1
|
Welling PA, Little R, Al-Qusairi L, Delpire E, Ellison DH, Fenton RA, Grimm PR. Potassium-Switch Signaling Pathway Dictates Acute Blood Pressure Response to Dietary Potassium. Hypertension 2024; 81:1044-1054. [PMID: 38465625 PMCID: PMC11023808 DOI: 10.1161/hypertensionaha.123.22546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Potassium (K+)-deficient diets, typical of modern processed foods, increase blood pressure (BP) and NaCl sensitivity. A K+-dependent signaling pathway in the kidney distal convoluted tubule, coined the K+ switch, that couples extracellular K+ sensing to activation of the thiazide-sensitive NaCl cotransporter (NCC) and NaCl retention has been implicated, but causality has not been established. METHODS To test the hypothesis that small, physiological changes in plasma K+ (PK+) are translated to BP through the switch pathway, a genetic approach was used to activate the downstream switch kinase, SPAK (SPS1-related proline/alanine-rich kinase), within the distal convoluted tubule. The CA-SPAK (constitutively active SPS1-related proline/alanine-rich kinase mice) were compared with control mice over a 4-day PK+ titration (3.8-5.1 mmol) induced by changes in dietary K+. Arterial BP was monitored using radiotelemetry, and renal function measurements, NCC abundance, phosphorylation, and activity were made. RESULTS As PK+ decreased in control mice, BP progressively increased and became sensitive to dietary NaCl and hydrochlorothiazide, coincident with increased NCC phosphorylation and urinary sodium retention. By contrast, BP in CA-SPAK mice was elevated, resistant to the PK+ titration, and sensitive to hydrochlorothiazide and salt at all PK+ levels, concomitant with sustained and elevated urinary sodium retention and NCC phosphorylation and activity. Thus, genetically locking the switch on drives NaCl sensitivity and prevents the response of BP to potassium. CONCLUSIONS Low K+, common in modern ultraprocessed diets, presses the K+-switch pathway to turn on NCC activity, increasing sodium retention, BP, and salt sensitivity.
Collapse
Affiliation(s)
- Paul A. Welling
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Robert Little
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Lama Al-Qusairi
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, USA
| | - David H. Ellison
- Department of Medicine, Division of Nephrology, Oregon Health Science Center, Portland, Oregon, US
| | - Robert A. Fenton
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - P. Richard Grimm
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
2
|
Sesa-Ashton G, Carnagarin R, Nolde JM, Muente I, Lee R, Macefield VG, Dawood T, Sata Y, Lambert EA, Lambert GW, Walton A, Kiuchi MG, Esler MD, Schlaich MP. Salt sensitivity risk derived from nocturnal dipping and 24-h heart rate predicts long-term blood pressure reduction following renal denervation. J Hypertens 2024; 42:922-927. [PMID: 38230602 DOI: 10.1097/hjh.0000000000003655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
BACKGROUND Renal denervation (RDN) has been consistently shown in recent sham-controlled clinical trials to reduce blood pressure (BP). Salt sensitivity is a critical factor in hypertension pathogenesis, but cumbersome to assess by gold-standard methodology. Twenty-four-hour average heart rate (HR) and mean arterial pressure (MAP) dipping, taken by ambulatory blood pressure monitoring (ABPM), stratifies patients into high, moderate, and low salt sensitivity index (SSI) risk categories. OBJECTIVES We aimed to assess whether ABPM-derived SSI risk could predict the systolic blood pressure reduction at long-term follow-up in a real-world RDN patient cohort. METHODS Sixty participants had repeat ABPM as part of a renal denervation long-term follow-up. Average time since RDN was 8.9 ± 1.2 years. Based on baseline ABPM, participants were stratified into low (HR < 70 bpm and MAP dipping > 10%), moderate (HR ≥70 bpm or MAP dipping ≤ 10%), and high (HR ≥ 70 bpm and MAP dipping ≤ 10%) SSI risk groups, respectively. RESULTS One-way ANOVA indicated a significant treatment effect ( P = 0.03) between low ( n = 15), moderate ( n = 35), and high ( n = 10) SSI risk with systolic BP reduction of 9.6 ± 3.7 mmHg, 8.4 ± 3.5 mmHg, and 28.2 ± 9.6 mmHg, respectively. Baseline BP was not significantly different between SSI Risk groups ( P = 0.18). High SSI risk independently correlated with systolic BP reduction ( P = 0.02). CONCLUSIONS Our investigation indicates that SSI risk may be a simple and accessible measure for predicting the BP response to RDN. However, the influence of pharmacological therapy on these participants is an important extraneous variable requiring testing in prospective or drug naive RDN cohorts.
