1
|
Drigny J, Remilly M, Hingrand C, Mauvieux B. Longitudinal changes in Achilles tendon and triceps surae muscle architecture during a 156-km mountain ultramarathon. J Appl Physiol (1985) 2024; 137:1182-1193. [PMID: 39052821 DOI: 10.1152/japplphysiol.00347.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
This study aimed to assess the longitudinal changes in triceps surae muscle-tendon architecture during a mountain ultramarathon. Experienced trail runners [n = 55, 78% men, age: 45.2 (13.5) yr] participated in a 156-km trail run (6,000 m climbing) consisting of six 26-km laps. The resting architectural properties of triceps surae muscle-tendon were measured using ultrasound imaging for Achilles tendon cross-sectional area (AT CSA), medial gastrocnemius muscle pennation angle, thickness, length, and fiber length. Measurements were performed the day before the race (baseline), at 52 km (T1), at 104 km (T2), at 156 km (T3), and 12 h after the race (H12). Among finishers (n = 41), there was a significant biphasic change in AT CSA during the race (P = 0.001). First, a significant decrease in AT CSA occurred between baseline and T1 (P = 0.006), with a greater decrease for participants averaging speed >8 km/h (P = 0.014). Second, there was a significant increase in AT CSA especially between T2 and T3 (P = 0.006) that was correlated with a decrease in average speed (P = 0.001) and alteration of spaciotemporal running parameters (P < 0.05). Changes in muscle-tendon architecture were not significantly different between finishers (n = 41) and nonfinishers (n = 14). In 47 participants (85.5%) who completed the follow-up, AT CSA at H12 was greater compared with baseline (P = 0.010). The main finding is the significant and biphasic modification of the AT CSA during a 156-km mountain ultramarathon with an initial decrease corresponding to mechanical stress followed by a secondary increase suggesting adaptive mechanotransduction persisting after 12 h.NEW & NOTEWORTHY Achilles tendon cross-sectional area (AT CSA) demonstrated significant adaptive modifications during a 156 km mountain ultramarathon in trained athletes. Initially, a decrease in AT CSA, especially at higher running speeds, is consecutive to the biomechanical stress on the plantar flexor muscle-tendon unit (MTU). Subsequently, there is a significant increase in AT CSA persisting up to 12 h after the race, which likely corresponds to an adaptive process to limit the compressive and tensile load on the tendon.
Collapse
Affiliation(s)
- Joffrey Drigny
- Service de Médecine du Sport, Service de Médecine Physique et de Réadaptation, CHU de Caen Normandie, Normandie University, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen, France
| | - Marion Remilly
- Service de Médecine du Sport, CHU de Caen Normandie, Normandie University, UNICAEN, Caen, France
| | - Corentin Hingrand
- UFR STAPS, UR 7480 VERTEX, Normandie University, UNICAEN, Caen, France
| | - Benoît Mauvieux
- UFR STAPS, UR 7480 VERTEX, Normandie University, UNICAEN, Caen, France
| |
Collapse
|
2
|
Assila N, Begon M, Duprey S. Finite Element Model of the Shoulder with Active Rotator Cuff Muscles: Application to Wheelchair Propulsion. Ann Biomed Eng 2024; 52:1240-1254. [PMID: 38376768 DOI: 10.1007/s10439-024-03449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The rotator cuff is prone to injury, remarkably so for manual wheelchair users. To understand its pathomechanisms, finite element models incorporating three-dimensional activated muscles are needed to predict soft tissue strains during given tasks. This study aimed to develop such a model to understand pathomechanisms associated with wheelchair propulsion. We developed an active muscle model associating a passive fiber-reinforced isotropic matrix with an activation law linking calcium ion concentration to tissue tension. This model was first evaluated against known physiological muscle behavior; then used to activate the rotator cuff during a wheelchair propulsion cycle. Here, experimental kinematics and electromyography data was used to drive a shoulder finite element model. Finally, we evaluated the importance of muscle activation by comparing the results of activated and non-activated rotator cuff muscles during both propulsion and isometric contractions. Qualitatively, the muscle constitutive law reasonably reproduced the classical Hill model force-length curve and the behavior of a transversally loaded muscle. During wheelchair propulsion, the deformation and fiber stretch of the supraspinatus muscle-tendon unit pointed towards the possibility for this tendon to develop tendinosis due to the multiaxial loading imposed by the kinematics of propulsion. Finally, differences in local stretch and positions of the lines of action between activated and non-activated models were only observed at activation levels higher than 30%. Our novel finite element model with active muscles is a promising tool for understanding the pathomechanisms of the rotator cuff for various dynamic tasks, especially those with high muscle activation levels.
Collapse
Affiliation(s)
- Najoua Assila
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada.
