1
|
Klee KMC, Hess MW, Lohmüller M, Herzog S, Pfaller K, Müller T, Vogel GF, Huber LA. A CRISPR screen in intestinal epithelial cells identifies novel factors for polarity and apical transport. eLife 2023; 12:e80135. [PMID: 36661306 PMCID: PMC9889089 DOI: 10.7554/elife.80135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush-border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knockout of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.
Collapse
Affiliation(s)
- Katharina MC Klee
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Georg F Vogel
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
| |
Collapse
|
2
|
Salari A, Appak-Baskoy S, Coe IR, Abousawan J, Antonescu CN, Tsai SSH, Kolios MC. Dosage-controlled intracellular delivery mediated by acoustofluidics for lab on a chip applications. LAB ON A CHIP 2021; 21:1788-1797. [PMID: 33734246 DOI: 10.1039/d0lc01303j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological research and many cell-based therapies rely on the successful delivery of cargo materials into cells. Intracellular delivery in an in vitro setting refers to a variety of physical and biochemical techniques developed for conducting rapid and efficient transport of materials across the plasma membrane. Generally, the techniques that are time-efficient (e.g., electroporation) suffer from heterogeneity and low cellular viability, and those that are precise (e.g., microinjection) suffer from low-throughput and are labor-intensive. Here, we present a novel in vitro microfluidic strategy for intracellular delivery, which is based on the acoustic excitation of adherent cells. Strong mechanical oscillations, mediated by Lamb waves, inside a microfluidic channel facilitate the cellular uptake of different size (e.g., 3-500 kDa, plasmid encoding EGFP) cargo materials through endocytic pathways. We demonstrate successful delivery of 500 kDa dextran to various adherent cell lines with unprecedented efficiency in the range of 65-85% above control. We also show that actuation voltage and treatment duration can be tuned to control the dosage of delivered substances. High viability (≥91%), versatility across different cargo materials and various adherent cell lines, scalability to hundreds of thousands of cells per treatment, portability, and ease-of-operation are among the unique features of this acoustofluidic strategy. Potential applications include targeting through endocytosis-dependant pathways in cellular disorders, such as lysosomal storage diseases, which other physical methods are unable to address. This novel acoustofluidic method achieves rapid, uniform, and scalable delivery of material into cells, and may find utility in lab-on-a-chip applications.
Collapse
Affiliation(s)
- Alinaghi Salari
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Sila Appak-Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - John Abousawan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada and Molecular Science Graduate Program, Ryerson University, Toronto, ON M5B2K3, Canada
| | - Scott S H Tsai
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
| | - Michael C Kolios
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada and Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
3
|
Methods of measuring presynaptic function with fluorescence probes. Appl Microsc 2021; 51:2. [PMID: 33730244 PMCID: PMC7969681 DOI: 10.1186/s42649-021-00051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.
Collapse
|
4
|
York HM, Coyle J, Arumugam S. To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 2020; 48:2051-2066. [PMID: 32915197 PMCID: PMC7609031 DOI: 10.1042/bst20200223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Living cells interpret a variety of signals in different contexts to elucidate functional responses. While the understanding of signalling molecules, their respective receptors and response at the gene transcription level have been relatively well-explored, how exactly does a single cell interpret a plethora of time-varying signals? Furthermore, how their subsequent responses at the single cell level manifest in the larger context of a developing tissue is unknown. At the same time, the biophysics and chemistry of how receptors are trafficked through the complex dynamic transport network between the plasma membrane-endosome-lysosome-Golgi-endoplasmic reticulum are much more well-studied. How the intracellular organisation of the cell and inter-organellar contacts aid in orchestrating trafficking, as well as signal interpretation and modulation by the cells are beginning to be uncovered. In this review, we highlight the significant developments that have strived to integrate endosomal trafficking, signal interpretation in the context of developmental biology and relevant open questions with a few chosen examples. Furthermore, we will discuss the imaging technologies that have been developed in the recent past that have the potential to tremendously accelerate knowledge gain in this direction while shedding light on some of the many challenges.
Collapse
Affiliation(s)
- Harrison M. York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Joanne Coyle
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|