Collapse
Affiliation(s)
- Gianni Sesa-Ashton
- Human Neurotransmitter and Neurovascular Hypertension & Kidney Diseases Laboratories, Baker Heart and Diabetes Institute, Melbourne
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, Western Australia
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, Western Australia
| | - Ida Muente
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, Western Australia
| | - Rebecca Lee
- Human Neurotransmitter and Neurovascular Hypertension & Kidney Diseases Laboratories, Baker Heart and Diabetes Institute, Melbourne
| | - Vaughan G Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute
| | - Tye Dawood
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute
| | - Yusuke Sata
- Human Neurotransmitter and Neurovascular Hypertension & Kidney Diseases Laboratories, Baker Heart and Diabetes Institute, Melbourne
- Department of Cardiology, Alfred Health, Melbourne, Victoria
| | - Elisabeth A Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne
| | - Gavin W Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne
| | - Antony Walton
- Department of Cardiology, Alfred Health, Melbourne, Victoria
| | - Marcio G Kiuchi
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, Western Australia
| | - Murray D Esler
- Human Neurotransmitter and Neurovascular Hypertension & Kidney Diseases Laboratories, Baker Heart and Diabetes Institute, Melbourne
- Department of Cardiology, Alfred Health, Melbourne, Victoria
| | - Markus P Schlaich
- Human Neurotransmitter and Neurovascular Hypertension & Kidney Diseases Laboratories, Baker Heart and Diabetes Institute, Melbourne
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Perth, Western Australia
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
4
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
5
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Dorrington KL, Frise MC. Sir George Johnson FRCP (1818-96), high blood pressure and the continuing altercation about its origins. Exp Physiol 2021; 106:1886-1896. [PMID: 34184351 DOI: 10.1113/ep089627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? The review takes a historical approach to examining where in the body it might be possible to identify the most common cause, or causes, of long-term hypertension. It gathers evidence from histology, human and animal physiology, and computational modelling. The burden of decades of controversy is noted. What advances does it highlight? The review highlights the distinctive pathology of the afferent renal circulation and what its consequences are for the widespread view that essential hypertension is caused by elevated peripheral vascular resistance. ABSTRACT The widely promulgated notion that long-term elevation in mean arterial blood pressure (MAP) can be caused by raised peripheral vascular resistance remains a subject of vigorous debate. According to the 1967 mathematical model of Guyton and Coleman, such a causal relationship is impossible, kidney function being the determining factor. We explore this altercation starting with Sir George Johnson's 19th-century renal vascular histological observations in patients with Bright's disease. We note the striking physiological measurements in hypertensives by Gómez and Bolomey in the 1950s, moving on to the mathematical modelling of the circulation from the 1960s up to the ∼100-parameter computer models of the present day. Confusion has been generated by the fact that peripheral resistance is raised in hypertension in close proportion to MAP whilst cardiac output often stays normal, an apparent autoregulation, the mechanism of which is poorly understood. All models allowing for the circulation to be an open system show that isolated changes in peripheral resistance cannot lead to long-term hypertension, but models fail so frequently to account for results from experiments such as salt loading that their credibility with regard to this key finding is compromised. Laboratory animal models of adrenergic renal actions resonate with a contemporary emphasis on the sympathetic nerve supply to the kidney as contributing to the characteristically markedly elevated renal afferent resistance that appears to be the most common cause of hypertension. Remarkably, there remains no account of the way in which the fixed structural changes in vessels observed by Johnson relate to this sympathetic overactivity, which can itself be modified by drugs in the medium term. In this account, we seek to locate the crime scene and identify a smoking gun.
