1
|
Schwartz KS, Stanhewicz AE. Maternal Microvascular Dysfunction During and After Preeclamptic Pregnancy. Compr Physiol 2024; 14:5703-5727. [PMID: 39382165 DOI: 10.1002/cphy.c240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Preeclampsia, a pregnancy disorder characterized by de novo hypertension and maternal multisystem organ dysfunction, is the leading cause of maternal mortality worldwide and is associated with a fourfold greater risk of cardiovascular disease throughout the lifespan. Current understanding of the etiology of preeclampsia remains unclear, due in part to the varying phenotypical presentations of the disease, which has hindered the development of effective and mechanism-specific treatment or prevention strategies both during and after the affected pregnancy. These maternal sequelae of preeclampsia are symptoms of systemic vascular dysfunction in the maternal nonreproductive microvascular beds that drives the development and progression of adverse cardiovascular outcomes during preeclampsia. Despite normalization of vascular disturbances after delivery, subclinical dysfunction persists in the nonreproductive microvascular beds, contributing to an increased lifetime risk of cardiovascular and metabolic diseases and all-cause mortality. Given that women with a history of preeclampsia demonstrate vascular dysfunction despite an absence of traditional CVD risk factors, an understanding of the underlying mechanisms of microvascular dysfunction during and after preeclampsia is essential to identify potential therapeutic avenues to mitigate or reverse the development of overt disease. This article aims to provide a summary of the existing literature on the pathophysiology of maternal microvascular dysfunction during preeclampsia, the mechanisms underlying the residual dysfunction that remains after delivery, and current and potential treatments both during and after the affected pregnancy that may reduce microvascular dysfunction in these high-risk women. © 2024 American Physiological Society. Compr Physiol 14:5703-5727, 2024.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Stone T, Yanes Cardozo LL, Oluwatade TN, Leone CA, Burgos M, Okifo F, Pal L, Reckelhoff JF, Stachenfeld NS. Testosterone-associated blood pressure dysregulation in women with androgen excess polycystic ovary syndrome. Am J Physiol Heart Circ Physiol 2023; 325:H232-H243. [PMID: 37327000 PMCID: PMC10393337 DOI: 10.1152/ajpheart.00164.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We tested the hypothesis that hyperandrogenemia in androgen excess polycystic ovary syndrome (AE-PCOS) is a primary driver in blood pressure (BP) dysregulation via altered sympathetic nervous system activity (SNSA), reduced integrated baroreflex gain and increased renin-angiotensin system (RAS) activation. We measured resting SNSA (microneurography), integrated baroreflex gain, and RAS with lower body negative pressure in obese insulin-resistant (IR) women with AE-PCOS [n = 8, 23 ± 4 yr; body mass index (BMI) = 36.3 ± 6.4 kg/m2] and obese IR controls (n = 7, control, 29 ± 7 yr; BMI = 34.9 ± 6.8 kg/m2), at baseline (BSL), after 4 days of gonadotropin-releasing hormone antagonist (ANT, 250 μg/day) and 4 days of ANT + testosterone (ANT + T, 5 mg/day) administration. Resting BP was similar between groups for systolic blood pressure (SBP; 137 ± 14 vs. 135 ± 14 mmHg, AE-PCOS, control) and diastolic BP (89 ± 21 vs. 76 ± 10 mmHg, AE-PCOS, control). BSL integrated baroreflex gain was similar between groups [1.4 ± 0.9 vs. 1.0 ± 1.3 forearm vascular resistance (FVR) U/mmHg], but AE-PCOS had lower SNSA (10.3 ± 2.0 vs. 14.4 ± 4.4 burst/100 heartbeats, P = 0.04). In AE-PCOS, T suppression increased integrated baroreflex gain, which was restored to BSL with ANT + T (4.3 ± 6.5 vs. 1.5 ± 0.8 FVR U/mmHg, ANT, and ANT + T, P = 0.04), with no effect in control. ANT increased SNSA in AE-PCOS (11.2 ± 2.4, P = 0.04). Serum aldosterone was greater in AE-PCOS versus control (136.5 ± 60.2 vs. 75.7 ± 41.4 pg/mL, AE-PCOS, control, P = 0.04) at BSL but was unaffected by intervention. Serum angiotensin-converting enzyme was greater in AE-PCOS versus control (101.9 ± 93.4 vs. 38.2 ± 14.7 pg/mL, P = 0.04) and reduced by ANT in AE-PCOS (77.7 ± 76.5 vs. 43.4 ± 27.3 µg/L, ANT, and ANT + T, P = 0.04) with no impact on control. Obese, IR women with AE-PCOS showed decreased integrated baroreflex gain and increased RAS activation compared with control.NEW & NOTEWORTHY Here we present evidence for an important role of testosterone in baroreflex control of blood pressure and renal responses to baroreceptor unloading in women with a common, high-risk androgen excess polycystic ovary syndrome (AE-PCOS) phenotype. These data indicate a direct effect of testosterone on the vascular system of women with AE-PCOS independent of body mass index (BMI) and insulin-resistant (IR). Our study indicates that hyperandrogenemia is a central underlining mechanism of heightened cardiovascular risk in women with PCOS.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Division of Endocrinology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Toni N Oluwatade
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- College of Arts and Sciences, Yale University, New Haven, Connecticut, United States
| | - Cheryl A Leone
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Melanie Burgos
- John B. Pierce Laboratory, New Haven, Connecticut, United States
| | - Faith Okifo
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Jane F Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Akins JD, Richey RE, Campbell JC, Martin ZT, Olvera G, Brothers RM. Contributions of endothelin-1 and l-arginine to blunted cutaneous microvascular function in young, black women. Am J Physiol Heart Circ Physiol 2022; 322:H260-H268. [PMID: 34919455 PMCID: PMC8759956 DOI: 10.1152/ajpheart.00457.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Non-Hispanic black (BL) individuals have the greatest prevalence of cardiovascular disease (CVD), relative to other racial/ethnic groups (e.g., non-Hispanic white population; WH), which may be secondary to blunted vascular function. Although women typically present with reduced CVD relative to men of the same racial/ethnic group, the prevalence is similar between BL women and men though the mechanisms differ. This study hypothesized that reduced microvascular function in young, BL women is associated with endothelin-1 (ET-1) overactivity or insufficient l-arginine bioavailability. Nine BL and nine WH women participated (age: 20 ± 2 vs. 22 ± 2 yr). Cutaneous microvascular function was assessed during 39°C local heating, whereas lactated Ringer's (control), BQ-123 (ET-1 receptor type A antagonist), BQ-788 (ET-1 receptor type B antagonist), or l-arginine were infused via intradermal microdialysis to modify cutaneous vascular conductance (CVC). Subsequent infusion of Nω-nitro-l-arginine methyl ester allowed for quantification of the nitric oxide (NO) contribution to vasodilation, whereas combined sodium nitroprusside and 43°C heating allowed for normalization to maximal CVC (%CVCmax). BL women had blunted %CVCmax and NO contribution to dilation during the 39°C plateau (P < 0.027 for both). BQ-123 improved this response through augmented NO-mediated dilation (P < 0.048 for both). BQ-788 and l-arginine did not alter the CVC responses (P > 0.835 for both) or the NO contribution (P > 0.371 for both). Cutaneous microvascular function is reduced in BL women, and ET-1 receptor type A may contribute to this reduced function. Further research is needed to better characterize these mechanisms in young, BL women.NEW & NOTEWORTHY Cardiovascular disease remains a burden in the United States non-Hispanic black (BL) population, although its manifestation through blunted vasodilation in this population is different between men and women. Accordingly, this study determined that reduced microvascular function in young, BL women may be partially controlled by endothelin-1 (ET-1) type A receptors, although neither type B receptors nor insufficient l-arginine bioavailability seems to contribute to this response. Accordingly, further research is needed to better characterize these ET-1 related mechanisms and illuminate other pathways that may contribute to this disparate vascular function in young, BL women.
