as 50 ms following the cue and increased prior to movement onset. These results suggest that the descending drive modulates the activity of the inter-neuronal circuitry within spinal sensorimotor networks in specific, functionally relevant spatiotemporal patterns, which has a direct implication for the characterization of the state of those networks in individuals with neurological conditions.
Collapse
Affiliation(s)
- Alexander G. Steele
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Department of Electrical and Computer Engineering, University of Houston, E413 Engineering Bldg 2, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Darryn A. Atkinson
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, 5401 La Crosse Avenue, Austin, TX 78739, USA
| | - Blesson Varghese
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Jeonghoon Oh
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Rachel L. Markley
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Correspondence: ; Tel.: +1-713-363-9910
| |
Collapse
|
29
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
30
|
Salchow-Hömmen C, Schauer T, Müller P, Kühn AA, Hofstoetter US, Wenger N. Algorithms for Automated Calibration of Transcutaneous Spinal Cord Stimulation to Facilitate Clinical Applications. J Clin Med 2021; 10:jcm10225464. [PMID: 34830746 PMCID: PMC8623351 DOI: 10.3390/jcm10225464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Transcutaneous spinal cord stimulation (tSCS) is a promising intervention that can benefit spasticity control and augment voluntary movement in spinal cord injury (SCI) and multiple sclerosis. Current applications require expert knowledge and rely on the thorough visual analysis of electromyographic (EMG) responses from lower-limb muscles to optimize attainable treatment effects. Here, we devised an automated tSCS setup by combining an electrode array placed over low-thoracic to mid-lumbar vertebrae, synchronized EMG recordings, and a self-operating stimulation protocol to systematically test various stimulation sites and amplitudes. A built-in calibration procedure classifies the evoked responses as reflexes or direct motor responses and identifies stimulation thresholds as recommendations for tSCS therapy. We tested our setup in 15 individuals (five neurologically intact, five SCI, and five Parkinson’s disease) and validated the results against blinded ratings from two clinical experts. Congruent results were obtained in 13 cases for electrode positions and in eight for tSCS amplitudes, with deviations of a maximum of one position and 5 to 10 mA in amplitude in the remaining cases. Despite these minor deviations, the calibration found clinically suitable tSCS settings in 13 individuals. In the remaining two cases, the automatic setup and both experts agreed that no reflex responses could be detected. The presented technological developments may facilitate the dissemination of tSCS into non-academic environments and broaden its use for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Christina Salchow-Hömmen
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| | - Thomas Schauer
- Control Systems Group, Technische Universität Berlin, 10587 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24404
| | - Philipp Müller
- Control Systems Group, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Andrea A. Kühn
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| | - Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria;
| | - Nikolaus Wenger
- Department of Neurology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (C.S.-H.); (A.A.K.); (N.W.)
| |
Collapse
|
31
|
Taylor C, McHugh C, Mockler D, Minogue C, Reilly RB, Fleming N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS One 2021; 16:e0260166. [PMID: 34793572 PMCID: PMC8601579 DOI: 10.1371/journal.pone.0260166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Transcutaneous spinal cord stimulation (tSCS) is a non-invasive modality in which electrodes can stimulate spinal circuitries and facilitate a motor response. This review aimed to evaluate the methodology of studies using tSCS to generate motor activity in persons with spinal cord injury (SCI) and to appraise the quality of included trials. Methods A systematic search for studies published until May 2021 was made of the following databases: EMBASE, Medline (Ovid) and Web of Science. Two reviewers independently screened the studies, extracted the data, and evaluated the quality of included trials. The electrical characteristics of stimulation were summarised to allow for comparison across studies. In addition, the surface electromyography (EMG) recording methods were evaluated. Results A total of 3753 articles were initially screened, of which 25 met the criteria for inclusion. Studies were divided into those using tSCS for neurophysiological investigations of reflex responses (n = 9) and therapeutic investigations of motor recovery (n = 16). The overall quality of evidence was deemed to be poor-to-fair (10.5 ± 4.9) based on the Downs and Black Quality Checklist criteria. The electrical characteristics were collated to establish the dosage range across stimulation trials. The methods employed by included studies relating to stimulation parameters and outcome measurement varied extensively, although some trends are beginning to appear in relation to electrode configuration and EMG outcomes. Conclusion This review outlines the parameters currently employed for tSCS of the cervicothoracic and thoracolumbar regions to produce motor responses. However, to establish standardised procedures for neurophysiological assessments and therapeutic investigations of tSCS, further high-quality investigations are required, ideally utilizing consistent electrophysiological recording methods, and reporting common characteristics of the electrical stimulation administered.