Collapse
Affiliation(s)
- Keith L Dorrington
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Matthew C Frise
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Cortés-Ríos J, Rodriguez-Fernandez M. Circadian Rhythm of Blood Pressure of Dipper and Non-dipper Patients With Essential Hypertension: A Mathematical Modeling Approach. Front Physiol 2021; 11:536146. [PMID: 33536928 PMCID: PMC7848196 DOI: 10.3389/fphys.2020.536146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/17/2020] [Indexed: 11/13/2022] Open
Abstract
Blood pressure in humans presents a circadian variation profile with a morning increase, a small postprandial valley, and a deeper descent during night-time rest. Under certain conditions, the nocturnal decline in blood pressure can be reduced or even reversed (non-dipper), which is related to a significantly worse prognosis than a normal fall pattern (dipper). Despite several advances in recent years, our understanding of blood pressure's temporal structure, its sources and mechanisms is far from complete. In this work, we developed an ordinary differential equation-based mathematical model capable of capturing the circadian rhythm of blood pressure in dipper and non-dipper patients with arterial hypertension. The model was calibrated by means of global optimization, using 24-h data of systolic and diastolic blood pressure, physical activity, heart rate, blood glucose and norepinephrine, obtained from the literature. After fitting the model, the mean of the normalized error for each data point was <0.2%, and confidence intervals indicate that all parameters were identifiable. Sensitivity analysis allowed identifying the most relevant parameters and therefore inferring the most important blood pressure regulatory mechanisms involved in the non-dipper status, namely, increase in sympathetic over parasympathetic nervous tone, lower influence of physical activity on heart rate and greater influence of physical activity and glucose on the systemic vascular resistance. In summary, this model allows explaining the circadian rhythm of blood pressure and deepening the understanding of the underlying mechanisms and interactions integrating the results of previous works.
Collapse
Affiliation(s)
- Javiera Cortés-Ríos
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Ralph AF, Grenier C, Costello HM, Stewart K, Ivy JR, Dhaun N, Bailey MA. Activation of the Sympathetic Nervous System Promotes Blood Pressure Salt-Sensitivity in C57BL6/J Mice. Hypertension 2020; 77:158-168. [PMID: 33190558 PMCID: PMC7720873 DOI: 10.1161/hypertensionaha.120.16186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na+) to high salt (3% Na+) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure-depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.
Collapse
Affiliation(s)
- Ailsa F Ralph
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Celine Grenier
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Hannah M Costello
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Kevin Stewart
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Jessica R Ivy
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Neeraj Dhaun
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- From the University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| |
Collapse
|
9
|
Jennings JR, Muldoon MF, Sved AF. Is the Brain an Early or Late Component of Essential Hypertension? Am J Hypertens 2020; 33:482-490. [PMID: 32170317 DOI: 10.1093/ajh/hpaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's relationship to essential hypertension is primarily understood to be that of an end-organ, damaged late in life by stroke or dementia. Emerging evidence, however, shows that heightened blood pressure (BP) early in life and prior to traditionally defined hypertension, relates to altered brain structure, cerebrovascular function, and cognitive processing. Deficits in cognitive function, cerebral blood flow responsivity, volumes of brain areas, and white matter integrity all relate to increased but prehypertensive levels of BP. Such relationships may be observed as early as childhood. In this review, we consider the basis of these relationships by examining the emergence of putative causative factors for hypertension that would impact or involve brain function/structure, e.g., sympathetic nervous system activation and related endocrine and inflammatory activation. Currently, however, available evidence is not sufficient to fully explain the specific pattern of brain deficits related to heightened BP. Despite this uncertainty, the evidence reviewed suggests the value that early intervention may have, not only for reducing BP, but also for maintaining brain function.