Collapse
Affiliation(s)
- John D. Akins
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Rauchelle E. Richey
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,2Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Jeremiah C. Campbell
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Zachary T. Martin
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Guillermo Olvera
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas,3Institute for Exercise and Environmental Medicine, Dallas, Texas
| | - R. Matthew Brothers
- 1Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
6
|
Shoemaker LN, Haigh KM, Kuczmarski AV, McGinty SJ, Welti LM, Hobson JC, Edwards DG, Feinberg RF, Wenner MM. ET B receptor-mediated vasodilation is regulated by estradiol in young women. Am J Physiol Heart Circ Physiol 2021; 321:H592-H598. [PMID: 34415188 DOI: 10.1152/ajpheart.00087.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endothelin-B (ETB) receptor is a key regulator of vascular endothelial function in women. We have previously shown that the ETB receptor mediates vasodilation in young women, an effect that is lost after menopause. However, the direct impact of changes in estradiol (E2) on ETB receptor function in women remains unclear. Therefore, the purpose of this study was to test the hypothesis that E2 exposure modulates ETB receptor-mediated dilation in young women. Fifteen young women (24 ± 4 yr, 24 ± 3 kg/m2) completed the study. Endogenous sex hormone production was suppressed with daily administration of a gonadotropin-releasing hormone antagonist (GnRHant; Ganirelix) for 10 days; E2 (0.1 mg/day, Vivelle-Dot patch) was added back on days 4-10. We measured vasodilation in the cutaneous microcirculation (microvascular endothelial function) via local heating (42°C) on day 4 (GnRHant) and day 10 (GnRHant + E2) using laser Doppler flowmetry coupled with intradermal microdialysis during perfusions of lactated Ringer's (control) and ETB receptor antagonist (BQ-788, 300 nM). During GnRHant, vasodilatory responses to local heating were enhanced with ETB receptor blockade (control: 83 ± 9 vs. BQ-788: 90 ± 5%CVCmax, P = 0.004). E2 administration improved vasodilation in the control site (GnRHant: 83 ± 9 vs. GnRHant + E2: 89 ± 8%CVCmax, P = 0.036). Furthermore, cutaneous vasodilatory responses during ETB receptor blockade were blunted after E2 administration (control: 89 ± 8 vs. BQ-788: 84 ± 8%CVCmax, P = 0.047). These data demonstrate that ovarian hormones, specifically E2, modulate ETB receptor function and contribute to the regulation of microvascular endothelial function in young women.NEW & NOTEWORTHY The endothelin-B (ETB) receptor mediates vasodilation in young women, an effect lost following menopause. It is unclear whether these alterations are due to aging or changes in estradiol (E2). During endogenous hormone suppression (GnRH antagonist), blockade of ETB receptors enhanced cutaneous microvascular vasodilation. However, during E2 administration, blockade of ETB receptors attenuated vasodilation, indicating that the ETB receptor mediates dilation in the presence of E2. In young women, ETB receptors mediate vasodilation in the presence of E2, an effect that is lost when E2 is suppressed.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Katherine M Haigh
- School of Nursing, University of Delaware, Newark, Delaware.,Reproductive Associates of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Shane J McGinty
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Laura M Welti
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Joshua C Hobson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | | | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
7
|
Stone T, Stachenfeld NS. Pathophysiological effects of androgens on the female vascular system. Biol Sex Differ 2020; 11:45. [PMID: 32727622 PMCID: PMC7391603 DOI: 10.1186/s13293-020-00323-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Sex hormones and their respective receptors affect vascular function differently in men and women, so it is reasonable to assume they play a role in the sex differences in cardiovascular disease states. This review focuses on how the effects of testosterone on arterial vessels impact the female vasculature. In women with androgen-excess polycystic ovary syndrome, and in transgender men, testosterone exposure is associated with high blood pressure, endothelial dysfunction, and dyslipidemia. These relationships suggest that androgens may exert pathophysiological effects on the female vasculature, and these effects on the female vasculature appear to be independent from other co-morbidities of cardiovascular disease. There is evidence that the engagement of androgens with androgen receptor induces detrimental outcomes in the female cardiovascular system, thereby representing a potential causative link with sex differences and cardiovascular regulation. Gender affirming hormone therapy is the primary medical intervention sought by transgender people to reduce the characteristics of their natal sex and induce those of their desired sex. Transgender men, and women with androgen-excess polycystic ovary syndrome both represent patient groups that experience chronic hyperandrogenism and thus lifelong exposure to significant medical risk. The study of testosterone effects on the female vasculature is relatively new, and a complex picture has begun to emerge. Long-term research in this area is needed for the development of more consistent models and controlled experimental designs that will provide insights into the impact of endogenous androgen concentrations, testosterone doses for hormone therapy, and specific hormone types on function of the female cardiovascular system.