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France.
| | - Mickaël Begon
- School of Kinesiology and Exercise Sciences, Faculty of Medicine, University of Montréal, Montréal, QC, Canada
- Research Center of the Sainte-Justine University Hospital Center, Montréal, QC, Canada
| | - Sonia Duprey
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR T_9406, 69622, Lyon, France
| |
Collapse
|
3
|
Park J, Soh H, Jo S, Weon S, Lee SH, Park JA, Lee MK, Kim TH, Sung IH, Lee JK. Scaffold-induced compression enhances ligamentization potential of decellularized tendon graft reseeded with ACL-derived cells. iScience 2023; 26:108521. [PMID: 38162024 PMCID: PMC10755058 DOI: 10.1016/j.isci.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction is often performed using a tendon graft. However, the predominant synthesis of fibrotic scar tissue (type III collagen) occurs during the healing process of the tendon graft, resulting in a significantly lower mechanical strength than that of normal ACL tissue. In this study, ACL-derived cells were reseeded to the tendon graft, and scaffold-induced compression was applied to test whether the compressive force results in superior cell survival and integration. Given nanofiber polycaprolactone (PCL) scaffold-induced compression, ACL-derived cells reseeded to a tendon graft demonstrated superior cell survival and integration and resulted in higher gene expression levels of type I collagen compared to non-compressed cell-allograft composites in vitro. Translocation of Yes-associated protein (YAP) into the nucleus was correlated with higher expression of type I collagen in the compression group. These data support the hypothesis of a potential role of mechanotransduction in the ligamentization process.
Collapse
Affiliation(s)
- Jinsung Park
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Hyunsoo Soh
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Subin Weon
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jeong-Ah Park
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Myung-Kyu Lee
- Department of Research and Development, Korea Public Tissue Bank, Seongnam-si, Gyeonggi-do, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Disease, Seoul, Republic of Korea
| | - Il-Hoon Sung
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jin Kyu Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
- Department of Orthopaedic Surgery, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Wise BC, Mora KE, Lee W, Buckley MR. Murine Hind Limb Explant Model for Studying the Mechanobiology of Achilles Tendon Impingement. J Vis Exp 2023:10.3791/65801. [PMID: 38145383 PMCID: PMC11952120 DOI: 10.3791/65801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Tendon impingement upon bone generates a multiaxial mechanical strain environment with markedly elevated transverse compressive strain, which elicits a localized fibrocartilage phenotype characterized by accumulation of glycosaminoglycan (GAG)-rich matrix and remodeling of the collagen network. While fibrocartilage is a normal feature in impinged regions of healthy tendons, excess GAG deposition and disorganization of the collagen network are hallmark features of tendinopathy. Accordingly, impingement is clinically recognized as an important extrinsic factor in the initiation and progression of tendinopathy. Nevertheless, the mechanobiology underlying tendon impingement remains understudied. Prior efforts to elucidate the cellular response to tendon impingement have applied uniaxial compression to cells and excised tendon explants in vitro. However, isolated cells lack a three-dimensional extracellular environment crucial to mechanoresponse, and both in vitro and excised explant studies fail to recapitulate the multiaxial strain environment generated by tendon impingement in vivo, which depends on anatomical features of the impinged region. Moreover, in vivo models of tendon impingement lack control over the mechanical strain environment. To overcome these limitations, we present a novel murine hind limb explant model suitable for studying the mechanobiology of Achilles tendon impingement. This model maintains the Achilles tendon in situ to preserve local anatomy and reproduces the multiaxial strain environment generated by impingement of the Achilles tendon insertion upon the calcaneus during passively applied ankle dorsiflexion while retaining cells within their native environment. We describe a tissue culture protocol integral to this model and present data establishing sustained explant viability over 7 days. The representative results demonstrate enhanced histological GAG staining and decreased collagen fiber alignment secondary to impingement, suggesting elevated fibrocartilage formation. This model can easily be adapted to investigate different mechanical loading regimens and allows for the manipulation of molecular pathways of interest to identify mechanisms mediating phenotypic change in the Achilles tendon in response to impingement.
Collapse
Affiliation(s)
- Brian C Wise
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Keshia E Mora
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center
| | - Whasil Lee
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center; Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester; Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center;
| |
Collapse
|
5
|
Maffulli N, Cuozzo F, Migliorini F, Oliva F. The tendon unit: biochemical, biomechanical, hormonal influences. J Orthop Surg Res 2023; 18:311. [PMID: 37085854 PMCID: PMC10120196 DOI: 10.1186/s13018-023-03796-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
The current literature has mainly focused on the biology of tendons and on the characterization of the biological properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic equilibrium. We put forward the concept of the "tendon unit" as a morpho-functional unit that can be influenced by a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself through the production of collagen following different mechanical stimuli and hypothesize that restoration of the homeostatic balance of the tendon unit should be a therapeutic target.
Collapse
Affiliation(s)
- Nicola Maffulli
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke On Trent, England
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Francesco Cuozzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, 52152, Simmerath, Germany.
