1
|
Krüppel S, Khani MH, Schreyer HM, Sridhar S, Ramakrishna V, Zapp SJ, Mietsch M, Karamanlis D, Gollisch T. Applying Super-Resolution and Tomography Concepts to Identify Receptive Field Subunits in the Retina. PLoS Comput Biol 2024; 20:e1012370. [PMID: 39226328 PMCID: PMC11398665 DOI: 10.1371/journal.pcbi.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/13/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
Spatially nonlinear stimulus integration by retinal ganglion cells lies at the heart of various computations performed by the retina. It arises from the nonlinear transmission of signals that ganglion cells receive from bipolar cells, which thereby constitute functional subunits within a ganglion cell's receptive field. Inferring these subunits from recorded ganglion cell activity promises a new avenue for studying the functional architecture of the retina. This calls for efficient methods, which leave sufficient experimental time to leverage the acquired knowledge for further investigating identified subunits. Here, we combine concepts from super-resolution microscopy and computed tomography and introduce super-resolved tomographic reconstruction (STR) as a technique to efficiently stimulate and locate receptive field subunits. Simulations demonstrate that this approach can reliably identify subunits across a wide range of model variations, and application in recordings of primate parasol ganglion cells validates the experimental feasibility. STR can potentially reveal comprehensive subunit layouts within only a few tens of minutes of recording time, making it ideal for online analysis and closed-loop investigations of receptive field substructure in retina recordings.
Collapse
Affiliation(s)
- Steffen Krüppel
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Mohammad H Khani
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Helene M Schreyer
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Shashwat Sridhar
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Varsha Ramakrishna
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Sören J Zapp
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Matthias Mietsch
- German Primate Center, Laboratory Animal Science Unit, Göttingen, Germany
- German Center for Cardiovascular Research, Partner Site Göttingen, Göttingen, Germany
| | - Dimokratis Karamanlis
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
| | - Tim Gollisch
- University Medical Center Göttingen, Department of Ophthalmology, Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Else Kröner Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. eLife 2023; 12:RP90456. [PMID: 38149980 PMCID: PMC10752589 DOI: 10.7554/elife.90456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal DS are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying DS in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by SACs.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
3
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551732. [PMID: 37577661 PMCID: PMC10418172 DOI: 10.1101/2023.08.02.551732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of bipolar cells along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal directional selectivity are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field (RF) properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying direction selectivity in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by starburst amacrine cells.
Collapse
Affiliation(s)
- John A. Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samuel A. Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J. Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Rapid Analysis of Visual Receptive Fields by Iterative Tomography. eNeuro 2021; 8:ENEURO.0046-21.2021. [PMID: 34799410 PMCID: PMC8658541 DOI: 10.1523/eneuro.0046-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Many receptive fields in the early visual system show standard (center-surround) structure and can be analyzed using simple drifting patterns and a difference-of-Gaussians (DoG) model, which treats the receptive field as a linear filter of the visual image. But many other receptive fields show nonlinear properties such as selectivity for direction of movement. Such receptive fields are typically studied using discrete stimuli (moving or flashed bars and edges) and are modelled according to the features of the visual image to which they are most sensitive. Here, we harness recent advances in tomographic image analysis to characterize rapidly and simultaneously both the linear and nonlinear components of visual receptive fields. Spiking and intracellular voltage potential responses to briefly flashed bars are analyzed using non-negative matrix factorization (NNMF) and iterative reconstruction tomography (IRT). The method yields high-resolution receptive field maps of individual neurons and neuron ensembles in primate (marmoset, both sexes) lateral geniculate and rodent (mouse, male) retina. We show that the first two IRT components correspond to DoG-equivalent center and surround of standard [magnocellular (M) and parvocellular (P)] receptive fields in primate geniculate. The first two IRT components also reveal the spatiotemporal receptive field structure of nonstandard (on/off-rectifying) receptive fields. In rodent retina we combine NNMF-IRT with patch-clamp recording and dye injection to directly map spatial receptive fields to the underlying anatomy of retinal output neurons. We conclude that NNMF-IRT provides a rapid and flexible framework for study of receptive fields in the early visual system.