Collapse
Affiliation(s)
- John Richard Jennings
- Department of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew F Muldoon
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart and Vascular Institute, Hypertension Center, UPMC Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Center for Neuroscience, University of Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Xu J, Molinas AJR, Mukerjee S, Morgan DA, Rahmouni K, Zsombok A, Lazartigues E. Activation of ADAM17 (A Disintegrin and Metalloprotease 17) on Glutamatergic Neurons Selectively Promotes Sympathoexcitation. Hypertension 2019; 73:1266-1274. [PMID: 31006330 DOI: 10.1161/hypertensionaha.119.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic activation of the brain renin-angiotensin system contributes to the development of hypertension by altering autonomic balance. Beyond the essential role of Ang II (angiotensin II) type 1 receptors, ADAM17 (A disintegrin and metalloprotease 17) is also found to promote brain renin-angiotensin system overactivation. ADAM17 is robustly expressed in various cell types within the central nervous system. The aim of this study was to determine whether ADAM17 modulates presympathetic neuronal activity to promote autonomic dysregulation in salt-sensitive hypertension. To test our hypothesis, ADAM17 was selectively knocked down in glutamatergic neurons using Cre-loxP technology. In mice lacking ADAM17 in glutamatergic neurons, the blood pressure increase induced by deoxycorticosterone acetate-salt treatment was blunted. Deoxycorticosterone acetate-salt significantly elevated cardiac and vascular sympathetic drive in control mice, while such effects were reduced in mice with ADAM17 knockdown. This blunted sympathoexcitation was extended to the spleen, with a lesser activation of the peripheral immune system, translating into a sequestration of circulating T cells within this organ, compared with controls. Within the paraventricular nucleus, Ang II-induced activation of kidney-related presympathetic glutamatergic neurons was reduced in ADAM17 knockdown mice, with the majority of cells no longer responding to Ang II stimulation, confirming the supportive role of ADAM17 in increasing presympathetic neuronal activity. Overall, our data highlight the pivotal role of neuronal ADAM17 in regulating sympathetic activity and demonstrate that activation of ADAM17 in glutamatergic neurons leads to a selective increase of sympathetic output, but not vagal tone, to specific organs, ultimately contributing to dysautonomia and salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jiaxi Xu
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Neuroscience Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Research and Development, SouthEast Louisiana Veterans Health Care System, New Orleans (J.X., E.L.)
| | - Adrien J R Molinas
- Department of Physiology, Tulane University, New Orleans, LA (A.J.R.M., A.Z.)
| | - Snigdha Mukerjee
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Neuroscience Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA (D.A.M., K.R.)
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA (D.A.M., K.R.)
| | - Andrea Zsombok
- Department of Physiology, Tulane University, New Orleans, LA (A.J.R.M., A.Z.)
| | - Eric Lazartigues
- From the Department of Pharmacology and Experimental Therapeutics (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Cardiovascular Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Neuroscience Center of Excellence (J.X., S.M., E.L.), Louisiana State University Health Sciences Center, New Orleans.,Research and Development, SouthEast Louisiana Veterans Health Care System, New Orleans (J.X., E.L.)
| |
Collapse
|
11
|
Altamirano-Diaz L, Kassay AD, Serajelahi B, McIntyre CW, Filler G, Kharche SR. Arterial Hypertension and Unusual Ascending Aortic Dilatation in a Neonate With Acute Kidney Injury: Mechanistic Computer Modeling. Front Physiol 2019; 10:1391. [PMID: 31780955 PMCID: PMC6856675 DOI: 10.3389/fphys.2019.01391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Background Neonatal asphyxia caused kidney injury and severe hypertension in a newborn. An unusually dilatated ascending aorta developed. Dialysis and pharmacological treatment led to partial recovery of the ascending aortic diameters. It was hypothesized that the aortic dilatation may be associated with aortic stiffening, peripheral resistance, and cardiovascular changes. Mathematical modeling was used to better understand the potential causes of the hypertension, and to confirm our clinical treatment within the confines of the model's capabilities. Methods The patient's systolic arterial blood pressure showed hypertension. Echocardiographic exams showed ascending aorta dilatation during hypertension, which partially normalized upon antihypertensive treatment. To explore the underlying mechanisms of the aortic dilatation and hypertension, an existing lumped parameter hemodynamics model was deployed. Hypertension was simulated using realistic literature informed parameter values. It was also simulated using large parameter perturbations to demonstrate effects. Simulations were designed to permit examination of causal mechanisms. The hypertension inducing effects of aortic stiffnesses, vascular resistances, and cardiac hypertrophy on blood flow and pressure were simulated. Sensitivity analysis was used to stratify causes. Results In agreement with our clinical diagnosis, the model showed that an increase of aortic stiffness followed by augmentation of peripheral resistance are the prime causes of realistic hypertension. Increased left ventricular elastance may also cause hypertension. Ascending aortic pressure and flow increased in the simultaneous presence of left ventricle hypertrophy and augmented small vessel resistance, which indicate a plausible condition for ascending aorta dilatation. In case of realistic hypertension, sensitivity analysis showed that the treatment of both the large vessel stiffness and small vessel resistance are more important in comparison to cardiac hypertrophy. Conclusion and Discussion Large vessel stiffness was found to be the prime factor in arterial hypertension, which confirmed the clinical treatment. Treatment of cardiac hypertrophy appears to provide significant benefit but may be secondary to treatment of large vessel stiffness. The quantitative grading of pathophysiological mechanisms provided by the modeling may contribute to treatment recommendations. The model was limited due to a lack of data suitable to permit model identification.