Collapse
Affiliation(s)
- Tori Stone
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, 290 Congress Ave, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
|
9
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Salek M, Clark CCT, Taghizadeh M, Jafarnejad S. N-3 fatty acids as preventive and therapeutic agents in attenuating PCOS complications. EXCLI JOURNAL 2019; 18:558-575. [PMID: 31611740 PMCID: PMC6785778 DOI: 10.17179/excli2019-1534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
To our knowledge, in spite of several trials exploring the beneficial effect of n-3 polyunsaturated fatty acids (PUFA) on polycystic ovary syndrome (PCOS), no comprehensive evidence has investigated the effects of n-3 PUFA consumption on PCOS complications. Therefore, our aim was to conduct a review to investigate the possible effect and related mechanisms. A comprehensive systematic search was conducted in Embase, MEDLINE/PubMed, Google Scholar, and SCOPUS, to identify studies investigating n-3 fatty acids as a preventative or therapeutic agent for the attenuation of PCOS complications. Subsequently, the impact of omega-3 on PCOS, omega-3 and inflammation, omega-3 and insulin resistance, omega-3 and adipokines, omega-3 and lipid metabolism, omega-3 and endothelial function and omega-3 and hormonal factors were discussed. There are multiple mechanisms by which n-3 PUFAs may exert their beneficial effects on PCOS, including anti-obesity, glycemic and hormonal hemostasis, anti-inflammatory, regulation of adipokine production and enhancement of endothelial function.N-3 PUFAs are a promising agent in relieving complications associated with PCOS. Although most of the studies in patients with PCOS reported an improvement in most complications after administration of omega-3 supplements, there is a distinct dearth of studies investigating the dietary intake of these types of fatty acids. Moreover, favorable effects regarding the improvement of dyslipidemia, regulation of adipokines, regulation of hormonal factors and enhancement of endothelial function are limited. Therefore, more trials are warranted to investigate palatable mechanisms for clarifying the metabolic and hormonal effects of these agents in PCOS.
Collapse
Affiliation(s)
- Mina Salek
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Cain C T Clark
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
11
|
Usselman CW, Yarovinsky TO, Steele FE, Leone CA, Taylor HS, Bender JR, Stachenfeld NS. Androgens drive microvascular endothelial dysfunction in women with polycystic ovary syndrome: role of the endothelin B receptor. J Physiol 2019; 597:2853-2865. [PMID: 30847930 DOI: 10.1113/jp277756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Polycystic ovary syndrome (PCOS) is a complex syndrome with cardiovascular risk factors, including obesity and insulin resistance. PCOS is also associated with high androgens, increases the risk of cardiovascular dysfunction in women. Due to the complexity of PCOS, had it has been challenging to isolate specific causes of the cardiovascular dysfunction. Our measure of cardiovascular dysfunction (endothelial dysfunction) was most profound in lean women with PCOS. The endothelin-1-induced vasodilation in these PCOS subject, was dependent on the ETB R but was not NO-dependent. We also demonstrated oestrogen administration improved endothelial function in lean and obese women with PCOS likely because oestrogen increased NO availability. Our studies indicate a primary role for androgens in cardiovascular dysfunction in PCOS. ABSTRACT Endothelin-1 (ET-1) is an indicator of endothelial injury and dysfunction and is elevated in women with androgen excess polycystic ovary syndrome (AE-PCOS). The endothelin B receptor (ETB R) subtype mediates vasodilatation, but is blunted in women with PCOS. We hypothesized that androgen drives endothelial dysfunction in AE-PCOS women and oestradiol (EE) administration reverses these effects. We assessed microvascular endothelial function in women with (7 lean and 7 obese) and without AE-PCOS (controls, 6 lean, 7 obese). Only obese AE-PCOS women were insulin resistant (IR). We evaluated cutaneous vascular conductance (%CVCmax ) with laser Doppler flowmetry during low dose intradermal microdialysis ET-1 perfusions (1, 3, 4, 5 and 7 pmol) with either lactated Ringer solution alone, or with ETB R (BQ-788), or nitric oxide (NO) inhibition (l-NAME). Log[ET-1]-%maxCVC dose-response curves demonstrated reduced vasodilatory responses to ET-1 in lean AE-PCOS (logED50 , 0.59 ± 0.08) versus lean controls (logED50 , 0.49 ± 0.09, P < 0.05), but not compared to obese AE-PCOS (logED50 , 0.65 ± 0.09). ETB R inhibition decreased ET-1-induced vasodilatation in AE-PCOS women (logED50 , 0.64 ± 0. 22, P < 0.05). This was mechanistically observed at the cellular level, with ET-1-induced, DAF-FM-measurable endothelial cell NO production, which was abrogated by dihydrotestosterone in an androgen receptor-dependent manner. EE augmented the cutaneous vasodilating response to ET-1(logED50 0.29 ± 0.21, 0.47 ± 0.09, P < 0.05 for lean and obese, respectively). Androgens drive endothelial dysfunction in lean and obese AE-PCOS. We propose that the attenuated ET-1-induced vasodilatation in AE-PCOS is a consequence of androgen receptor-mediated, suppressed ETB R-stimulated NO production, and is reversed with EE.