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| |
Collapse
|
6
|
Aggouras AN, Chimenti RL, Flemister AS, Ketz J, Slane LC, Buckley MR, Richards MS. Impingement in Insertional Achilles Tendinopathy Occurs Across a Larger Range of Ankle Angles and Is Associated With Increased Tendon Thickness. Foot Ankle Int 2022; 43:683-693. [PMID: 35081809 PMCID: PMC9240994 DOI: 10.1177/10711007211069570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Insertional Achilles tendinopathy (IAT) is characterized by tendon degeneration and thickening near the tendon-bone insertion.11 Calcaneal impingement is believed to contribute to the pathogenesis of IAT.5 However, it is unclear how increased tendon thickness in individuals with IAT influences impingement. This study aimed to compare Achilles tendon impingement in individuals with and without IAT. METHODS Eight healthy adults and 12 adults with clinically diagnosed symptomatic IAT performed a passive flexion exercise during which ankle flexion angle, anterior-posterior (A-P) thickness, and an ultrasonographic image sequence of the Achilles tendon insertion were acquired. The angle of ankle plantarflexion at which the calcaneus first impinges the Achilles tendon, defined as the impingement onset angle, was identified by (1) a anonymized observer (visual inspection method) and (2) a computational image deformation-based approach (curvature method). RESULTS Although the 2 methods provided different impingement onset angles, the measurements were strongly correlated (R2 = 0.751, P < .05). The impingement onset angle and the thickness of the Achilles tendon insertion were greater in subjects with clinically diagnosed IAT (P = .0048, P = .0047). Furthermore, impingement onset angle proved to have a moderate correlation with anterior-posterior thickness (R2 = 0.454, P < .05). CONCLUSION Our findings demonstrated that increased tendon thickness in IAT patients is associated with larger impingement onset angles, raising the range of ankle angles over which the tendon is exposed to impingement. CLINICAL RELEVANCE Increased susceptibility to impingement may exacerbate or perpetuate the pathology, highlighting the need for clinical strategies to reduce impingement in IAT patients.
Collapse
Affiliation(s)
- Anthony N. Aggouras
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York,Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Ruth L. Chimenti
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, 2116 Westlawn, Iowa City 52245 Iowa
| | - A. Samuel Flemister
- University of Rochester, Department of Orthopaedic Surgery, Rochester, New York
| | - John Ketz
- University of Rochester, Department of Orthopaedic Surgery, Rochester, New York
| | - Laura C. Slane
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - Mark R. Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| |
Collapse
|
7
|
Ortega-Cebrián S, Navarro R, Seda S, Salas S, Guerra-Balic M. Patellar Tendon Structural Adaptations Occur during Pre-Season and First Competitive Cycle in Male Professional Handball Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212156. [PMID: 34831912 PMCID: PMC8624795 DOI: 10.3390/ijerph182212156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022]
Abstract
Background: While there is evidence that tendon adapts to training load, structural alterations in the patellar tendon in response to training loads are still unclear. The aim of this study is to identify changes in patellar tendon structure throughout pre-season and after finalizing the first competitive cycle. Methods: Nineteen professional handball players participated in the aforesaid cross-sectional study, in which patellar tendon scan and counter movement jump (CMJ) performance were conducted. Measurements were taken on the first and last day of pre-season training, and at the end of the first competitive cycle. Results: The results revealed that variation on the tendon structure occurred, mainly at the end of pre-season training; for injured tendons this occurred at the proximal (Right p = 0.02), distal (Right p = 0.01), and (Left p = 0.02) tendon, while changes in healthy tendons occurred at the mid (Left p = 0.01) and distal tendon (Right p = 0.01). At the end of the first competitive cycle, changes were observed in the distal injured tendon (p = 0.02). Conclusion: Patellar tendon shows greater structural change after completing pre-season training than at the end of the first competitive cycle, from which it may be inferred that gradual loading during pre-season training allows the tendon to adapt and potentially decrease the onset of patellar tendinopathy.
Collapse
Affiliation(s)
- Silvia Ortega-Cebrián
- Physiotherapy Department, Facultat Fisioteràpia, Universitat Internacional de Catalunya (UIC), Carrer Josep Trueta, Sant Cugat de Vallès, 08017 Barcelona, Spain
- Futbol Club Barcelona, Medical Department, Ciutat Esportiva Joan Gamper, Avinguda, Once Setembre, Sant Joan Despí, 08970 Barcelona, Spain; (R.N.); (S.S.); (S.S.)