Collapse
Affiliation(s)
- Clare Taylor
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
- * E-mail:
| | - Conor McHugh
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James’s Hospital, Dublin, Ireland
| | - Conor Minogue
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Richard B. Reilly
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Neil Fleming
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Kaneko N, Sasaki A, Masugi Y, Nakazawa K. The Effects of Paired Associative Stimulation with Transcutaneous Spinal Cord Stimulation on Corticospinal Excitability in Multiple Lower-limb Muscles. Neuroscience 2021; 476:45-59. [PMID: 34500017 DOI: 10.1016/j.neuroscience.2021.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Paired associative stimulation (PAS) is a non-invasive method to modulate the excitability of the primary motor cortex (M1). PAS involves the combination of peripheral nerve stimulation and transcranial magnetic stimulation (TMS) over the primary motor cortex. However, for lower-limb muscles, PAS has only been applied to the few muscles innervated by peripheral nerves that can easily be stimulated. This study used transcutaneous spinal cord stimulation (tSCS) to the posterior root, stimulating the sensory nerves of multiple lower-limb muscles, and aimed to investigate the effect of PAS consisting of tSCS and TMS on corticospinal excitability. Twelve non-disabled men received 120 paired stimuli on two separate days in (1) an individual-ISI condition, using inter-stimulus intervals (ISIs) of paired stimuli individually calculated to send two signals to M1 with individually-adjusted ISI, and (2) a constant-ISI condition, using a constant ISI of 100 ms. Before and after PAS, corticospinal excitability was assessed in the lower-limb muscles. Facilitation of corticospinal excitability in the lower-leg and hamstring muscles was observed up to 30 min after PAS only in the individual-ISI condition (p < 0.05), although there was no significant difference between the individual-ISI and constant-ISI conditions. Additionally, our results revealed a difference in PAS-induced facilitation among lower-limb muscles, suggesting a spatial gradient of PAS-induced facilitation of corticospinal excitability, such that knee flexor muscles have a higher potential for plastic change than knee extensor muscles. These findings will foster a better understanding of the neural mechanisms underlying PAS-induced neuroplasticity, leading to better neurorehabilitation and motor learning strategies.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Seáñez I, Capogrosso M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron Med 2021; 7:16. [PMID: 34706778 PMCID: PMC8555080 DOI: 10.1186/s42234-021-00077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have reported unprecedented improvements in motor function in people with chronic SCI that persist even without stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this led to the standardization of implant position which resulted in consistent observations by independent clinical studies that SCS in combination with physical training promotes improvements in motor performance and neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of more complex motor functions was gradual, and the timeframe for first observations was proportional to the task complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future experiments in humans and animal models of paralysis will be critical to understand the potential and limits for functional improvements in people with different types, levels, timeframes, and severities of SCI.