Collapse
Affiliation(s)
- Charlotte W Usselman
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Timur O Yarovinsky
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Frances E Steele
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cheryl A Leone
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey R Bender
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 2018; 315:H1569-H1588. [PMID: 30216121 PMCID: PMC6734083 DOI: 10.1152/ajpheart.00396.2018] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Diseases of the cardiovascular system are the leading cause of morbidity and mortality in men and women in developed countries, and cardiovascular disease (CVD) is becoming more prevalent in developing countries. The prevalence of atherosclerotic CVD in men is greater than in women until menopause, when the prevalence of CVD increases in women until it exceeds that of men. Endothelial function is a barometer of vascular health and a predictor of atherosclerosis that may provide insights into sex differences in CVD as well as how and why the CVD risk drastically changes with menopause. Studies of sex differences in endothelial function are conflicting, with some studies showing earlier decrements in endothelial function in men compared with women, whereas others show similar age-related declines between the sexes. Because the increase in CVD risk coincides with menopause, it is generally thought that female hormones, estrogens in particular, are cardioprotective. Moreover, it is often proposed that androgens are detrimental. In truth, the relationships are more complex. This review first addresses female and male sex hormones and their receptors and how these interact with the cardiovascular system, particularly the endothelium, in healthy young women and men. Second, we address sex differences in sex steroid receptor-independent mechanisms controlling endothelial function, focusing on vascular endothelin and the renin-angiotensin systems, in healthy young women and men. Finally, we discuss sex differences in age-associated endothelial dysfunction, focusing on the role of attenuated circulating sex hormones in these effects.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Pennsylvania State University , University Park, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Obstetrics, Gynecology and Reproductive Sciences and Yale School of Public Health, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Sebzda KN, Kuczmarski AV, Pohlig RT, Lennon SL, Edwards DG, Wenner MM. Ovarian hormones modulate endothelin-1 receptor responses in young women. Microcirculation 2018; 25:e12490. [PMID: 29999581 DOI: 10.1111/micc.12490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We recently demonstrated ETBR mediate vasodilation in young but not postmenopausal women; it is unclear if this is related to age or a decline in ovarian hormones. The purpose of this study was to test the hypothesis that ETBR responses are modulated by ovarian hormones. METHODS We measured cutaneous vasodilatory responses in 12 young women (22 ± 1 years, 23 ± 1 kg/m2 ) during the ML (days 20-25) and EF (days 2-5) phases of the menstrual cycle. Cutaneous microdialysis perfusions of lactated Ringer (control), ETBR antagonist (BQ-788, 300 nmol/L), and ETAR antagonist (BQ-123, 500 nmol/L) were performed, followed by local heating to 42°C. RESULTS Serum estradiol (ML: 118 ± 16 vs EF: 44 ± 9 pg/mL, P < 0.05) and progesterone (ML: 8.3 ± 1.0 vs EF: 0.7 ± 0.2 ng/mL, P < 0.05) were higher during ML vs EF phase. ETBR blockade decreased vasodilation during ML (control: 91 ± 2 vs BQ-788: 83 ± 2%CVCmax, P < 0.05) but not EF (control: 89 ± 2 vs BQ-788: 89 ± 1%CVCmax). ETAR blockade also decreased vasodilation during ML (control: 91 ± 2 vs BQ-123: 87 ± 2%CVCmax, P < 0.05) but not EF (control: 89 ± 2 vs BQ-123: 92 ± 2%CVCmax). CONCLUSIONS These data suggest that fluctuations in ovarian hormones modulate ETBR and ETAR responses in young women.
Collapse
Affiliation(s)
- Kelly N Sebzda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Ryan T Pohlig
- Biostatistic Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
14
|
Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic Features of Polycystic Ovary Syndrome: Role of Androgens. Physiology (Bethesda) 2018; 32:357-366. [PMID: 28814496 DOI: 10.1152/physiol.00030.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects reproductive-age women. Hyperandrogenemia is present in a significant fraction (~80%) of women with PCOS. Increased prevalence of cardiometabolic risk factors is frequently observed in PCOS women. The present review aims to highlight the key role of androgens in mediating the negative cardiometabolic profile observed in PCOS women.
Collapse
Affiliation(s)
- Licy L Yanes Cardozo
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane F Reckelhoff
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Stanhewicz AE, Jandu S, Santhanam L, Alexander LM. Alterations in endothelin type B receptor contribute to microvascular dysfunction in women who have had preeclampsia. Clin Sci (Lond) 2017; 131:2777-2789. [PMID: 29042489 PMCID: PMC5922254 DOI: 10.1042/cs20171292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Microvascular dysfunction originating during a preeclamptic pregnancy persists postpartum and probably contributes to increased CVD risk in these women. One putative mechanism contributing to this dysfunction is increased vasoconstrictor sensitivity to endothelin-1 (ET-1), mediated by alterations in ET-1 receptor type-B (ETBR). We evaluated ET-1 sensitivity, ETAR, and ETBR contributions to ET-1-mediated constriction, and the mechanistic role of ETBR in endothelium-dependent dilation in vivo in the microvasculature of postpartum women who had preeclampsia (PrEC, n=12) and control women who had a healthy pregnancy (HC, n=12). We hypothesized that (1) PrEC would have a greater vasoconstrictor response to ET-1, and (2) reduced ETBR-mediated dilation. We further hypothesized that ETBR-blockade would attenuate endothelium-dependent vasodilation in HC, but not PrEC. Microvascular reactivity was assessed by measurement of cutaneous vascular conductance responses to graded infusion of ET-1 (10-20-10-8 mol/l), ET-1 + 500 nmol/l BQ-123 (ETAR-blockade), and ET-1 + 300 nmol/l BQ-788 (ETBR-blockade), and during graded infusion of acetylcholine (ACh, 10-7-102 mmol/l) and a standardized local heating protocol with and without ETBR-inhibition. PrEC had an increased vasoconstriction response to ET-1 (P=0.02). PrEC demonstrated reduced dilation responses to selective ETBR stimulation with ET-1 (P=0.01). ETBR-inhibition augmented ET-1-mediated constriction in HC (P=0.01) but attenuated ET-1-mediated constriction in PrEC (P=0.003). ETBR-inhibition attenuated endothelium-dependent vasodilation responses to 100mmol/l ACh (P=0.04) and local heat (P=0.003) in HC but increased vasodilation (ACh: P=0.01; local heat: P=0.03) in PrEC. Women who have had preeclampsia demonstrate augmented vasoconstrictor sensitivity to ET-1, mediated by altered ETBR signaling. Furthermore, altered ETBR function contributes to diminished endothelium-dependent dilation in previously preeclamptic women.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Sandeep Jandu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