- Correspondence: ; Tel.: +34-932541800
| | - Ramon Navarro
- Futbol Club Barcelona, Medical Department, Ciutat Esportiva Joan Gamper, Avinguda, Once Setembre, Sant Joan Despí, 08970 Barcelona, Spain; (R.N.); (S.S.); (S.S.)
| | - Sergi Seda
- Futbol Club Barcelona, Medical Department, Ciutat Esportiva Joan Gamper, Avinguda, Once Setembre, Sant Joan Despí, 08970 Barcelona, Spain; (R.N.); (S.S.); (S.S.)
| | - Sebastià Salas
- Futbol Club Barcelona, Medical Department, Ciutat Esportiva Joan Gamper, Avinguda, Once Setembre, Sant Joan Despí, 08970 Barcelona, Spain; (R.N.); (S.S.); (S.S.)
| | - Myriam Guerra-Balic
- Faculty of Psychology, Education and Sports Sciences, University Ramon Llull, Spain FPCEE-Blanquerna, 08022 Barcelona, Spain;
| |
Collapse
|
8
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
9
|
Merza E, Pearson S, Lichtwark G, Ollason M, Malliaras P. Immediate and long-term effects of mechanical loading on Achilles tendon volume: A systematic review and meta-analysis. J Biomech 2021; 118:110289. [PMID: 33556887 DOI: 10.1016/j.jbiomech.2021.110289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023]
Abstract
The Achilles tendon (AT) may experience changes in dimensions related to fluid flow under load. The extent to which fluid flow involves redistribution within or flow out of the tendon is not known and could be determined by investigating volume changes. This study aimed to synthesize data on immediate and long-term effects of loading on tendon volume among people with a healthy AT and midportion Achilles tendinopathy (MAT). A secondary aim was to synthesise data from the included studies investigating parallel change in cross-sectional area and length. Systematic electronic search was performed in MEDLINE, EMBASE, CINAHL, AMED, and Scopus from inception until May 2020. Standardized mean differences (SMDs) were calculated for intervention-induced changes from baseline for all outcomes. Methodological quality was assessed using modified version of Newcastle Ottawa Scale (NOS). Twelve studies were included in meta-analysis. For healthy AT, there were negligible to small changes in volume following cross-country running (-0.33 [95% CI = -1.11 to 0.45] (P = 0.41)) and isometric exercise (0.01 [95% CI = -0.54 to 0.55] (P = 0.98)) and a large increase at the short-term with 12-week isometric protocol (0.88 [95% CI = -0.10 to1.86] (P = 0.08)). For MAT, there was an immediate large reduction in volume with isometric exercise (-1.24 [95% CI = -1.93 to -0.55] (P = 0.0004)), small increase with eccentric exercise (0.41 [95% CI = -0.18 to 1.01](P = 0.18)) and small reduction at the short-term with long-term interventions (-0.46 [95% CI = -0.87 to -0.05] (P = 0.03)). This meta-analysis suggests that healthy AT remain isovolumetric with acute interventions while MAT exhibit immediate and short-term volume reductions in response to different interventions.
Collapse
Affiliation(s)
- Eman Merza
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| | - Stephen Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester M5 4WT, United Kingdom.
| | - Glen Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia.
| | - Meg Ollason
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Melbourne, Australia.
| | - Peter Malliaras
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| |
Collapse
|
10
|
THE MANAGEMENT OF PROXIMAL HAMSTRING TENDINOPATHY IN A COMPETITIVE POWERLIFTER WITH HEAVY SLOW RESISTANCE TRAINING - A CASE REPORT. Int J Sports Phys Ther 2020; 15:814-822. [PMID: 33110701 DOI: 10.26603/ijspt20200814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose Proximal hamstring tendinopathy is a chronic, overuse condition that commonly develops in athletes. Eccentric exercise has been widely accepted in the clinic as the treatment of choice for the management of tendinopathies. However, this form of treatment has seldom been compared to other forms of load-based management for hamstring tendinopathies. Heavy slow resistance training, which consists of both concentric and eccentric phases, increases the loading time experienced by the tendon compared to eccentric only exercises. Heavy slow resistance training has achieved positive clinical results in the management of Achilles and patellar tendinopathy. Purpose The purpose of this case report is to describe the outcomes of a powerlifter with proximal hamstring tendinopathy who responded favorably to a heavy slow resistance biased rehabilitation program after traditional, conservative management failed to alleviate symptoms. Case Description A 31-year-old male competitive powerlifter was seen in physical therapy for the management of proximal hamstring tendinopathy. The subject had experienced long duration pain localized at the ischial tuberosity combined with hip weakness that limited his ability to lift weigtht and sit for longer than 30 minutes. Treatment included a 12-week heavy slow resistance program with the focus of increasing load intensity. Outcomes Numeric pain-rating scale was assessed at baseline, after a 12-week heavy slow resistance protocol, and 12 months post protocol. Within four weeks of starting the heavy slow resistance program, the subject noted a meaningful decrease in pain. The subject experienced clinically important improvements in numeric pain-rating scale immediately after the protocol and these improvements remained 12 months after completing the protocol. The subject was able to return to competitive powerlifting after the 12-week program. Discussion A meaningful change in pain occurred within four weeks of starting the program and continued improvement throughout the remainder of the 12 weeks with outcomes maintained 12 months after completing the program suggests that increasing the loading strategy with a heavy slow resistance program was helpful for this subject. Level of Evidence 4.