Collapse
Affiliation(s)
- Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis, St. Louis, USA. .,Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, USA.
| | - Marco Capogrosso
- Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Department of Physical Medicine and Rehabilitation, Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
34
|
Calvert JS, Gill ML, Linde MB, Veith DD, Thoreson AR, Lopez C, Lee KH, Gerasimenko YP, Edgerton VR, Lavrov IA, Zhao KD, Grahn PJ, Sayenko DG. Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. J Clin Med 2021; 10:jcm10214898. [PMID: 34768418 PMCID: PMC8584516 DOI: 10.3390/jcm10214898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Andrew R. Thoreson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Kendall H. Lee
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Peter J. Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-363-7949
| |
Collapse
|
35
|
Sasaki A, de Freitas RM, Sayenko DG, Masugi Y, Nomura T, Nakazawa K, Milosevic M. Low-Intensity and Short-Duration Continuous Cervical Transcutaneous Spinal Cord Stimulation Intervention Does Not Prime the Corticospinal and Spinal Reflex Pathways in Able-Bodied Subjects. J Clin Med 2021; 10:jcm10163633. [PMID: 34441927 PMCID: PMC8397025 DOI: 10.3390/jcm10163633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
Cervical transcutaneous spinal cord stimulation (tSCS) has been utilized in applications for improving upper-limb sensory and motor function in patients with spinal cord injury. Although therapeutic effects of continuous cervical tSCS interventions have been reported, neurophysiological mechanisms remain largely unexplored. Specifically, it is not clear whether sub-threshold intensity and 10-min duration continuous cervical tSCS intervention can affect the central nervous system excitability. Therefore, the purpose of this study was to investigate effects of sub-motor-threshold 10-min continuous cervical tSCS applied at rest on the corticospinal and spinal reflex circuit in ten able-bodied individuals. Neurophysiological assessments were conducted to investigate (1) corticospinal excitability via transcranial magnetic stimulation applied on the primary motor cortex to evoke motor-evoked potentials (MEPs) and (2) spinal reflex excitability via single-pulse tSCS applied at the cervical level to evoke posterior root muscle (PRM) reflexes. Measurements were recorded from multiple upper-limb muscles before, during, and after the intervention. Our results showed that low-intensity and short-duration continuous cervical tSCS intervention applied at rest did not significantly affect corticospinal and spinal reflex excitability. The stimulation duration and/or intensity, as well as other stimulating parameters selection, may therefore be critical for inducing neuromodulatory effects during cervical tSCS.
Collapse
Affiliation(s)
- Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (A.S.); (Y.M.); (K.N.)
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Roberto M. de Freitas
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan; (R.M.d.F.); (T.N.)
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (A.S.); (Y.M.); (K.N.)
- School of Health Sciences, Tokyo International University, Saitama 350-1197, Japan
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan; (R.M.d.F.); (T.N.)
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (A.S.); (Y.M.); (K.N.)
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan; (R.M.d.F.); (T.N.)
- Correspondence:
| |
Collapse
|
36
|
Intra-limb modulations of posterior root-muscle reflexes evoked from the lower-limb muscles during isometric voluntary contractions. Exp Brain Res 2021; 239:3035-3043. [PMID: 34363090 PMCID: PMC8536641 DOI: 10.1007/s00221-021-06187-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/01/2021] [Indexed: 12/02/2022]
Abstract
Although voluntary muscle contraction modulates spinal reflex excitability of contracted muscles and other muscles located at other segments within a limb (i.e., intra-limb modulation), to what extent corticospinal pathways are involved in intra-limb modulation of spinal reflex circuits remains unknown. The purpose of the present study was to identify differences in the involvement of corticospinal pathways in intra-limb modulation of spinal reflex circuits among lower-limb muscles during voluntary contractions. Ten young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and knee flexion at 10% of each maximal torque. Electromyographic activity was recorded from soleus, tibialis anterior, vastus lateralis, and biceps femoris muscles. Motor evoked potentials and posterior root-muscle reflexes during rest and isometric contractions were elicited from the lower-limb muscles using transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively. Motor evoked potential and posterior root-muscle reflex amplitudes of soleus during knee extension were significantly increased compared to rest. The motor evoked potential amplitude of biceps femoris during dorsi-flexion was significantly increased, whereas the posterior root-muscle reflex amplitude of biceps femoris during dorsi-flexion was significantly decreased compared to rest. These results suggest that corticospinal and spinal reflex excitabilities of soleus are facilitated during knee extension, whereas intra-limb modulation of biceps femoris during dorsi-flexion appeared to be inverse between corticospinal and spinal reflex circuits.
