1
|
Johnson JW, Paoletti P. Editorial - Philippe Ascher (1936-2022). Neuroscience 2025:S0306-4522(25)00333-1. [PMID: 40286902 DOI: 10.1016/j.neuroscience.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Affiliation(s)
- Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
2
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Le Ray D, Bertrand SS, Dubuc R. Cholinergic Modulation of Locomotor Circuits in Vertebrates. Int J Mol Sci 2022; 23:ijms231810738. [PMID: 36142651 PMCID: PMC9501616 DOI: 10.3390/ijms231810738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Locomotion is a basic motor act essential for survival. Amongst other things, it allows animals to move in their environment to seek food, escape predators, or seek mates for reproduction. The neural mechanisms involved in the control of locomotion have been examined in many vertebrate species and a clearer picture is progressively emerging. The basic muscle synergies responsible for propulsion are generated by neural networks located in the spinal cord. In turn, descending supraspinal inputs are responsible for starting, maintaining, and stopping locomotion as well as for steering and controlling speed. Several neurotransmitter systems play a crucial role in modulating the neural activity during locomotion. For instance, cholinergic inputs act both at the spinal and supraspinal levels and the underlying mechanisms are the focus of the present review. Much information gained on supraspinal cholinergic modulation of locomotion was obtained from the lamprey model. Nicotinic cholinergic inputs increase the level of excitation of brainstem descending command neurons, the reticulospinal neurons (RSNs), whereas muscarinic inputs activate a select group of hindbrain neurons that project to the RSNs to boost their level of excitation. Muscarinic inputs also reduce the transmission of sensory inputs in the brainstem, a phenomenon that could help in sustaining goal directed locomotion. In the spinal cord, intrinsic cholinergic inputs strongly modulate the activity of interneurons and motoneurons to control the locomotor output. Altogether, the present review underlines the importance of the cholinergic inputs in the modulation of locomotor activity in vertebrates.
Collapse
Affiliation(s)
- Didier Le Ray
- Institut des Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), UMR 5287, Université de Bordeaux-CNRS, F-33076 Bordeaux, France
- Correspondence: (D.L.R.); (R.D.)
| | - Sandrine S. Bertrand
- Institut des Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), UMR 5287, Université de Bordeaux-CNRS, F-33076 Bordeaux, France
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Department of Physical Activity Sciences and Research Group in Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
- Correspondence: (D.L.R.); (R.D.)
| |
Collapse
|
4
|
Mazzaferro S, Strikwerda JR, Sine SM. Stoichiometry-selective modulation of α4β2 nicotinic ACh receptors by divalent cations. Br J Pharmacol 2022; 179:1353-1370. [PMID: 34768309 DOI: 10.1111/bph.15723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE α4β2 nicotinic ACh receptors (nAChRs) comprise the most abundant class of nAChRs in the nervous system. They assemble in two stoichiometric forms, each exhibiting distinct functional and pharmacological signatures. However, whether one or both forms are modulated by calcium or magnesium has not been established. EXPERIMENTAL APPROACH To assess the functional consequences of calcium and magnesium, each stoichiometric form was expressed in clonal mammalian fibroblasts and single-channel currents were recorded in the presence of a range of ACh concentrations. KEY RESULTS In the absence of divalent cations, each stoichiometric form exhibits high unitary conductance and simple gating kinetics composed of solitary channel openings or short bursts of openings. However, in the presence of calcium and magnesium, the conductance and gating kinetics change in a stoichiometry-dependent manner. Calcium and magnesium reduce the conductance of both stoichiometric forms, with each cation producing an equivalent reduction, but the reduction is greater for the (α4)2 (β2)3 form. Moreover, divalent cations promote efficient channel opening of the (α4)3 (β2)2 stoichiometry, while minimally affecting the (α4)2 (β2)3 stoichiometry. For the (α4)3 (β2)2 stoichiometry, at high but not low ACh concentrations, calcium in synergy with magnesium promote clustering of channel openings into episodes of many openings in quick succession. CONCLUSION AND IMPLICATIONS Modulation of the α4β2 nAChR by divalent cations depends on the ACh concentration, the type of cation and the subunit stoichiometry. The functional consequences of modulation are expected to depend on the regional distributions of the stoichiometric forms and synaptic versus extrasynaptic locations of the receptors.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - John R Strikwerda
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Beato M, Bhumbra G. Synaptic Projections of Motoneurons Within the Spinal Cord. ADVANCES IN NEUROBIOLOGY 2022; 28:151-168. [PMID: 36066825 DOI: 10.1007/978-3-031-07167-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneurons have long been considered as the final common pathway of the nervous system, transmitting the neural impulses that are transduced into action.While many studies have focussed on the inputs that motoneurons receive from local circuits within the spinal cord and from other parts of the CNS, relatively few have investigated the targets of local axonal projections from motoneurons themselves, with the notable exception of those contacting Renshaw cells or other motoneurons.Recent research has not only characterised the detailed features of the excitatory connections between motoneurons and Renshaw cells but has also established that Renshaw cells are not the only target of motoneurons axons within the spinal cord. Motoneurons also form synaptic contacts with other motoneurons as well as with a subset of ventrally located V3 interneurons. These findings indicate that motoneurons cannot be simply viewed as the last relay station delivering the command drive to muscles, but perform an active role in the generation and modulation of motor patterns.