Collapse
|
11
|
Wang HN, Huang YC, Ni GX. Mechanotransduction of stem cells for tendon repair. World J Stem Cells 2020; 12:952-965. [PMID: 33033557 PMCID: PMC7524696 DOI: 10.4252/wjsc.v12.i9.952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
12
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|
13
|
Matos AM, Gonçalves AI, El Haj AJ, Gomes ME. Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. NANOSCALE ADVANCES 2020; 2:140-148. [PMID: 36133967 PMCID: PMC9417540 DOI: 10.1039/c9na00615j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 05/29/2023]
Abstract
Tendon tissues connect muscle to bone allowing the transmission of forces resulting in joint movement. Tendon injuries are prevalent in society and the impact on public health is of utmost concern. Thus, clinical options for tendon treatments are in demand, and tissue engineering aims to provide reliable and successful long-term regenerative solutions. Moreover, the possibility of regulating cell fate by triggering intracellular pathways is a current challenge in regenerative medicine. In the last decade, the use of magnetic nanoparticles as nano-instructive tools has led to great advances in diagnostics and therapeutics. Recent advances using magnetic nanomaterials for regenerative medicine applications include the incorporation of magnetic biomaterials within 3D scaffolds resulting in mechanoresponsive systems with unprecedented properties and the use of nanomagnetic actuators to control cell signaling. Mechano-responsive scaffolds and nanomagnetic systems can act as mechanostimulation platforms to apply forces directly to single cells and multicellular biological tissues. As transmitters of forces in a localized manner, the approaches enable the downstream activation of key tenogenic signaling pathways. In this minireview, we provide a brief outlook on the tenogenic signaling pathways which are most associated with the conversion of mechanical input into biochemical signals, the novel bio-magnetic approaches which can activate these pathways, and the efforts to translate magnetic biomaterials into regenerative platforms for tendon repair.
Collapse
Affiliation(s)
- Ana M Matos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Alicia J El Haj
- Healthcare Technologies Institute, Birmingham University B15 2TT Birmingham UK
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at the University of Minho Avepark, 4805-017 Barco Guimarães Portugal
| |
Collapse
|
14
|
Effect of a Collagen-Based Compound on Morpho-Functional Properties of Cultured Human Tenocytes. Cells 2018; 7:cells7120246. [PMID: 30563214 PMCID: PMC6316559 DOI: 10.3390/cells7120246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Greater Trochanter Pain Syndrome (GTPS) is the main reason for recalcitrant lateral hip pain. Gluteus medius and minimus tendinopathy plays a key role in this setting. An injectable medical compound containing collagen type I (MD-Tissue, Guna) has been produced with the aim to counteract the physiological and pathological degeneration of tendons. In this study we aimed at characterizing the effect of this medical compound on cultured human gluteal tenocytes, focusing on the collagen turnover pathways, in order to understand how this medical compound could influence tendon biology and healing. Methods: Tenocytes were obtained from gluteal tendon fragments collected in eight patients without any gluteal tendon pathology undergoing total hip replacement through an anterior approach. Cell proliferation and migration were investigated by growth curves and wound healing assay, respectively. The expression of genes and proteins involved in collagen turnover were analysed by real-time PCR, Slot blot and SDS-zymography. Results: Our data show that tenocytes cultured on MD-Tissue, compared to controls, have increased proliferation rate and migration potential. MD-Tissue induced collagen type I (COL-I) secretion and mRNA levels of tissue inhibitor of matrix metalloproteinases (MMP)-1 (TIMP-1). Meanwhile, lysyl hydroxylase 2b and matrix metalloproteinases (MMP)-1 and -2, involved, respectively, in collagen maturation and degradation, were not affected. Conclusions: Considered as a whole, our results suggest that MD-Tissue could induce in tenocytes an anabolic phenotype by stimulating tenocyte proliferation and migration and COL-I synthesis, maturation, and secretion, thus favouring tendon repair. In particular, based on its effect on gluteal tenocytes, MD-Tissue could be effective in the discouraging treatment of GTPS. From now a rigorous clinical investigation is desirable to understand the real clinical potentials of this compound.