16
|
Wenner MM, Sebzda KN, Kuczmarski AV, Pohlig RT, Edwards DG. ET B receptor contribution to vascular dysfunction in postmenopausal women. Am J Physiol Regul Integr Comp Physiol 2017; 313:R51-R57. [PMID: 28438762 DOI: 10.1152/ajpregu.00410.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/27/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023]
Abstract
Endothelin-1 (ET-1) contributes to age-related endothelial dysfunction in men via the ETA receptor. However, there are sex differences in the ET-1 system, and ETB receptors are modulated by sex hormones. The purpose of this study was to test the hypothesis that ETB receptors contribute to impaired vasodilatory function in postmenopausal women (PMW). We measured flow-mediated dilation (FMD) using ultrasound, and cutaneous nitric oxide-mediated vasodilation during local heating (42°C) via laser Doppler flowmetry in 18 young women (YW; 22 ± 1 yr) and 16 PMW (56 ± 1 yr). Cutaneous microdialysis perfusions of lactated Ringer (control), an ETB receptor antagonist (BQ-788, 300 nM), and an ETA receptor antagonist (BQ-123, 500 nM), were done through separate fibers, followed by perfusions of sodium nitroprusside (28 mM) and local heating to 43°C (max). Cutaneous vascular conductance (CVC) was calculated as cutaneous blood flow/mean arterial pressure and expressed as a percent of maximal dilation. FMD (YW: 7.5 ± 0.5 vs. PMW: 5.6 ± 0.6%) and cutaneous vasodilation (YW: 93 ± 2 vs. PMW: 83 ± 4%CVCmax) were lower in PMW (both P < 0.05). Blockade of ETB receptors decreased cutaneous vasodilation in YW (87 ± 2%CVCmax; P < 0.05 vs. control) but increased vasodilation in PMW (93 ± 1%CVCmax; P < 0.05 vs. control). ETA receptor blockade had minimal effect in YW (92 ± 1%CVCmax) but increased cutaneous vasodilation in PMW (91 ± 2%CVCmax; P < 0.05 vs. control). In conclusion, ETB receptors mediate vasodilation in YW, but this effect is lost after menopause. Impaired vasodilatory function in PMW is due in part to a loss of ETB-mediated dilation.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Kelly N Sebzda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Andrew V Kuczmarski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware; and
| |
Collapse
|
17
|
Fujii N, Singh MS, Halili L, Louie JC, Kenny GP. The effect of endothelin A and B receptor blockade on cutaneous vascular and sweating responses in young men during and following exercise in the heat. J Appl Physiol (1985) 2016; 121:1263-1271. [PMID: 27763878 DOI: 10.1152/japplphysiol.00679.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 10/02/2016] [Indexed: 11/22/2022] Open
Abstract
During exercise, cutaneous vasodilation and sweating responses occur, whereas these responses rapidly decrease during postexercise recovery. We hypothesized that the activation of endothelin A (ETA) receptors, but not endothelin B (ETB) receptors, attenuate cutaneous vasodilation during high-intensity exercise and contribute to the subsequent postexercise suppression of cutaneous vasodilation. We also hypothesized that both receptors increase sweating during and following high-intensity exercise. Eleven men (24 ± 4 yr) performed an intermittent cycling protocol consisting of two 30-min bouts of moderate- (40% V̇o2peak) and high-intensity (75% V̇o2peak) exercise in the heat (35°C), each separated by a 20- and 40-min recovery period, respectively. Cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal microdialysis skin sites: 1) lactated Ringer (control), 2) 500 nM BQ123 (a selective ETA receptor blocker), 3) 300 nM BQ788 (a selective ETB receptor blocker), or 4) a combination of BQ123 + BQ788. There were no between-site differences in CVC during each exercise bout (all P > 0.05); however, CVC following high-intensity exercise was greater at BQ123 (56 ± 9%max) and BQ123 + BQ788 (55 ± 14%max) sites relative to the control site (43 ± 12%max) (all P ≤ 0.05). Sweat rate did not differ between sites throughout the protocol (all P > 0.05). We show that neither ETA nor ETB receptors modulate cutaneous vasodilation and sweating responses during and following moderate- and high-intensity exercise in the heat, with the exception that ETA receptors may partly contribute to the suppression of cutaneous vasodilation following high-intensity exercise.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Maya S Singh
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Fujii N, Amano T, Halili L, Louie JC, Zhang SY, McNeely BD, Kenny GP. Intradermal administration of endothelin-1 attenuates endothelium-dependent and -independent cutaneous vasodilation via Rho kinase in young adults. Am J Physiol Regul Integr Comp Physiol 2016; 312:R23-R30. [PMID: 27881399 DOI: 10.1152/ajpregu.00368.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
We recently showed that intradermal administration of endothelin-1 diminished endothelium-dependent and -independent cutaneous vasodilation. We evaluated the hypothesis that Rho kinase may be a mediator of this response. We also sought to evaluate if endothelin-1 increases sweating. In 12 adults (25 ± 6 yr), we measured cutaneous vascular conductance (CVC) and sweating during 1) endothelium-dependent vasodilation induced via administration of incremental doses of methacholine (0.25, 5, 100, and 2,000 mM each for 25 min) and 2) endothelium-independent vasodilation induced via administration of 50 mM sodium nitroprusside (20-25 min). Responses were evaluated at four skin sites treated with either 1) lactated Ringer solution (Control), 2) 400 nM endothelin-1, 3) 3 mM HA-1077 (Rho kinase inhibitor), or 4) endothelin-1+HA-1077. Pharmacological agents were intradermally administered via microdialysis. Relative to the Control site, endothelin-1 attenuated endothelium-dependent vasodilation (CVC at 2,000 mM methacholine, 80 ± 10 vs. 56 ± 15%max, P < 0.01); however, this response was not detected when the Rho kinase inhibitor was simultaneously administered (CVC at 2,000 mM methacholine for Rho kinase inhibitor vs. endothelin-1 + Rho kinase inhibitor sites: 73 ± 9 vs. 72 ± 11%max, P > 0.05). Endothelium-independent vasodilation was attenuated by endothelin-1 compared with the Control site (CVC, 92 ± 13 vs. 70 ± 14%max, P < 0.01). However, in the presence of Rho kinase inhibition, endothelin-1 did not affect endothelium-independent vasodilation (CVC at Rho kinase inhibitor vs. endothelin-1+Rho kinase inhibitor sites: 81 ± 9 vs. 86 ± 10%max, P > 0.05). There was no between-site difference in sweating throughout (P > 0.05). We show that in young adults, Rho kinase is an important mediator of the endothelin-1-mediated attenuation of endothelium-dependent and -independent cutaneous vasodilation, and that endothelin-1 does not increase sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; and