Collapse
|
37
|
Bogacheva IN, Shcherbakova NA, Savokhin AA, Grishin AA, Gerasimenko YP. Phase-Dependent Effects of Transcutaneous Spinal Cord Stimulation on Regulation of Kinematics of Human Stepping Motions. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
de Freitas RM, Sasaki A, Sayenko DG, Masugi Y, Nomura T, Nakazawa K, Milosevic M. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J Appl Physiol (1985) 2021; 131:746-759. [PMID: 34138648 DOI: 10.1152/japplphysiol.00132.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remain unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, postactivation depression was confirmed with tSCS paired pulses (50-ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared with the other vertebral levels, whereas there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, whereas there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.NEW & NOTEWORTHY We examined selectivity and excitability of motor activation in multiple upper-limb muscles during cervical transcutaneous spinal cord stimulation with different cathode and anode configurations. Hand muscles were more activated when the cathode was configured over the T1 vertebra compared with C6 and C7 locations. Higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles. Finally, configuration of anode over anterior neck elicited larger responses compared with other configurations.
Collapse
Affiliation(s)
- Roberto M de Freitas
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Japan
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
39
|
Sharma P, Shah PK. In vivo electrophysiological mechanisms underlying cervical epidural stimulation in adult rats. J Physiol 2021; 599:3121-3150. [PMID: 33894695 DOI: 10.1113/jp281146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS To electrophysiologically determine the predominant neural structures activated with cervical epidural stimulation (ES), well-established electrophysiological protocols (single-pulse, paired-pulse and multiple frequency stimulation) were delivered at rest, during motor activity and under anaesthesia in adult rats. Cervical ES resulted in spinal evoked motor responses with three different waveforms - early response (ER), middle response (MR) and late response (LR). ERs remained unmodulated by repeated stimulation protocols. In contrast, MRs and LRs were modulated by repeated stimulation protocols and volitional motor activity. ERs are consequential to the direct activation of motor efferents; MRs are secondary to type-I sensory afferent activation and LRs result from the engagement of wider spinal interneuronal circuitry with potential influence from supraspinal pathways. Evidence from this work is fundamental in enhancing our understanding of cervical ES, and critical in refining the design of neuromodulation-based rehabilitative strategies and in the construction of neuroprosthetics. ABSTRACT Epidural stimulation (ES) of the lumbar spinal cord has demonstrated significant improvements in various physiological functions after a traumatic spinal cord injury in humans. Electrophysiological evidence from rodent, human and computational studies collectively suggest that the functional recovery following lumbar ES is mediated via direct activation of sensory afferent fibres. However, the mechanisms underlying cervical ES have not been comprehensively studied, which greatly limits our understanding of its effectiveness in restoring upper limb function. In this work, we determined the predominant neural structures that are activated with cervical ES using in vivo cervical spinal evoked motor responses (SEMRs). Standard electrophysiological protocols (single-pulse, paired-pulse and multiple frequency stimulation) were implemented in 11 awake and anaesthetized rats in four experimental stages. Three distinct types of cervical SEMRs were identified based on latency of their appearance: early response (ER), middle response (MR) and late response (LR). ERs remained unmodulated by repeated stimulation protocols. MRs and LRs were modulated by repeated stimulation protocols and volitional motor activity. Except for LRs being completely abolished under urethane, ketamine or urethane anaesthesia did not affect the appearance of cervical SEMRs. Our data, backed by literature, suggest that ERs are secondary to the direct activation of motor efferents, MRs are elicited by activation of type-I sensory afferents and LRs result from the engagement of interneuronal circuitry with potential influence from supraspinal pathways. The gathered information paves the way to designing motor rehabilitation strategies that can utilize cervical ES to recover upper limb function following neurological deficits.