Collapse
Affiliation(s)
- Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Gary Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
6
|
Effect of Intrahippocampal Administration of α7 Subtype Nicotinic Receptor Agonist PNU-282987 and Its Solvent Dimethyl Sulfoxide on the Efficiency of Hypoxic Preconditioning in Rats. Molecules 2021; 26:molecules26237387. [PMID: 34885970 PMCID: PMC8659180 DOI: 10.3390/molecules26237387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally. In order to validate the hippocampus as a key structure in the mechanism of hypoxic preconditioning and research a significance of α7nAChR activation in the hypoxic preconditioning, we performed an in vivo pharmacological study of intrahippocampal injections of PNU-282987 into the CA1 area on HBH efficiency in rats with PPI ≥ 40%. We found that PNU-282987 (30 μM) reduced HBH efficiency as with intraperitoneal administration, while DMSO (0.05%) still potentiated this effect. Thus, direct evidence of the key role of the hippocampus in the preconditioning effect of HBH and some details of this mechanism were obtained in rats with PPI ≥ 40%. The activation of α7nAChRs is not involved in the cholinergic signaling initiated by HBH or DMSO via any route of administration. Possible ways of the potentiating action of DMSO on HBH efficiency and its dependence on α7nAChRs are discussed.
Collapse
|
7
|
Morud J, Hardege I, Liu H, Wu T, Choi MK, Basu S, Zhang Y, Schafer WR. Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Curr Biol 2021; 31:4282-4292.e6. [PMID: 34388373 PMCID: PMC8536830 DOI: 10.1016/j.cub.2021.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Pentameric ligand-gated ion channels (LGICs) play conserved, critical roles in both excitatory and inhibitory synaptic transmission and can be activated by diverse neurochemical ligands. We have performed a characterization of orphan channels from the nematode C. elegans, identifying five new monoamine-gated LGICs with diverse functional properties and expression postsynaptic to aminergic neurons. These include polymodal anion channels activated by both dopamine and tyramine, which may mediate inhibitory transmission by both molecules in vivo. Intriguingly, we also find that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the redistribution of LGC-50 to neuronal processes is modulated by olfactory conditioning, and lgc-50 point mutations that cause misregulation of receptor membrane expression interfere with olfactory learning. Thus, the intracellular trafficking and localization of these receptors at synapses may represent a molecular cornerstone of the learning mechanism.