Collapse
|
15
|
Kharaz YA, Canty-Laird EG, Tew SR, Comerford EJ. Variations in internal structure, composition and protein distribution between intra- and extra-articular knee ligaments and tendons. J Anat 2018; 232:943-955. [PMID: 29498035 PMCID: PMC5978954 DOI: 10.1111/joa.12802] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Tendons and ligaments play key roles in the musculoskeletal system in both man and animals. Both tissues can undergo traumatic injury, age‐related degeneration and chronic disease, causing discomfort, pain and increased susceptibility to wider degenerative joint disease. To date, tendon and ligament ultrastructural biology is relatively under‐studied in healthy, non‐diseased tissues. This information is essential to understand the pathology of these tissues with regard to function‐related injury and to assist with the future development of tissue‐engineered tendon and ligament structures. This study investigated the morphological, compositional and extracellular matrix protein distribution differences between tendons and ligaments around the non‐diseased canine stifle joint. The morphological, structural characteristics of different regions of the periarticular tendons and ligaments (the intra‐articular anterior cruciate ligament, the extra‐articular medial collateral ligament, the positional long digital extensor tendon and energy‐storing superficial digital flexor tendons) were identified using a novel semi‐objective histological scoring analysis and by determining their biochemical composition. Protein distribution of extracellular matrix collagens, proteoglycans and elastic fibre proteins in anterior cruciate ligament and long digital extensor tendon were also determined using immunostaining techniques. The anterior cruciate ligament was found to have significant morphological differences in comparison with the other three tissues, including less compact collagen architecture, differences in cell nuclei phenotype and increased glycosaminoglycan and elastin content. Intra‐ and interobserver differences of histology scoring resulted in an average score 0.7, indicative of good agreement between observers. Statistically significant differences were also found in the extracellular matrix composition in terms of glycosaminoglycan and elastin content, being more prominent in the anterior cruciate ligament than in the other three tissues. A different distribution of several extracellular matrix proteins was also found between long digital extensor tendon and anterior cruciate ligament, with a significantly increased immunostaining of aggrecan and versican in the anterior cruciate ligament. These findings directly relate to the different functions of tendon and ligament and indicate that the intra‐articular anterior cruciate ligament is subjected to more compressive forces, reflecting an adaptive response to normal or increased loads and resulting in different extracellular matrix composition and arrangement to protect the tissue from damage.
Collapse
Affiliation(s)
- Yalda A Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Simon R Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.,The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
16
|
Paul Buckley C, Samuel Salisbury ST, Zavatsky AB. Viscoelasticity of Tendons Under Transverse Compression. J Biomech Eng 2017; 138:2543311. [PMID: 27496279 DOI: 10.1115/1.4034382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 01/01/2023]
Abstract
Tendons are highly anisotropic and also viscoelastic. For understanding and modeling their 3D deformation, information is needed on their viscoelastic response under off-axis loading. A study was made, therefore, of creep and recovery of bovine digital extensor tendons when subjected to transverse compressive stress of up to ca. 100 kPa. Preconditioned tendons were compression tested between glass plates at increasing creep loads. The creep response was anomalous: the relative rate of creep reduced with the increasing stress. Over each ca. 100 s creep period, the transverse creep deformation of each tendon obeyed a power law dependence on time, with the power law exponent falling from ca. 0.18 to an asymptote of ca. 0.058 with the increasing stress. A possible explanation is stress-driven dehydration, as suggested previously for the similar anomalous behavior of ligaments. Recovery after removal of each creep load was also anomalous. Relative residual strain reduced with the increasing creep stress, but this is explicable in terms of the reducing relative rate of creep. When allowance was made for some adhesion occurring naturally between tendon and the glass plates, the results for a given load were consistent with creep and recovery being related through the Boltzmann superposition principle (BSP). The tendon tissue acted as a pressure-sensitive adhesive (PSA) in contact with the glass plates: explicable in terms of the low transverse shear modulus of the tendons.
Collapse
|
17
|
Spang C, Chen J, Backman LJ. The tenocyte phenotype of human primary tendon cells in vitro is reduced by glucocorticoids. BMC Musculoskelet Disord 2016; 17:467. [PMID: 27832770 PMCID: PMC5105245 DOI: 10.1186/s12891-016-1328-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
Background The use of corticosteroids (e.g., dexamethasone) as treatment for tendinopathy has recently been questioned as higher risks for ruptures have been observed clinically. In vitro studies have reported that dexamethasone exposed tendon cells, tenocytes, show reduced cell viability and collagen production. Little is known about the effect of dexamethasone on the characteristics of tenocytes. Furthermore, there are uncertainties about the existence of apoptosis and if the reduction of collagen affects all collagen subtypes. Methods We evaluated these aspects by exposing primary tendon cells to dexamethasone (Dex) in concentrations ranging from 1 to 1000 nM. Gene expression of the specific tenocyte markers scleraxis (Scx) and tenomodulin (Tnmd) and markers for other mesenchymal lineages, such as bone (Alpl, Ocn), cartilage (Acan, Sox9) and fat (Cebpα, Pparg) was measured via qPCR. Cell viability and proliferation was calculated using a MTS Assay. Cell death was measured by LDH assay and cleaved caspase-3 using Western Blot. Gene expression of collagen subtypes Col1, Col3 and Col14 was analyzed using qPCR. Results Stimulation with Dex decreased cell viability and LDH levels. Dex also induced a significant reduction of Scx gene expression and a marked loss of fibroblast like cell shape. The mRNA for all examined collagen subtypes was found to be down-regulated. Among non-tendinous genes only Pparg was significantly increased, whereas Acan, Alpl and Sox9 were reduced. Conclusions These results indicate a Dex induced phenotype drift of the tenocytes by reducing scleraxis expression. Reduction of several collagen subtypes, but not cell death, seems to be a feature of Dex induced tissue degeneration.