| |
Collapse
|
19
|
Wenner MM, Taylor HS, Stachenfeld NS. Peripheral Microvascular Vasodilatory Response to Estradiol and Genistein in Women with Insulin Resistance. Microcirculation 2016; 22:391-9. [PMID: 25996650 DOI: 10.1111/micc.12208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE E2 enhances vasodilation in healthy women, but vascular effects of the phytoestrogen GEN are still under investigation. IR compromises microvascular function. We therefore examined the interaction of E2 , GEN, and IR on microvascular vasodilatory responsiveness. METHODS We hypothesized that E2 and GEN increase microvascular vasodilation in healthy women (control, n = 8, 23 ± 2 year, BMI: 25.9 ± 2.9 kg/m2) but not in women with IR (n = 7, 20 ± 1 year, BMI: 27.3 ± 3.0 kg/m2). We used the cutaneous circulation as a model of microvascular vasodilatory function. We determined CVC with laser Doppler flowmetry and beat-to-beat blood pressure during local cutaneous heating (42 °C) with E2 or GEN microdialysis perfusions. Because heat-induced vasodilation is primarily an NO-mediated response, we examined microvascular vasodilation with and without L-NMMA. RESULTS In C, E2 enhanced CVC (94.4 ± 2.6% vs. saline 81.6 ± 4.2% CVCmax , p < 0.05), which was reversed with L-NMMA (80.9 ± 7.8% CVCmax , p < 0.05), but GEN did not affect vasodilation. Neither E2 nor GEN altered CVC in IR, although L-NMMA attenuated CVC during GEN. CONCLUSIONS Our study does not support improved microvascular responsiveness during GEN exposure in healthy young women, and demonstrates that neither E2 nor GEN improves microvascular vasodilatory responsiveness in women with IR.
Collapse
Affiliation(s)
- Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nina S Stachenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.,The John B. Pierce Laboratory, New Haven, Connecticut.,Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Yilmaz SA, Kebapcilar A, Koplay M, Kerimoglu OS, Pekin AT, Gencoglu B, Dogan NU, Celik C. Association of clinical androgen excess with radial artery intima media thickness in women with polycystic ovary syndrome. Gynecol Endocrinol 2015. [PMID: 26213862 DOI: 10.3109/09513590.2015.1014783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study explores the relationship between clinical cardiovascular risk factors and clinical androgen excess, with direct comparison to radial artery intima media thickness (rIMT). rIMT of 91 patients with polycystic ovary syndrome (PCOS) were compared with 72 healthy women. Patients were divided into three groups with regard to body mass index (BMI). Group1 = 56 women (31 controls and 25 PCOS) with low BMI(18-22.49 kg/m(2)), Group2 = 36 women (15 controls and 21 PCOS) with normal BMI (22.5-24.99 kg/m(2)) and Group3 = 71 women (26 controls and 45 PCOS) with high BMI (25-30 kg/m(2)). rIMT was significantly higher in patients with PCOS (p = 0.007). rIMT was significantly higher group1 and group3 in patients with PCOS compared to controls (p = 0.007 and p = 0.042, respectively). There was a significant positive association between rIMT levels and fT in women with PCOS in group1 (r = 0.24, p = 0.04). rIMT levels correlated to fT levels in women with PCOS in group3 (r = 0.32, p = 0.03). Modified Ferriman-Gallwey (mFG) scores demonstrated a positive association with free testosterone, total testosterone, free androgen index, waist circumference (WC), LH levels, insulin levels, Homeostasis Model Assessment index(HOMA-IR), rIMT and a negative correlation with sex hormone binding globulin in group1 and group2. mFG scores demonstrated a positive association with free testosterone (r = 0.33, p = 0.029) in group3, but no association was found between mFG and WC, HOMA-IR in group3. Our findings indicate that clinical androgen excess may be associated with cardiovascular disease in patients with PCOS.
Collapse
Affiliation(s)
- S A Yilmaz
- Department of Obstetrics and Gynecology and
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Martínez-Barquero V, de Marco G, Martínez-Hervas S, Rentero P, Galan-Chilet I, Blesa S, Morchon D, Morcillo S, Rojo G, Ascaso JF, Real JT, Martín-Escudero JC, Chaves FJ. Polymorphisms in endothelin system genes, arsenic levels and obesity risk. PLoS One 2015; 10:e0118471. [PMID: 25799405 PMCID: PMC4370725 DOI: 10.1371/journal.pone.0118471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Obesity has been linked to morbidity and mortality through increased risk for many chronic diseases. Endothelin (EDN) system has been related to endothelial function but it can be involved in lipid metabolism regulation: Receptor type A (EDNRA) activates lipolysis in adipocytes, the two endothelin receptors mediate arsenic-stimulated adipocyte dysfunction, and endothelin system can regulate adiposity by modulating adiponectin activity in different situations and, therefore, influence obesity development. The aim of the present study was to analyze if single nucleotide polymorphisms (SNPs) in the EDN system could be associated with human obesity. SUBJECTS/METHODS We analyzed two samples of general-population-based studies from two different regions of Spain: the VALCAR Study, 468 subjects from the area of Valencia, and the Hortega Study, 1502 subjects from the area of Valladolid. Eighteen SNPs throughout five genes were analyzed using SNPlex. RESULTS We found associations for two polymorphisms of the EDNRB gene which codifies for EDN receptor type B. Genotypes AG and AA of the rs5351 were associated with a lower risk for obesity in the VALCAR sample (p=0.048, OR=0.63) and in the Hortega sample (p=0.001, OR=0.62). Moreover, in the rs3759475 polymorphism, genotypes CT and TT were also associated with lower risk for obesity in the Hortega sample (p=0.0037, OR=0.66) and in the VALCAR sample we found the same tendency (p=0.12, OR=0.70). Furthermore, upon studying the pooled population, we found a stronger association with obesity (p=0.0001, OR=0.61 and p=0.0008, OR=0.66 for rs5351 and rs3759475, respectively). Regarding plasma arsenic levels, we have found a positive association for the two SNPs studied with obesity risk in individuals with higher arsenic levels in plasma: rs5351 (p=0.0054, OR=0.51) and rs3759475 (p=0.009, OR=0.53). CONCLUSIONS Our results support the hypothesis that polymorphisms of the EDNRB gene may influence the susceptibility to obesity and can interact with plasma arsenic levels.