Collapse
Affiliation(s)
- Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, NY, 11727, USA
| |
Collapse
|
40
|
Martins Â, Gouveia D, Cardoso A, Gamboa Ó, Millis D, Ferreira A. Nervous system modulation through electrical stimulation in companion animals. Acta Vet Scand 2021; 63:22. [PMID: 34053462 PMCID: PMC8167506 DOI: 10.1186/s13028-021-00585-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP-), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field. Additional studies need to be conducted in clinical settings to successfully implement these guidelines in dogs and cats.
Collapse
|
41
|
Characterization of Motor-Evoked Responses Obtained with Transcutaneous Electrical Spinal Stimulation from the Lower-Limb Muscles after Stroke. Brain Sci 2021; 11:brainsci11030289. [PMID: 33652677 PMCID: PMC7996860 DOI: 10.3390/brainsci11030289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of studies suggests that a novel neuromodulation technique targeting the spinal circuitry enhances gait rehabilitation, but research on its application to stroke survivors is limited. Therefore, we investigated the characteristics of spinal motor-evoked responses (sMERs) from lower-limb muscles obtained by transcutaneous spinal cord stimulation (tSCS) after stroke compared to age-matched and younger controls without stroke. Thirty participants (ten stroke survivors, ten age-matched controls, and ten younger controls) completed the study. By using tSCS applied between the L1 and L2 vertebral levels, we compared sMER characteristics (resting motor threshold (RMT), slope of the recruitment curve, and latency) of the tibialis anterior (TA) and medial gastrocnemius (MG) muscles among groups. A single pulse of stimulation was delivered in 5 mA increments, increasing from 5 mA to 250 mA or until the subjects reached their maximum tolerance. The stroke group had an increased RMT (27–51%) compared to both age-matched (TA: p = 0.032; MG: p = 0.005) and younger controls (TA: p < 0.001; MG: p < 0.001). For the TA muscle, the paretic side demonstrated a 13% increased latency compared to the non-paretic side in the stroke group (p = 0.010). Age-matched controls also exhibited an increased RMT compared to younger controls (TA: p = 0.002; MG: p = 0.007), suggesting that altered sMER characteristics present in stroke survivors may result from both stroke and normal aging. This observation may provide implications for altered spinal motor output after stroke and demonstrates the feasibility of using sMER characteristics as an assessment after stroke.
Collapse
|
42
|
Saito A, Nakagawa K, Masugi Y, Nakazawa K. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions. Exp Brain Res 2020; 239:463-474. [PMID: 33221989 PMCID: PMC7936942 DOI: 10.1007/s00221-020-05973-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023]
Abstract
Voluntary contraction facilitates corticospinal and spinal reflex circuit excitabilities of the contracted muscle and inhibits spinal reflex circuit excitability of the antagonist. It has been suggested that modulation of spinal reflex circuit excitability in agonist and antagonist muscles during voluntary contraction differs among lower-limb muscles. However, whether the effects of voluntary contraction on the excitabilities of corticospinal and spinal reflex circuits depend on the tested muscles remains unknown. The purpose of this study was to examine inter-muscle differences in modulation of the corticospinal and spinal reflex circuit excitabilities of multiple lower-limb muscles during voluntary contraction. Eleven young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and flexion at low torque levels. Motor evoked potentials (MEPs) and posterior root-muscle reflexes from seven lower-leg and thigh muscles were evoked by transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively, at rest and during weak voluntary contractions. MEP and posterior root-muscle reflex amplitudes of agonists were significantly increased as agonist torque level increased, except for the reflex of the tibialis anterior. MEP amplitudes of antagonists were significantly increased in relation to the agonist torque level, but those of the rectus femoris were slightly depressed during knee flexion. Regarding the posterior root-muscle reflex of the antagonists, the amplitudes of triceps surae and the hamstrings were significantly decreased, but those of the quadriceps femoris were significantly increased as the agonist torque level increased. These results demonstrate that modulation of corticospinal and spinal reflex circuit excitabilities during agonist and antagonist muscle contractions differed among lower-limb muscles.