Collapse
Affiliation(s)
- Christoph Spang
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden. .,Dr Alfen Orthopedic Spine Center, 97080, Würzburg, Germany.
| | - Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
18
|
O'Neill S, Watson PJ, Barry S. A DELPHI STUDY OF RISK FACTORS FOR ACHILLES TENDINOPATHY- OPINIONS OF WORLD TENDON EXPERTS. Int J Sports Phys Ther 2016; 11:684-697. [PMID: 27757281 PMCID: PMC5046962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Achilles tendinopathy can be a debilitating chronic condition for both active and inactive individuals. The identification of risk facors is important both in preventing but also treating tendinopathy, many factors have been proposed but there is a lack of primary epidemiological data. The purpose of this study was to develop a statement of expert consensus on risk factors for Achilles tendinopathy in active and sedentary patient populations to inform a primary epidemiological study. STUDY DESIGN Delphi study. METHODS AND MEASURES An online Delphi study was completed inviting participation from world tendon experts. The consensus was developed using three rounds of the Delphi technique. The first round developed a complete list of potential risk factors, the second round refined this list but also separated the factors into two population groups - active/athletic and inactive/sedentary. The third round ranked this list in order of perceived importance. RESULTS Forty-four experts were invited to participate, 16 participated in the first round (response rate 40%) and two dropped out in the second round (resulting in a response rate of 35%). A total of 27 intrinsic and eight extrinsic risk factors were identified during round one. During round two only 12 intrinsic and five extrinsic risk factors were identified as important in active/athletic tendinopathy while 14 intrinsic and three extrinsic factors were identified as important for inactive/sedentary tendinopathy. CONCLUSIONS Risk factors for Achilles tendinopathy were identified based on expert consensus, and these factors provide a basis for primary epidemiological studies. Plantarflexor strength was identified as the primary modifiable factor in the active/athletic group while systemic factors were identified as important in the inactive/sedentary group, many of the potential factors suggested for either group were non-modifiable. Non-modifiable factors include: previous tendinopathy, previous injury, advancing age, sex, steroid exposure, and antibiotic treatment. LEVEL OF EVIDENCE Level V.
Collapse
|
19
|
Cook JL, Rio E, Purdam CR, Docking SI. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med 2016; 50:1187-91. [PMID: 27127294 PMCID: PMC5118437 DOI: 10.1136/bjsports-2015-095422] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 11/25/2022]
Abstract
The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes.
Collapse
Affiliation(s)
- J L Cook
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| | - E Rio
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| | - C R Purdam
- Australian Centre for Research into Injury in Sport and its Prevention, Federation University Department of Physical Therapies, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia
| | - S I Docking
- School of Allied Health, La Trobe University, Bundoora, Australia Australian Centre for Research into Injury in Sport and its Prevention, Federation University
| |
Collapse
|
20
|
Lavagnino M, Wall ME, Little D, Banes AJ, Guilak F, Arnoczky SP. Tendon mechanobiology: Current knowledge and future research opportunities. J Orthop Res 2015; 33:813-22. [PMID: 25763779 PMCID: PMC4524513 DOI: 10.1002/jor.22871] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
Abstract
Tendons mainly function as load-bearing tissues in the muscloskeletal system; transmitting loads from muscle to bone. Tendons are dynamic structures that respond to the magnitude, direction, frequency, and duration of physiologic as well as pathologic mechanical loads via complex interactions between cellular pathways and the highly specialized extracellular matrix. This paper reviews the evolution and current knowledge of mechanobiology in tendon development, homeostasis, disease, and repair. In addition, we review several novel mechanotransduction pathways that have been identified recently in other tissues and cell types, providing potential research opportunities in the field of tendon mechanobiology. We also highlight current methods, models, and technologies being used in a wide variety of mechanobiology research that could be investigated in the context of their potential applicability for answering some of the fundamental unanswered questions in this field. The article concludes with a review of the major questions and future goals discussed during the recent ORS/ISMMS New Frontiers in Tendon Research Conference held on September 10 and 11, 2014 in New York City.