Collapse
|
5
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Sridharan A, Shah A, Kumar SS, Kyeh J, Smith J, Blain-Christen J, Muthuswamy J. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs). Biomed Phys Eng Express 2020; 6:025003. [DOI: 10.1088/2057-1976/ab6fb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Poleg-Polsky A, Ding H, Diamond JS. Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina. Cell Rep 2019. [PMID: 29539419 PMCID: PMC5877421 DOI: 10.1016/j.celrep.2018.02.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina. We measure visual receptive fields of individual output synapses and show that small groups of outputs are functionally compartmentalized within starburst dendrites, creating distinct computational units. Inhibition enhances compartmentalization and directional tuning of individual outputs but also decreases the signal-to-noise ratio. Simulations suggest, however, that the noise underlying output signal variability is well tolerated by postsynaptic direction-selective ganglion cells, which integrate convergent inputs to acquire reliable directional information.
Collapse
Affiliation(s)
- Alon Poleg-Polsky
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA
| | - Huayu Ding
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, 35 Convent Drive, Building 35A, Room 3E-621, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Johnston J, Seibel SH, Darnet LSA, Renninger S, Orger M, Lagnado L. A Retinal Circuit Generating a Dynamic Predictive Code for Oriented Features. Neuron 2019; 102:1211-1222.e3. [PMID: 31054873 PMCID: PMC6591004 DOI: 10.1016/j.neuron.2019.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/15/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
Sensory systems must reduce the transmission of redundant information to function efficiently. One strategy is to continuously adjust the sensitivity of neurons to suppress responses to common features of the input while enhancing responses to new ones. Here we image the excitatory synaptic inputs and outputs of retinal ganglion cells to understand how such dynamic predictive coding is implemented in the analysis of spatial patterns. Synapses of bipolar cells become tuned to orientation through presynaptic inhibition, generating lateral antagonism in the orientation domain. Individual ganglion cells receive excitatory synapses tuned to different orientations, but feedforward inhibition generates a high-pass filter that only transmits the initial activation of these inputs, removing redundancy. These results demonstrate how a dynamic predictive code can be implemented by circuit motifs common to many parts of the brain.
Collapse
Affiliation(s)
- Jamie Johnston
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sofie-Helene Seibel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | - Michael Orger
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Leon Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
9
|
Morton A, Murawski C, Deng Y, Keum C, Miles GB, Tello JA, Gather MC. Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes. ACTA ACUST UNITED AC 2019; 3:e1800290. [DOI: 10.1002/adbi.201800290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Andrew Morton
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Caroline Murawski
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Yali Deng
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Changmin Keum
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| | - Gareth B. Miles
- School of Psychology and Neuroscience University of St Andrews St Mary's Quad, South Street KY16 9JP St Andrews UK
| | - Javier A. Tello
- School of Medicine University of St Andrews Medical and Biological Sciences Building North Haugh KY16 9TF St Andrews UK
| | - Malte C. Gather
- Organic Semiconductor Centre SUPA School of Physics and Astronomy University of St Andrews North Haugh KY16 9SS St Andrews UK
| |
Collapse
|
10
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
11
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, Ji N, Petreanu L, Tian L. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat Neurosci 2018; 21:1272-1280. [PMID: 30127424 PMCID: PMC6697169 DOI: 10.1038/s41593-018-0211-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/11/2018] [Indexed: 11/12/2022]
Abstract
In vivo calcium imaging from axons provides direct interrogation of afferent neural activity, informing neural representations that a local circuit receives. Unlike in somata and dendrites, axonal recording of neural activity--both electrically and optically--has been difficult to achieve, thus preventing comprehensive understanding of neuronal circuit function. Here, we developed an active transportation strategy to enrich GCaMP6, a genetically encoded calcium indicator (GECI), uniformly in axons with sufficient brightness, signal-to-noise ratio, and photostability to allow robust, structure-specific imaging of pre-synaptic activity in awake mice. Axon-targeted GCaMP6 (axon-GCaMP6) enables frame-to-frame correlation for motion correction in axons and permits subcellular-resolution recording of axonal activity in previously inaccessible deep brain areas. We used axon-GCaMP6 to record layer-specific local afferents without contamination from somata and intermingled dendrites in the cortex. We expect axon-GCaMP6 will facilitate new applications in investigating afferent signals relayed by genetically defined neuronal populations within and across specific brain regions.