Collapse
Affiliation(s)
- Akira Saito
- Center for Health and Sports Science, Kyushu Sangyo University, Matsukadai, Higashi-ku, Fukuoka, Japan. .,Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan. .,Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo, Japan.
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Mikajima, Tokorozawa, Saitama, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Matoba, Kawagoe, Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
43
|
Sasaki A, Kaneko N, Masugi Y, Milosevic M, Nakazawa K. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. J Neurophysiol 2020; 124:652-667. [DOI: 10.1152/jn.00705.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We found that upper limb muscle contractions facilitated corticospinal circuits controlling lower limb muscles even during motor preparation, whereas motor execution of the task was required to facilitate spinal circuits. We also found that facilitation did not depend on whether contralateral or ipsilateral hands were contracted or if they were contracted bilaterally. Overall, these findings suggest that training of unaffected upper limbs may be useful to enhance facilitation of affected lower limbs in paraplegic individuals.
Collapse
Affiliation(s)
- Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Saitama, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
44
|
Krenn MJ, Vargas Luna JL, Mayr W, Stokic DS. Bipolar transcutaneous spinal stimulation evokes short-latency reflex responses in human lower limbs alike standard unipolar electrode configuration. J Neurophysiol 2020; 124:1072-1082. [PMID: 32845202 DOI: 10.1152/jn.00433.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noninvasive electrical stimulation targeting the posterior lumbosacral roots has been applied recently in reflexes studies and as a neuromodulation intervention for modifying spinal cord circuitry after an injury. Here, we characterized short-latency responses evoked by four bipolar electrode configurations placed longitudinally over the spinal column at different vertebral levels from L1 to T9. They were compared with the responses evoked by the standard unipolar (aka monopolar) electrode configuration (cathode at T11/12, anode over the abdominal wall). Short-latency responses were recorded in the rectus femoris, medial hamstrings, tibialis anterior, and soleus muscles, bilaterally, in 11 neurologically intact participants. The response recruitment characteristics (maximal amplitude, motor threshold) and amplitude-matched onset latencies and paired-pulse suppression (35-ms interstimulus interval) were assessed with 1-ms current-controlled pulses at intensities up to 100 mA. The results showed that short-latency responses can be elicited with all bipolar electrode configurations. However, only with the cathode at T11/12 and the anode 10 cm cranially (∼T9), the maximum response amplitudes were statistical equivalent (P < 0.05) in the medial hamstrings, tibialis anterior, and soleus but not the rectus femoris, whereas motor thresholds were not significantly different across all muscles. The onset latency and paired-pulse suppression were also not significantly different across the tested electrode configurations, thereby confirming the reflex nature of the bipolar short-latency responses. We conclude that the bipolar configuration (cathode T11/12, anode ∼T9) produces reflex responses that are ostensibly similar to those evoked by the standard unipolar configuration. This provides an alternative approach for neuromodulation intervention.NEW & NOTEWORTHY Transcutaneous spinal stimulation with the identified bipolar electrode configuration may offer several advantages for neuromodulation interventions over commonly used unipolar configurations: there are no associated abdominal contractions, which improves the participant's comfort; additional dermatomes are not stimulated as when the anode is over the abdominal wall or iliac crest, which may have unwanted effects; and, due to a more localized electrical field, the bipolar configuration offers the possibility of targeting cord segments more selectively.