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine Michigan State University, East Lansing, Michigan
| | | | | | | | | | | |
Collapse
|
21
|
Bunker DLJ, Ilie V, Ilie V, Nicklin S. Tendon to bone healing and its implications for surgery. Muscles Ligaments Tendons J 2014; 4:343-350. [PMID: 25489553 PMCID: PMC4241426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Entheses are complex structures which act to reduce stress concentrations between tendon and skeleton tissues. Understanding the development and function of the enthesis organ has implications for surgical repair, particularly in regards to healing and the regulation of tendon to bone engraftment. In this paper we review the development and function of entheses as well as the enthesis organ concept. Next we examine the process of tendon to bone healing and how this can be regulated, before addressing implications for surgical repair and post-operative care.
Collapse
Affiliation(s)
| | | | | | - Sean Nicklin
- Consultant Plastic & Hand Surgeon, Prince of Wales, Sydney Childrens and Sydney Hospitals, Australia
| |
Collapse
|
22
|
Di Lorenzo L, Forte AM, Forte F. Insight in spastic musculoskeletal structures in cerebral palsy: impaired or compensatory structural changes? Muscles Ligaments Tendons J 2013; 3:356-357. [PMID: 24596702 PMCID: PMC3940512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Luigi Di Lorenzo
- Rehabilitation Unit, Movement Disorders Treatment C., Neuroscience Department, "RUMMO" Hospital, Benevento, Italy ; Biomedical Research Centre, Gruppo Forte Salerno, Italy
| | | | | |
Collapse
|
23
|
Menon A, Pettinari L, Martinelli C, Colombo G, Portinaro N, Dalle-Donne I, d’Agostino MC, Gagliano N. New insights in extracellular matrix remodeling and collagen turnover related pathways in cultured human tenocytes after ciprofloxacin administration. Muscles Ligaments Tendons J 2013; 3:122-131. [PMID: 24367771 PMCID: PMC3838320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We characterized the effect of ciprofloxacin (CPX) in cultured human tenocytes by morphological and molecular methods. Collagen type I and III mRNA and protein levels were unaffected, but lysyl hydroxylase 2b mRNA levels progressively decreased after CPX administration. MMP-1 protein levels significantly increased after 20 μg/ml CPX administration but remained unmodified at the higher dose, whilst MMP-2 activity was unchanged. Tissue inhibitor of MMP (TIMP-1) gene expression decreased after CPX treatment, whilst TIMP-2 and transforming growth factor-β1 gene expression, the cytoskeleton arrangement, and cytochrome c expression remained unmodified. Secreted Protein Acidic and Rich in Cysteine mRNA and protein levels remained almost unchanged, whilst N-cadherin mRNA levels resulted significantly down-regulated and connexin 43 gene expression tended to decrease after CPX administration. The CPX-induced decreased ability to cross-link collagen and decreased TIMP-1 levels, possibly leading to higher activity of MMPs in ECM degradation, together with the down-regulation of N-cadherin and connexin 43 are consistent with a reduced ability to maintain tissue homeostasis, possibly making the tendon more susceptible to rupture.
Collapse
Affiliation(s)
- Alessandra Menon
- Department of Biomedical Sciences for Health, Extracellular Matrix Lab, University of Milan, Italy
| | - Letizia Pettinari
- Department of Biomedical Sciences for Health, Extracellular Matrix Lab, University of Milan, Italy
| | - Carla Martinelli
- Department of Biomedical Sciences for Health, Extracellular Matrix Lab, University of Milan, Italy
| | | | - Nicola Portinaro
- Department of Pediatric Orthopaedic Surgery, Clinical Institute Humanitas IRCCS, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | | | - Maria Cristina d’Agostino
- Shock Wave Unit, Rehabilitation Department, Clinical Institute Humanitas IRCCS, Rozzano, Milan, Italy
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Extracellular Matrix Lab, University of Milan, Italy
| |
Collapse
|
24
|
Lavagnino M, Gardner K, Sedlak AM, Arnoczky SP. Tendon cell ciliary length as a biomarker of in situ cytoskeletal tensional homeostasis. Muscles Ligaments Tendons J 2013; 3:118-121. [PMID: 24367770 PMCID: PMC3838319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To determine if tendon cell ciliary length could be used as a biomarker of cytoskeletal tensional homeostasis, 20 mm long adult rat tail tendons were placed in double artery clamps set 18 mm apart to create a 10% laxity. The tendons were allowed to contract over a 7 day period under culture conditions. At 0, 1, 5, and 7 days the tendon cell cilia were stained and ciliary length measured using confocal imaging. There was a significant (p<0.001) increase in ciliary length at 1 day. At day 5 (when the tendon became visibly taut) there was a significant (p<0.001) decrease in ciliary length compared to day 1. By day 7 the tendon remained taut and ciliary length returned to day zero values (p=0.883). These results suggest that cilia length reflects the local mechanobiological environment of tendon cells and could be used as a potential in situ biomarker of altered cytoskeletal tensional homeostasis.
Collapse
Affiliation(s)
| | | | | | - Steven Paul Arnoczky
- Corresponding author: Steven Paul Arnoczky, Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA, E-mail:
| |
Collapse
|