Collapse
Affiliation(s)
- Gerard Joey Broussard
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Yajie Liang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Elizabeth K Unger
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - Guanghan Meng
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Department of Physics, Department of Molecular & Cellular Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xian Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.,Westlake Institute for Advanced Study, Hangzhou, China
| | - Na Ji
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.,Department of Physics, Department of Molecular & Cellular Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
14
|
Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes. Curr Biol 2018; 28:2018-2032.e5. [DOI: 10.1016/j.cub.2018.04.075] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
|
15
|
Antinucci P, Hindges R. Orientation-Selective Retinal Circuits in Vertebrates. Front Neural Circuits 2018; 12:11. [PMID: 29467629 PMCID: PMC5808299 DOI: 10.3389/fncir.2018.00011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Collapse
Affiliation(s)
- Paride Antinucci
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Olt J, Allen CE, Marcotti W. In vivo physiological recording from the lateral line of juvenile zebrafish. J Physiol 2016; 594:5427-38. [PMID: 27161862 PMCID: PMC5043028 DOI: 10.1113/jp271794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/04/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells. We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish. The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills. The same approach could be used for in vivo functional studies in other sensory and non-sensory systems from juvenile and adult zebrafish. ABSTRACT Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post-fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l(-1) was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l(-1) did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS-222, which reduces the size of basolateral membrane K(+) currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More generally, this method would allow functional studies involving live imaging and electrophysiology from juvenile and adult zebrafish.
Collapse
Affiliation(s)
- Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Claire E Allen
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
17
|
Antinucci P, Suleyman O, Monfries C, Hindges R. Neural Mechanisms Generating Orientation Selectivity in the Retina. Curr Biol 2016; 26:1802-15. [PMID: 27374343 PMCID: PMC4963213 DOI: 10.1016/j.cub.2016.05.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Abstract
The orientation of visual stimuli is a salient feature of visual scenes. In vertebrates, the first neural processing steps generating orientation selectivity take place in the retina. Here, we dissect an orientation-selective circuit in the larval zebrafish retina and describe its underlying synaptic, cellular, and molecular mechanisms. We genetically identify a class of amacrine cells (ACs) with elongated dendritic arbors that show orientation tuning. Both selective optogenetic ablation of ACs marked by the cell-adhesion molecule Teneurin-3 (Tenm3) and pharmacological interference with their function demonstrate that these cells are critical components for orientation selectivity in retinal ganglion cells (RGCs) by being a source of tuned GABAergic inhibition. Moreover, our morphological analyses reveal that Tenm3+ ACs and orientation-selective RGCs co-stratify their dendrites in the inner plexiform layer, and that Tenm3+ ACs require Tenm3 to acquire their correct dendritic stratification. Finally, we show that orientation tuning is present also among bipolar cell presynaptic terminals. Our results define a neural circuit underlying orientation selectivity in the vertebrate retina and characterize cellular and molecular requirements for its assembly. We identify Tenm3+ ACs with elongated dendritic arbors showing orientation tuning Tenm3+ AC GABAergic inhibition is crucial for orientation-selective RGC tuning Orientation tuning is present also among some bipolar cell presynaptic terminals We propose a model of how orientation selectivity is generated in ganglion cells
Collapse
Affiliation(s)
- Paride Antinucci
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Oniz Suleyman
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Clinton Monfries
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
18
|