Collapse
Affiliation(s)
- Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| | - Jose L Vargas Luna
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| |
Collapse
|
45
|
Islam MA, Zaaya M, Comiskey E, Demetrio J, O’Keefe A, Palazzo N, Pulverenti TS, Knikou M. Modulation of soleus H-reflex excitability following cervical transspinal conditioning stimulation in humans. Neurosci Lett 2020; 732:135052. [DOI: 10.1016/j.neulet.2020.135052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
|
46
|
Atkinson DA, Sayenko DG, D'Amico JM, Mink A, Lorenz DJ, Gerasimenko YP, Harkema S. Interlimb conditioning of lumbosacral spinally evoked motor responses after spinal cord injury. Clin Neurophysiol 2020; 131:1519-1532. [PMID: 32403065 DOI: 10.1016/j.clinph.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The importance of subcortical pathways to functional motor recovery after spinal cord injury (SCI) has been demonstrated in multiple animal models. The current study evaluated descending interlimb influence on lumbosacral motor excitability after chronic SCI in humans. METHODS Ulnar nerve stimulation and transcutaneous electrical spinal stimulation were used in a condition-test paradigm to evaluate the presence of interlimb connections linking the cervical and lumbosacral spinal segments in non-injured (n=15) and spinal cord injured (SCI) (n=18) participants. RESULTS Potentiation of spinally evoked motor responses (sEMRs) by ulnar nerve conditioning was observed in 7/7 SCI participants with volitional leg muscle activation, and in 6/11 SCI participants with no volitional activation. Of these six, conditioning of sEMRs was present only when the neurological level of injury was rostral to the ulnar innervation entry zones. CONCLUSIONS Descending modulation of lumbosacral motor pools via interlimb projections may exist in SCI participants despite the absence of volitional leg muscle activation. SIGNIFICANCE Evaluation of sub-clinical, spared pathways within the spinal cord after SCI may provide an improved understanding of both the contributions of different pathways to residual function, and the mechanisms of plasticity and functional motor recovery following rehabilitation..
Collapse
Affiliation(s)
- D A Atkinson
- University of St. Augustine for Health Sciences, Austin, TX, USA
| | - D G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, USA
| | - J M D'Amico
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - A Mink
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - D J Lorenz
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Y P Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA; Pavlov Institute of Physiology, St. Petersburg, Russia
| | - S Harkema
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
47
|
Militskova A, Mukhametova E, Fatykhova E, Sharifullin S, Cuellar CA, Calvert JS, Grahn PJ, Baltina T, Lavrov I. Supraspinal and Afferent Signaling Facilitate Spinal Sensorimotor Network Excitability After Discomplete Spinal Cord Injury: A Case Report. Front Neurosci 2020; 14:552. [PMID: 32655351 PMCID: PMC7323764 DOI: 10.3389/fnins.2020.00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
Objective In this study, we evaluated the role of residual supraspinal and afferent signaling and their convergence on the sublesional spinal network in subject diagnosed with complete paralysis (AIS-A). Methods A combination of electrophysiologic techniques with positional changes and subject-driven reinforcement maneuvers was implemented in this study. Electrical stimulation was applied transcutaneously at the T9-L2 vertebra levels and the spinal cord motor evoked potentials (SEMP) were recorded from leg muscles. To test the influence of positional changes, the subject was placed in (i) supine, (ii) upright with partial body weight bearing and (iii) vertically suspended without body weight bearing positions. Results Increase in amplitude of SEMP was observed during transition from supine to upright position, supporting the role of sensory input in lumbosacral network excitability. Additionally, amplitudes of SEMP were facilitated during reinforcement maneuvers, indicating a supralesional influence on sub-lesional network. After initial assessment, subject underwent rehabilitation therapy with following electrophysiological testing that reviled facilitation of SEMP. Conclusion These results demonstrate that combination of electrophysiological techniques with positional and reinforcement maneuvers can add to the diagnostics of discomplete SCI. These findings also support an idea that integration of supraspinal and afferent information on sub-lesional circuitry plays a critical role in facilitation of spinal sensorimotor network in discomplete SCI.