Collapse
Affiliation(s)
- Vanesa Martínez-Barquero
- Department of Medicine, University of Valencia, Valencia, Spain
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Griselda de Marco
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sergio Martínez-Hervas
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pilar Rentero
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Inmaculada Galan-Chilet
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - Sebastian Blesa
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
| | - David Morchon
- Internal Medicine, Rio Hortega Hospital, University of Valladolid, Valladolid, Spain
| | - Sonsoles Morcillo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Gemma Rojo
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Regional Universitario, Málaga, Spain, Instituto de Biomedicina de Málaga (IBIMA), Málaga, Spain
| | - Juan Francisco Ascaso
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José Tomás Real
- Department of Medicine, University of Valencia, Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - Felipe Javier Chaves
- Genotyping and Genetic Diagnosis Unit, Hospital Clínico Research Foundation (INCLIVA), Valencia, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Polycystic Ovary Syndrome as a Paradigm for Prehypertension, Prediabetes, and Preobesity. Curr Hypertens Rep 2014; 16:500. [DOI: 10.1007/s11906-014-0500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Stachenfeld NS, Taylor HS. Challenges and methodology for testing young healthy women in physiological studies. Am J Physiol Endocrinol Metab 2014; 306:E849-53. [PMID: 24569589 PMCID: PMC3989744 DOI: 10.1152/ajpendo.00038.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological responses and control of body systems differ between women and men. Moreover, within women, female gonadal hormones have important influences on organs and systems outside of reproduction. Until the NIH Revitalization Act of 1993, laboratories focused physiological research primarily on men, and this focus placed limitations on women's health care. Thus, the NIH directive to include women required scientists and physicians studying humans to consider female reproductive physiology. Even though this directive was enacted over 20 years ago, there is still a great deal of misunderstanding as to the best methods to control hormones or account for changes in internal hormone exposure in women. This discussion describes common methods investigators use to include women in physiological studies and to examine the impact of female reproductive hormone exposure for research purposes. In some cases, the goal is to control for phase of the cycle, so women are studied when the endogenous hormones should be similar to each other. When the goal of the research is to examine the effects of hormones on a physiological response, it is important to use methods that will change hormone exposure in a controlled fashion. We recommend a method that employs gonadotropin-releasing hormone (GnRH) agonist or antagonist to suppress estrogens, gonadotropins, progesterone, and androgens followed by administration of these hormones. While this method is more invasive, it is safe and is the strongest research design to examine both hormone effects within women and between women and men.
Collapse
|
24
|
Wenner MM, Taylor HS, Stachenfeld NS. Androgens influence microvascular dilation in PCOS through ET-A and ET-B receptors. Am J Physiol Endocrinol Metab 2013; 305:E818-25. [PMID: 23921139 PMCID: PMC3798701 DOI: 10.1152/ajpendo.00343.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperandrogenism and vascular dysfunction often coexist in women with polycystic ovary syndrome (PCOS). We hypothesized that testosterone compromises cutaneous microvascular dilation in women with PCOS via the endothelin-1 ET-B subtype receptor. To control and isolate testosterone's effects on microvascular dilation, we administered a gonadotropin-releasing hormone antagonist (GnRHant) for 11 days in obese, otherwise healthy women [controls, 22.0 (4) yr, 36.0 (3.2) kg/m(2)] or women with PCOS [23 (4) yr, 35.4 (1.3) kg/m(2)], adding testosterone (T; 2.5 mg/day) on days 8-11. Using laser Doppler flowmetry and cutaneous microdialysis, we measured changes in skin microcirculatory responsiveness (ΔCVC) to local heating while perfusing ET-A (BQ-123) and ET-B (BQ-788) receptor antagonists under three experimental conditions: baseline (BL; prehormone intervention), GnRHant (day 4 of administration), and T administration. At BL, ET-A receptor inhibition enhanced heat-induced vasodilation in both groups [ΔCVC control 2.03 (0.65), PCOS 2.10 (0.25), AU/mmHg, P < 0.05]; ET-B receptor inhibition reduced vasodilation in controls only [ΔCVC 0.98 (0.39), 1.41 (0.45) AU/mmHg for controls, PCOS] compared with saline [ΔCVC controls 1.27 (0.48), PCOS 1.31 (0.13) AU/mmHg]. GnRHant enhanced vasodilation in PCOS [saline ΔCVC 1.69 (0.23) AU/mmHg vs. BL, P < 0.05] and abolished the ET-A effect in both groups, a response reasserted with T in controls. ET-B receptor inhibition reduced heat-induced vasodilation in both groups during GnRHant and T [ΔCVC, controls: 0.95 (0.21) vs. 0.51 (13); PCOS: 1.27 (0.23) vs. 0.84 (0.27); for GnRHant vs. T, P < 0.05]. These data demonstrate that androgen suppression improves microvascular dilation in PCOS via ET-A and ET-B receptors.
Collapse
|
25
|
Pugh CJA, Cuthbertson DJ, Sprung VS, Kemp GJ, Richardson P, Umpleby AM, Green DJ, Cable NT, Jones H. Exercise training improves cutaneous microvascular function in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2013; 305:E50-8. [PMID: 23651847 DOI: 10.1152/ajpendo.00055.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The leading causes of mortality in nonalcoholic fatty liver disease (NAFLD) relate to cardiovascular disease (CVD). The contribution of nitric oxide (NO) to endothelial function, a surrogate of CVD risk, is currently unknown in NAFLD. We hypothesize that NO-mediated cutaneous microvessel function would be impaired in NAFLD compared with controls and that exercise would enhance microvessel function compared with conventional care. Thirteen NAFLD patients (aged 50 ± 3 yr, BMI 31 ± 1 kg/m²) and seven controls (48 ± 4 yr, 30 ± 2 kg/m²) were studied. NAFLD patients were randomized to either 16 wk of exercise or conventional care. Cutaneous microvessel function was examined using laser Doppler flowmetry combined with intradermal microdialysis of N(G)-monomethyl-l-arginine to assay the NO dilator response to local forearm heating. Magnetic resonance imaging and spectroscopy quantified abdominal and liver fat, respectively, and cardiorespiratory fitness was assessed. Differences in NO contribution to cutaneous blood flow between NAFLD and control individuals and between interventions were analyzed using general linear modeling. NO contribution to cutaneous blood flow was similar between NAFLD and controls (P = 0.47). Cardiorespiratory fitness was greater following exercise training compared with conventional care. NO contribution to cutaneous blood flow in response to heating at 42°C was 20.4% CVCmax (95% CI = 4.4, 36.4) greater following exercise training compared with conventional care (P = 0.02). Exercise training improves cutaneous microvascular NO function in NAFLD patients. The benefit of exercise training compared with conventional care strongly supports a role for exercise in the prevention of CVD in NAFLD.