Collapse
Affiliation(s)
- Luis Altamirano-Diaz
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Paediatric Cardiopulmonary Research Laboratory, LHSC, London, ON, Canada
| | | | - Baran Serajelahi
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher W McIntyre
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Guido Filler
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Sanjay R Kharche
- Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
12
|
Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens 2019; 36:1326-1341. [PMID: 29570510 DOI: 10.1097/hjh.0000000000001708] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We examined the effects of treatment with soluble epoxide hydrolase inhibitor (sEHi) and epoxyeicosatrienoic acids (EETs) analogue (EET-A), given alone or combined, on blood pressure (BP) and ischemia/reperfusion myocardial injury in rats with angiotensin II (ANG II)-dependent hypertension. METHODS Ren-2 transgenic rats (TGR) were used as a model of ANG II-dependent hypertension and Hannover Sprague-Dawley rats served as controls. Rats were treated for 14 days with sEHi or EET-A and BP was measured by radiotelemetry. Albuminuria, cardiac hypertrophy and concentrations of ANG II and EETs were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury and the infarct size and ventricular arrhythmias were determined. RESULTS Treatment of TGR with sEHi and EET-A, given alone or combined, decreased BP to a similar degree, reduced albuminuria and cardiac hypertrophy to similar extent; only treatment regimens including sEHi increased myocardial and renal tissue concentrations of EETs. sEHi and EET-A, given alone or combined, suppressed kidney ANG II levels in TGR. Remarkably, infarct size did not significantly differ between TGR and Hannover Sprague-Dawley rats, but the incidence of ischemia-induced ventricular fibrillations was higher in TGR. Application of sEHi and EET-A given alone and combined sEHi and EET-A treatment were all equally effective in reducing life-threatening ventricular fibrillation in TGR. CONCLUSION The findings indicate that chronic treatment with either sEHi or EET-A exerts distinct antihypertensive and antiarrhythmic actions in our ANG II-dependent model of hypertension whereas combined administration of sEHi and EET-A does not provide additive antihypertensive or cardioprotective effects.
Collapse
|
13
|
Kurtz TW, DiCarlo SE, Pravenec M, Ježek F, Šilar J, Kofránek J, Morris RC. Testing Computer Models Predicting Human Responses to a High-Salt Diet. Hypertension 2019; 72:1407-1416. [PMID: 30571226 DOI: 10.1161/hypertensionaha.118.11552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, mathematical models of human integrative physiology, derived from Guyton's classic 1972 model of the circulation, have been used to investigate potential mechanistic abnormalities mediating salt sensitivity and salt-induced hypertension. We performed validation testing of 2 of the most evolved derivatives of Guyton's 1972 model, Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4, to determine whether the models accurately predict sodium balance and hemodynamic responses of normal subjects to increases in salt intake within the real-life range of salt intake in humans. Neither model, nor the 1972 Guyton model, accurately predicts the usual changes in sodium balance, cardiac output, and systemic vascular resistance that normally occur in response to clinically realistic increases in salt intake. Furthermore, although both contemporary models are extensions of the 1972 Guyton model, testing revealed major inconsistencies between model predictions with respect to sodium balance and hemodynamic responses of normal subjects to short-term and long-term salt loading. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models regarding the usual regulation of sodium balance, cardiac output, and vascular resistance in response to increased salt intake in normal salt-resistant humans. Accurate understanding of the normal responses to salt loading is a prerequisite for accurately establishing abnormal responses to salt loading. Accordingly, the present results raise concerns about the interpretation of studies of salt sensitivity with the various Guyton models. These findings indicate a need for continuing development of alternative models that incorporate mechanistic concepts of blood pressure regulation fundamentally different from those in the 1972 Guyton model and its contemporary derivatives.