Collapse
Affiliation(s)
- Alena Militskova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elvira Mukhametova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elsa Fatykhova
- Children's Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Carlos A Cuellar
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Jonathan S Calvert
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
| | - Tatiana Baltina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
48
|
Hofstoetter US, Freundl B, Binder H, Minassian K. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord. PLoS One 2019; 14:e0227057. [PMID: 31877192 PMCID: PMC6932776 DOI: 10.1371/journal.pone.0227057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Posterior root-muscle (PRM) reflexes are short-latency spinal reflexes evoked by epidural or transcutaneous spinal cord stimulation (SCS) in clinical and physiological studies. PRM reflexes share key physiological characteristics with the H reflex elicited by electrical stimulation of large-diameter muscle spindle afferents in the tibial nerve. Here, we compared the H reflex and the PRM reflex of soleus in response to transcutaneous stimulation by studying their recovery cycles in ten neurologically intact volunteers and ten individuals with traumatic, chronic spinal cord injury (SCI). The recovery cycles of the reflexes, i.e., the time course of their excitability changes, were assessed by paired pulses with conditioning-test intervals of 20–5000 ms. Between the subject groups, no statistical difference was found for the recovery cycles of the H reflexes, yet those of the PRM reflexes differed significantly, with a striking suppression in the intact group. When comparing the reflex types, they did not differ in the SCI group, while the PRM reflexes were more strongly depressed in the intact group for durations characteristic for presynaptic inhibition. These differences may arise from the concomitant stimulation of several posterior roots containing afferent fibers of various lower extremity nerves by transcutaneous SCS, producing multi-source heteronymous presynaptic inhibition, and the collective dysfunction of inhibitory mechanisms after SCI contributing to spasticity. PRM-reflex recovery cycles additionally obtained for bilateral rectus femoris, biceps femoris, tibialis anterior, and soleus all demonstrated a stronger suppression in the intact group. Within both subject groups, the thigh muscles showed a stronger recovery than the lower leg muscles, which may reflect a characteristic difference in motor control of diverse muscles. Based on the substantial difference between intact and SCI individuals, PRM-reflex depression tested with paired pulses could become a sensitive measure for spasticity and motor recovery.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
- * E-mail:
| | - Brigitta Freundl
- Neurological Center, Maria Theresien Schloessel, Otto Wagner Hospital, Vienna, Austria
| | - Heinrich Binder
- Neurological Center, Maria Theresien Schloessel, Otto Wagner Hospital, Vienna, Austria
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
49
|
Muscle-Specific Modulation of Spinal Reflexes in Lower-Limb Muscles during Action Observation with and without Motor Imagery of Walking. Brain Sci 2019; 9:brainsci9120333. [PMID: 31766487 PMCID: PMC6955956 DOI: 10.3390/brainsci9120333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Action observation (AO) and motor imagery (MI) are useful techniques in neurorehabilitation. Previous studies have reported that AO and MI facilitate corticospinal excitability only in those muscles that are active when actually performing the observed or imagined movements. However, it remained unclear whether spinal reflexes modulate multiple muscles simultaneously. The present study focused on AO and MI of walking and aimed to clarify their effects on spinal reflexes in lower-limb muscles that are recruited during actual walking. Ten healthy males participated in the present study. Spinal reflex parameters evoked by transcutaneous spinal cord stimulation were measured from five lower-limb muscles during rest, AO, and AO combined with MI (AO + MI) conditions. Our results showed that spinal reflexes were increased in the tibialis anterior and biceps femoris muscles during AO and in the tibialis anterior, soleus, and medial gastrocnemius muscles during AO + MI, compared with resting condition. Spinal reflex parameters in the vastus medialis muscle were unchanged. These results indicate the muscle-specific modulations of spinal reflexes during AO and AO + MI. These findings reveal the underlying neural activities induced by AO, MI, and their combined processes.
Collapse
|
50
|
Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res 2019; 237:3195-3205. [PMID: 31602493 PMCID: PMC6882749 DOI: 10.1007/s00221-019-05660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hikaru Yokoyama
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.,Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|