Collapse
Affiliation(s)
- Christopher J A Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sprung VS, Cuthbertson DJ, Pugh CJA, Daousi C, Atkinson G, Aziz NF, Kemp GJ, Green DJ, Cable NT, Jones H. Nitric oxide-mediated cutaneous microvascular function is impaired in polycystic ovary sydrome but can be improved by exercise training. J Physiol 2013; 591:1475-87. [PMID: 23318877 DOI: 10.1113/jphysiol.2012.246918] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with cardiovascular disease. The contribution of the nitric oxide (NO) dilator system to cutaneous endothelial dysfunction is currently unknown in PCOS. Our aim was to examine whether women with PCOS demonstrate impaired cutaneous microvascular NO function and whether exercise training can ameliorate any impairment. Eleven women with PCOS (age, 29 ± 7 years; body mass index, 34 ± 6 kg m(-2)) were compared with six healthy obese control women (age, 29 ± 7 years; body mass index, 34 ± 5 kg m(-2)). Six women with PCOS (30 ± 7 years; 31 ± 6 kg m(-2)) then completed 16 weeks of exercise training. Laser Doppler flowmetry, combined with intradermal microdialysis of l-N(G)-monomethyl-l-arginine, a nitric oxide antagonist, in response to incremental local heating of the forearm was assessed in women with PCOS and control women, and again in women with PCOS following exercise training. Cardiorespiratory fitness, homeostasis model assessment for insulin resistance, hormone and lipid profiles were also assessed. Differences between women with PCOS and control women and changes with exercise were analysed using Student's unpaired t tests. Differences in the contribution of NO to cutaneous blood flow [expressed as a percentage of maximal cutaneous vasodilatation (CVCmax)] were analysed using general linear models. At 42°C heating, cutaneous NO-mediated vasodilatation was attenuated by 17.5%CVCmax (95% confidence interval, 33.3, 1.7; P = 0.03) in women with PCOS vs. control women. Exercise training improved cardiorespiratory fitness by 5.0 ml kg(-1) min(-1) (95% confidence interval, 0.9, 9.2; P = 0.03) and NO-mediated cutaneous vasodilatation at 42°C heating by 19.6% CVCmax (95% confidence interval, 4.3, 34.9; P = 0.02). Cutaneous microvascular NO function is impaired in women with PCOS compared with obese matched control women but can be improved with exercise training.
Collapse
Affiliation(s)
- V S Sprung
- H. Jones: Research Institute for Sport and Exercise Sciences, Tom Reilly Building, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wenner MM, Stachenfeld NS. Blood pressure and water regulation: understanding sex hormone effects within and between men and women. J Physiol 2012; 590:5949-61. [PMID: 23027816 DOI: 10.1113/jphysiol.2012.236752] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. Hypertension is less prevalent in young women compared with young men, but menopausal women are at greater risk for hypertension compared with men of similar age. Despite these risks, women do not consistently receive first line treatment for the early stages of hypertension, and the greater morbidity in menopause reflects this neglect. This review focuses on ovarian hormone effects on the cardiovascular and water regulatory systems that are associated with blood pressure control in women. The study of ovarian hormones within young women is complex because these hormones fluctuate across the menstrual cycle, and these fluctuations can complicate conclusions regarding sex differences. To better isolate the effects of oestrogen and progesterone on the cardiovascular and water regulation systems, we developed a model to transiently suppress reproductive function followed by controlled hormone administration. Sex differences in autonomic regulation of blood pressure appear related to ovarian hormone exposure, and these hormonal differences contribute to sex differences in hypertension and orthostatic tolerance. Oestrogen and progesterone exposure are also associated with plasma volume expansion, and a leftward shift in the osmotic operating point for body fluid regulation. In young, healthy women, the shift in osmoregulation appears to have only a minor effect on overall body water balance. Our overarching conclusion is that ovarian hormone exposure is the important underlying factor contributing to differences in blood pressure and water regulation between women and men, and within women throughout the lifespan.
Collapse
|
28
|
Mohammadi A, Aghasi M, Jodeiry-farshbaf L, Salary-Lac S, Ghasemi-rad M. Evaluation of early atherosclerotic findings in women with polycystic ovary syndrome. J Ovarian Res 2011; 4:19. [PMID: 22024243 PMCID: PMC3212885 DOI: 10.1186/1757-2215-4-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/24/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of childbearing age, and it seems better to consider it as an ovarian manifestation of metabolic syndrome. The aim of the current study was to evaluate early atherosclerotic findings in patients with PCOS. METHODS We enrolled 46 women with PCOS and 45 normal control subjects who were referred to our hospital's endocrinology outpatient clinic. Carotid intima media thickness (CIMT) and flow-mediated dilatation (FMD) were performed in both cases and matched controls. RESULTS Patients with PCOS showed an increased mean CIMT (0.63 ± 0.16 mm) when compared with the control subjects (0.33 ± 0.06 mm). This difference was statistically significant (p = 0.001). The mean FMD in young patients with PCOS was 10.07 ± 1.2%, while it was 6.5 ± 2.06% in normal subjects. This difference was also statistically significant (p = 0.001). CONCLUSION Our findings suggest that PCOS is related with early atherosclerotic findings.
Collapse
Affiliation(s)
- Afshin Mohammadi
- Department of Radiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Aghasi
- Department of Endocrinology, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shaker Salary-Lac
- Department of public health, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|