Collapse
Affiliation(s)
- Theodore W Kurtz
- From the Department of Laboratory Medicine (T.W.K.), School of Medicine, University of California, San Francisco
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing (S.E.D.)
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague (M.P.)
| | - Filip Ježek
- Department of Cybernetics, Czech Technical University in Prague (F.J.).,Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jan Šilar
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jiří Kofránek
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - R Curtis Morris
- Department of Medicine (R.C.M.), School of Medicine, University of California, San Francisco
| |
Collapse
|
14
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
15
|
The American Heart Association Scientific Statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 2018. [PMID: 28650918 DOI: 10.1097/hjh.0000000000001458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Recently, the American Heart Association (AHA) published a scientific statement on salt sensitivity of blood pressure which emphasized a decades old conceptual framework for the pathogenesis of this common disorder. Here we examine the extent to which the conceptual framework for salt sensitivity emphasized in the AHA Statement accommodates contemporary findings and views of the broader scientific community on the pathogenesis of salt sensitivity. In addition, we highlight alternative conceptual frameworks and important contemporary theories of salt sensitivity that are little discussed in the AHA Statement. We suggest that greater consideration of conceptual frameworks and theories for salt sensitivity beyond those emphasized in the AHA Statement may help to advance understanding of the pathogenesis of salt-induced increases in blood pressure and, in consequence, may lead to improved approaches to preventing and treating this common disorder.
Collapse
|
16
|
The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens 2018; 27:83-92. [DOI: 10.1097/mnh.0000000000000394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Cao W, Li A, Li J, Wu C, Cui S, Zhou Z, Liu Y, Wilcox CS, Hou FF. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury. Antioxid Redox Signal 2017; 27:415-432. [PMID: 28030955 PMCID: PMC5549812 DOI: 10.1089/ars.2016.6827] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
Abstract
AIMS A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. RESULTS Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p < 0.05). Ischemia-reperfusion-induced renal damage and dysfunction persisted after controlling blood pressure with hydralazine. INNOVATION This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. CONCLUSIONS These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.
Collapse
Affiliation(s)
- Wei Cao
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Aiqing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Jiawen Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Chunyi Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Shuang Cui
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| | - Christopher S. Wilcox
- Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou, P.R. China
| |
Collapse
|
18
|
Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats. Sci Rep 2017; 7:5655. [PMID: 28720883 PMCID: PMC5515999 DOI: 10.1038/s41598-017-05984-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated some mechanisms involved in sodium-dependent hypertension of rats exposed to chronic salt (NaCl) intake from weaning until adult age. Weaned male Wistar rats were placed under high (0.90% w/w, HS) or regular (0.27% w/w, Cont) sodium diets for 12 weeks. Water consumption, urine output and sodium excretion were higher in HS rats compared to control. Blood pressure (BP) was directly measured by the arterial catheter and found 13.8% higher in HS vs Cont rats. Ganglionic blockade with hexamethonium caused greater fall in the BP of HS rats (33%), and central antagonism of AT1 receptors (losartan) microinjected into the lateral ventricle reduced BP level of HS, but not of Cont group. Heart rate variability analysis revealed sympathetic prevalence on modulation of the systolic interval. HS diet did not affect creatinine clearance. Kidney histological analysis revealed no significant change in renal corpuscle structure. Sodium and potassium concentrations in CSF were found higher in HS rats despite no change in plasma concentration of these ions. Taken together, data suggest that animals exposed to chronic salt intake to a level close to that reported for human' diet since weaning lead to hypertension, which appears to rely on sodium-driven neurogenic mechanisms.