Collapse
Affiliation(s)
- Julia Morud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iris Hardege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Medicinaregatan 9A, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
α7-Nicotinic acetylcholine receptor antagonist QND7 suppresses non-small cell lung cancer cell proliferation and migration via inhibition of Akt/mTOR signaling. Biochem Biophys Res Commun 2020; 521:977-983. [DOI: 10.1016/j.bbrc.2019.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
|
9
|
Stoichiometry of the Heteromeric Nicotinic Receptors of the Renshaw Cell. J Neurosci 2018; 38:4943-4956. [PMID: 29724797 DOI: 10.1523/jneurosci.0070-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers built from a variety of subunits. Some are homomeric assemblies of α subunits, others heteromeric assemblies of α and β subunits which can adopt two stoichiometries (2α:3β or 3α:2β). There is evidence for the presence of heteromeric nAChRs with the two stoichiometries in the CNS, but it has not yet been possible to identify them at a given synapse. The 2α:3β receptors are highly sensitive to agonists, whereas the 3α:2β stoichiometric variants, initially described as low sensitivity receptors, are indeed activated by low and high concentrations of ACh. We have taken advantage of the discovery that two compounds (NS9283 and Zn) potentiate selectively the 3α:2β nAChRs to establish (in mice of either sex) the presence of these variants at the motoneuron-Renshaw cell (MN-RC) synapse. NS9283 prolonged the decay of the two-component EPSC mediated by heteromeric nAChRs. NS9283 and Zn also prolonged spontaneous EPSCs involving heteromeric nAChRs, and one could rule out prolongations resulting from AChE inhibition by NS9283. These results establish the presence of 3α:2β nAChRs at the MN-RC synapse. At the functional level, we had previously explained the duality of the EPSC by assuming that high ACh concentrations in the synaptic cleft account for the fast component and that spillover of ACh accounts for the slow component. The dual ACh sensitivity of 3α:2β nAChRs now allows to attribute to these receptors both components of the EPSC.SIGNIFICANCE STATEMENT Heteromeric nicotinic receptors assemble α and β subunits in pentameric structures, which can adopt two stoichiometries: 3α:2β or 2α:3β. Both stoichiometric variants are present in the CNS, but they have never been located and characterized functionally at the level of an identified synapse. Our data indicate that 3α:2β receptors are present at the spinal cord synapses between motoneurons and Renshaw cells, where their dual mode of activation (by high concentrations of ACh for synaptic receptors, by low concentrations of ACh for extrasynaptic receptors) likely accounts for the biphasic character of the synaptic current. More generally, 3α:2β nicotinic receptors appear unique by their capacity to operate both in the cleft of classical synapses and at extrasynaptic locations.
Collapse
|
10
|
Wollman LB, Levine RB, Fregosi RF. Developmental plasticity of GABAergic neurotransmission to brainstem motoneurons. J Physiol 2018; 596:5993-6008. [PMID: 29352468 DOI: 10.1113/jp274923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS Critical homeostatic behaviours such as suckling, swallowing and breathing depend on the precise control of tongue muscle activity. Perinatal nicotine exposure has multiple effects on baseline inhibitory GABAergic neurotransmission to hypoglossal motoneurons (XIIMNs), consistent with homeostatic compensations directed at maintaining normal motoneuron output. Developmental nicotine exposure (DNE) alters how GABAergic neurotransmission is modulated by acute activation of nicotinic acetylcholine receptors, which may provide insight into mechanisms by which nicotine exposure alters motor function under conditions that result in increased release of GABA, such as hypoxia, or endogenous acetylcholine, as occurs in the transition from NREM to REM sleep, or in response to exogenous nicotine. ABSTRACT Nicotinic acetylcholine receptor (nAChR) signalling regulates neuronal differentiation and synaptogenesis. Here we test the hypothesis that developmental nicotine exposure (DNE) disrupts the development of GABAergic synaptic transmission to hypoglossal motoneurons (XIIMNs). GABAergic spontaneous and miniature inhibitory postsynaptic currents (sIPSCs/mIPSCs) were recorded from XIIMNs in brainstem slices from control and DNE rat pups of either sex, 1-5 days old, at baseline and following acute stimulation of nAChRs with nicotine. At baseline, sIPSCs were less frequent and smaller in DNE cells (consistent with decreased action potential-mediated GABA release), and mIPSCs were more frequent (consistent with increased vesicular GABA release from presynaptic terminals). Acute nicotine challenge increased sIPSC frequency in both groups, though the increase was greater in DNE cells. Acute nicotine challenge did not change the frequency of mIPSCs in either group, though mIPSC amplitude increased significantly in DNE cells, but not control cells. Stimulation of postsynaptic GABAA receptors with muscimol caused a significantly greater chloride current in DNE cells than in control cells. The increased quantal release of GABA, coupled with the rise in the strength of postsynaptic inhibition may be homeostatic adjustments to the decreased action-potential-mediated input from GABAergic interneurons. However, this will exaggerate synaptic inhibition under conditions where the release of GABA (e.g. hypoxia) or ACh (sleep-wake transitions) is increased. These findings reveal a mechanism that may explain why DNE is associated with deficits in the ability to respond appropriately to chemosensory stimuli or to changes in neuromodulation secondary to changes in central nervous system state.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | - Richard B Levine
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neuroscience, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Perez-Urrutia N, Mendoza C, Alvarez-Ricartes N, Oliveros-Matus P, Echeverria F, Grizzell JA, Barreto GE, Iarkov A, Echeverria V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp Neurol 2017. [DOI: 10.1016/j.expneurol.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Beierlein M. Fast Cholinergic Synaptic Transmission in the Mammalian Central Nervous System. Cold Spring Harb Protoc 2017; 2017:pdb.top095083. [PMID: 28572212 DOI: 10.1101/pdb.top095083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Release of acetylcholine (ACh) in the brain controls several cognitive processes, and a number of disorders including Alzheimer's and Parkinson's diseases are associated with a loss of cholinergic function. Despite the importance of ACh signaling in modulating information processing in thalamocortical circuits, understanding the dynamics of cholinergic function has long been limited by a lack of in vitro model systems. Recent studies employing both electrical as well as optogenetic stimulation techniques have overcome this challenge, resulting in the identification of multiple forms of fast cholinergic signaling throughout the mammalian brain. Here we highlight a simple strategy making use of extracellular electrical stimulation techniques that allows for the study of cholinergic synaptic inputs onto neurons in the thalamic reticular nucleus (TRN).