Stincic T, Smith RG, Taylor WR. Time course of EPSCs in ON-type starburst amacrine cells is independent of dendritic location. J Physiol 2016; 594:5685-94. [PMID: 27219620 DOI: 10.1113/jp272384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Direction selectivity has been widely studied as an example of a complex neural computation. Directional GABA release from starburst amacrine cells (SBACs) is critical for generating directional signals in direction-selective ganglion cells. The mechanisms producing the directional release remain unclear. For SBACs, ordered distribution of sustained and transient bipolar cell inputs along the dendrites is proposed to generate directional GABA release. This study tests whether this hypothesis applies to ON-type SBACs. EPSCs activated at proximal and distal dendritic locations have the same time course. Therefore, the ordered arrangement of inputs from bipolar cells with different kinetic properties cannot be responsible for generating directional GABA release from ON-type SBACs. ABSTRACT Direction selectivity in the retina relies critically on directionally asymmetric GABA release from the dendritic tips of starburst amacrine cells (SBACs). GABA release from each radially directed dendrite is larger for motion outward from the soma toward the dendritic tips than for motion inwards toward the soma. The biophysical mechanisms generating these directional signals remain controversial. A model based on electron-microscopic reconstructions of the mouse retina proposed that an ordered arrangement of kinetically distinct bipolar cell inputs to ON- and OFF-type SBACs could produce directional GABA release. We tested this prediction by measuring the time course of EPSCs in ON-type SBACs in the mouse retina, activated by proximal and distal light stimulation. Contrary to the prediction, the kinetics of the excitatory inputs were independent of dendritic location. Computer simulations based on 3D reconstructions of SBAC dendrites demonstrated that the response kinetics of distal inputs were not significantly altered by dendritic filtering. These direct physiological measurements, do not support the hypothesis that directional signals in SBACs arise from the ordered arrangement of kinetically distinct bipolar cell inputs.
Collapse
Affiliation(s)
- Todd Stincic
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
19
|
Johnston J, Lagnado L. General features of the retinal connectome determine the computation of motion anticipation. eLife 2015; 4. [PMID: 25786068 PMCID: PMC4391023 DOI: 10.7554/elife.06250] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
Motion anticipation allows the visual system to compensate for the slow speed of phototransduction so that a moving object can be accurately located. This correction is already present in the signal that ganglion cells send from the retina but the biophysical mechanisms underlying this computation are not known. Here we demonstrate that motion anticipation is computed autonomously within the dendritic tree of each ganglion cell and relies on feedforward inhibition. The passive and non-linear interaction of excitatory and inhibitory synapses enables the somatic voltage to encode the actual position of a moving object instead of its delayed representation. General rather than specific features of the retinal connectome govern this computation: an excess of inhibitory inputs over excitatory, with both being randomly distributed, allows tracking of all directions of motion, while the average distance between inputs determines the object velocities that can be compensated for. DOI:http://dx.doi.org/10.7554/eLife.06250.001 The retina is a structure at the back of the eye that converts light into nerve impulses, which are then processed in the brain to produce the images that we see. It normally takes about one-tenth of a second for the retina to send a signal to the brain after an object first moves into view. This is about the same time it takes a tennis ball to travel several meters during a tennis match, yet we are still able to see where the moving tennis ball is in real time. This is because a process called ‘motion anticipation’ is able to compensate for the delay in processing the position of a moving object. However, it was not known precisely how motion anticipation occurs. Inside the retina, cells called photoreceptors detect light and ultimately send signals (via some intermediate cell types) to nerve cells known as retinal ganglion cells. These signals can either excite a retinal ganglion cell to cause it to send an electrical signal to the brain, or inhibit it, which temporarily prevents electrical activity. Each cell receives signals from several photoreceptors, which each connect to a different site along branch-like structures called dendrites that project out of the retinal ganglion cells. Johnston and Lagnado have now investigated how motion anticipation occurs in the retina by using electrical recordings of the activity in the retinas of goldfish combined with computer simulations of this activity. This revealed inhibitory signals, sent from photoreceptors to retinal ganglion cells via a type of intermediate cell (called amacrine cells), play a key role in motion anticipation. The ability to track motion effectively in all directions requires more inhibitory signals to be sent to the dendrites of a retinal ganglion cell than excitatory signals. These two types of input must also be randomly distributed across the cell. Furthermore, it is the density of these input sites on a dendrite that determines how well the retina can compensate for the motion of a fast-moving object. The building blocks required for motion anticipation in the retina are also found in visual areas higher in the brain. Therefore, further work may reveal that higher visual areas also use this mechanism to predict the future location of moving objects. DOI:http://dx.doi.org/10.7554/eLife.06250.002
Collapse
Affiliation(s)
- Jamie Johnston
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|