Collapse
|
19
|
Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract 2017; 36:117-131. [PMID: 28680820 PMCID: PMC5491159 DOI: 10.23876/j.krcp.2017.36.2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
The pathophysiology of hypertension, which affects over 1 billion individuals worldwide, involves the integration of the actions of multiple organ systems, including the kidney. The kidney, which governs sodium excretion via several mechanisms including pressure natriuresis and the actions of renal sodium transporters, is central to long term blood pressure regulation and the salt sensitivity of blood pressure. The impact of renal sodium handling and the salt sensitivity of blood pressure in health and hypertension is a critical public health issue owing to the excess of dietary salt consumed globally and the significant percentage of the global population exhibiting salt sensitivity. This review highlights recent advances that have provided new insight into the renal handling of sodium and the salt sensitivity of blood pressure, with a focus on genetic, inflammatory, dietary, sympathetic nervous system and oxidative stress mechanisms that influence renal sodium excretion. Increased understanding of the multiple integrated mechanisms that regulate the renal handling of sodium and the salt sensitivity of blood pressure has the potential to identify novel therapeutic targets and refine dietary guidelines designed to treat and prevent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. J Am Heart Assoc 2017; 6:JAHA.117.005653. [PMID: 28365569 PMCID: PMC5533040 DOI: 10.1161/jaha.117.005653] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
21
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Clemmer JS, Pruett WA, Coleman TG, Hall JE, Hester RL. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling. Am J Physiol Regul Integr Comp Physiol 2016; 312:R451-R466. [PMID: 27974315 DOI: 10.1152/ajpregu.00353.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
Mathematical modeling is an important tool for understanding quantitative relationships among components of complex physiological systems and for testing competing hypotheses. We used HumMod, a large physiological model, to test hypotheses of blood pressure (BP) salt sensitivity. Systemic hemodynamics, renal, and neurohormonal responses to chronic changes in salt intake were examined during normal renal function, fixed low or high plasma angiotensin II (ANG II) levels, bilateral renal artery stenosis, increased renal sympathetic nerve activity (RSNA), and decreased nephron numbers. Simulations were run for 4 wk at salt intakes ranging from 30 to 1,000 mmol/day. Reducing functional kidney mass or fixing ANG II increased salt sensitivity. Salt sensitivity, associated with inability of ANG II to respond to changes in salt intake, occurred with smaller changes in renal blood flow but greater changes in glomerular filtration rate, renal sodium reabsorption, and total peripheral resistance (TPR). However, clamping TPR at normal or high levels had no major effect on salt sensitivity. There were no clear relationships between BP salt sensitivity and renal vascular resistance or extracellular fluid volume. Our robust mathematical model of cardiovascular, renal, endocrine, and sympathetic nervous system physiology supports the hypothesis that specific types of kidney dysfunction, associated with impaired regulation of ANG II or increased tubular sodium reabsorption, contribute to BP salt sensitivity. However, increased preglomerular resistance, increased RSNA, or inability to decrease TPR does not appear to influence salt sensitivity. This model provides a platform for testing competing concepts of long-term BP control during changes in salt intake.
Collapse
Affiliation(s)
- John S Clemmer
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - W Andrew Pruett
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Thomas G Coleman
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert L Hester
- Department of Physiology and Biophysics, Center for Computational Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
23
|
Kurtz TW, DiCarlo SE, Morris RC. Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension. Am J Hypertens 2016. [PMID: 28637271 DOI: 10.1093/ajh/hpw073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The term "abnormal pressure natriuresis" refers to a subnormal effect of a given level of blood pressure (BP) on sodium excretion. It is widely believed that abnormal pressure natriuresis causes an initial increase in BP to be sustained. We refer to this view as the "pressure natriuresis theory of chronic hypertension." The proponents of the theory contend that all forms of chronic hypertension are sustained by abnormal pressure natriuresis, irrespective of how hypertension is initiated. This theory would appear to follow from "the three laws of long-term arterial pressure regulation" stated by Guyton and Coleman more than 3 decades ago. These "laws" articulate the concept that for a given level of salt intake, the relationship between arterial pressure and sodium excretion determines the chronic level of BP. Here, we review and examine the recent assertion by Beard that these "laws" of long-term BP control amount to nothing more than a series of tautologies. Our analysis supports Beard's assertion, and also indicates that contemporary investigators often use tautological reasoning in support of the pressure natriuresis theory of chronic hypertension. Although the theory itself is not a tautology, it does not appear to be testable because it holds that abnormal pressure natriuresis causes salt-induced hypertension to be sustained through abnormal increases in cardiac output that are too small to be detected.