Collapse
Affiliation(s)
- Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, Texas 77030
| |
Collapse
|
13
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
14
|
Eggert M, Winterer G, Wanischeck M, Hoda JC, Bertrand D, Steinlein O. The nicotinic acetylcholine receptor alpha 4 subunit contains a functionally relevant SNP Haplotype. BMC Genet 2015; 16:46. [PMID: 25934188 PMCID: PMC4417232 DOI: 10.1186/s12863-015-0204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-coding single nucleotide polymorphisms within the nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4) are robustly associated with various neurological and behavioral phenotypes including schizophrenia, cognition and smoking. The most commonly associated polymorphisms are located in exon 5 and segregate as part of a haplotype. So far it is unknown if this haplotype is indeed functional, or if the observed associations are an indirect effect caused by linkage disequilibrium with not yet identified adjacent functional variants. We therefore analyzed the functional relevance of the exon 5 haplotype alleles. RESULTS Using voltage clamp experiments we were able to show that the CHRNA4 haplotype alleles differ with respect to their functional effects on receptor sensitivity including reversal of receptor sensitivity between low and high acetylcholine concentrations. The results indicate that underlying mechanisms might include differences in codon usage bias and changes in mRNA stability. CONCLUSIONS Our data demonstrate that the complementary alleles of the CHRNA4 exon 5 haplotype are functionally relevant, and might therefore be causative for the above mentioned associations.
Collapse
Affiliation(s)
- Marlene Eggert
- Marlene Eggert, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| | - Georg Winterer
- Georg Winterer, Experimental and Clinical Research Center (ECRC), Charité - University Medicine Berlin, Berlin, Germany.
| | - Mario Wanischeck
- Mario Wanischeck, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| | - Jean-Charles Hoda
- Jean-Charles Hoda, SwissCheckUp SA, 1400, Yverdon-Les-Bains, Switzerland.
| | - Daniel Bertrand
- Daniel Bertrand, HiQScreen, 1222, Vésenaz, Geneva, Switzerland.
| | - Ortrud Steinlein
- Ortrud K Steinlein, Institute of Human Genetics, Ludwig-Maximilians-University Hospital, 80336, Munich, Germany.
| |
Collapse
|
15
|
Beierlein M. Synaptic properties and functional consequences of cholinergic signalling in the mammalian CNS. J Physiol 2014; 592:4129-30. [PMID: 25274750 DOI: 10.1113/jphysiol.2014.278614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michael Beierlein
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons. J Physiol 2014; 592:4137-45. [PMID: 24973413 DOI: 10.1113/jphysiol.2014.277376] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuronal networks of the thalamus are the target of extensive cholinergic projections from the basal forebrain and the brainstem. Activation of these afferents can regulate neuronal excitability, transmitter release, and firing patterns in thalamic networks, thereby altering the flow of sensory information during distinct behavioural states. However, cholinergic regulation in the thalamus has been primarily examined by using receptor agonist and antagonist, which has precluded a detailed understanding of the spatiotemporal dynamics that govern cholinergic signalling under physiological conditions. This review summarizes recent studies on cholinergic synaptic transmission in the thalamic reticular nucleus (TRN), a brain structure intimately involved in the control of sensory processing and the generation of rhythmic activity in the thalamocortical system. This work has shown that acetylcholine (ACh) released from individual axons can rapidly and reliably activate both pre- and postsynaptic cholinergic receptors, thereby controlling TRN neuronal activity with high spatiotemporal precision.
Collapse
Affiliation(s)
- Michael Beierlein
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX, 77030, USA
| |
Collapse
|