Collapse
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Stephen E DiCarlo
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
24
|
An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016; 90:965-973. [PMID: 27546606 DOI: 10.1016/j.kint.2016.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022]
Abstract
It is widely held that in response to high salt diets, normal individuals are acutely and chronically resistant to salt-induced hypertension because they rapidly excrete salt and retain little of it so that their blood volume, and therefore blood pressure, does not increase. Conversely, it is also widely held that salt-sensitive individuals develop salt-induced hypertension because of an impaired renal capacity to excrete salt that causes greater salt retention and blood volume expansion than that which occurs in normal salt-resistant individuals. Here we review results of both acute and chronic salt-loading studies that have compared salt-induced changes in sodium retention and blood volume between normal subjects (salt-resistant normotensive control subjects) and salt-sensitive subjects. The results of properly controlled studies strongly support an alternative view: during acute or chronic increases in salt intake, normal salt-resistant subjects undergo substantial salt retention and do not excrete salt more rapidly, retain less sodium, or undergo lesser blood volume expansion than do salt-sensitive subjects. These observations: (i) directly conflict with the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension, and (ii) have implications for contemporary understanding of how various genetic, immunologic, and other factors determine acute and chronic blood pressure responses to high salt diets.
Collapse
|
25
|
Affiliation(s)
- John E Hall
- From the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
26
|
Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation 2016; 133:881-93. [PMID: 26927006 DOI: 10.1161/circulationaha.115.017923] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Curtis Morris
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| | - Olga Schmidlin
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Anthony Sebastian
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Masae Tanaka
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Theodore W Kurtz
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| |
Collapse
|
27
|
Evans RG, Bie P. Role of the kidney in the pathogenesis of hypertension: time for a neo-Guytonian paradigm or a paradigm shift? Am J Physiol Regul Integr Comp Physiol 2015; 310:R217-29. [PMID: 26582636 DOI: 10.1152/ajpregu.00254.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/06/2015] [Indexed: 01/15/2023]
Abstract
The "Guytonian paradigm" places the direct effect of arterial pressure, on renal excretion of salt and water, at the center of long-term control of blood pressure, and thus the pathogenesis of hypertension. It originated in the sixties and remains influential within the field of hypertension research. However, the concept of one central long-term feedback loop, through which arterial pressure is maintained by its influence on renal function, has been questioned. Furthermore, some concepts in the paradigm are undermined by experimental observations. For example, volume retention and increased cardiac output induced by high salt intake do not necessarily lead to increased arterial pressure. Indeed, in multiple models of salt-sensitive hypertension the major abnormality appears to be failure of the vasodilator response to increased cardiac output, seen in salt-resistant animals, rather than an increase in cardiac output itself. There is also evidence that renal control of extracellular fluid volume is driven chiefly by volume-dependent neurohumoral control mechanisms rather than through direct or indirect effects of changes in arterial pressure, compatible with the concept that renal sodium excretion is controlled by parallel actions of different feedback systems, including hormones, reflexes, and renal arterial pressure. Moreover, we still do not fully understand the sequence of events underlying the phenomenon of "whole body autoregulation." Thus the events by which volume retention may develop to hypertension characterized by increased peripheral resistance remain enigmatic. Finally, by definition, animal models of hypertension are not "essential hypertension;" progress in our understanding of essential hypertension depends on new results on system functions in patients.
Collapse
Affiliation(s)
- Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Melbourne, Australia; and
| | - Peter Bie
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Melbourne, Australia; and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
28
|
Paterson DJ, Paton JFR. Insights gleaned from pharmaco-genetic dissection and modelling of cardio-respiratory neural networks. J Physiol 2015; 593:3031. [DOI: 10.1113/jp270838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- David J. Paterson
- Department of Physiology, Anatomy and Genetics; University of Oxford, Sherrington Building; Parks Road Oxford OX1 3PT UK
| | - Julian F. R. Paton
- Bristol Heart Institute; University of Bristol, Medical Sciences Building; Bristol BS8 1TD UK
| |
Collapse
|