1
|
Wang YYJ, Chen J, Luo DY, Chen H, Deng ZH, Chen MZ, Mi SY, Xie QQ, Zou QQ, Xiong GZ, Bi GS. Effect of differences in proximal neck angles on biomechanics of abdominal aortic aneurysm based on fluid dynamics. Vascular 2024:17085381241273262. [PMID: 39132754 DOI: 10.1177/17085381241273262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND This study aimed to analyze the effect of proximal neck angulation on the biomechanical indices of abdominal aortic aneurysms (AAA) and to investigate its impact on the risk of AAA rupture. METHODS CT angiography (CTA) data of patients with AAA from January 2015 to January 2022 were collected. Patients were divided into three groups based on the angle of the proximal neck: Group A (∠β ≤ 30°), Group B (30°<∠β ≤ 60°), and Group C (∠β > 60°). Biomechanical indices related to the rupture risk of AAA were analyzed using computational fluid dynamics modeling (CFD-Post) based on the collected data. RESULTS Group A showed slight turbulence in the AAA lumen with a mixed laminar flow pattern. Group B had a regular low-speed eddy line characterized by cross-flow dominated by lumen blood flow and turbulence. In Group C, a few turbulent lines appeared at the proximal neck, accompanied by eddy currents in the lumen expansion area following the AAA shape. Significant differences were found in peak wall stress, shear stress, and the maximum blood flow velocity impact among the three groups. The maximum blood flow velocity at the angle of the proximal neck impact indicated the influence of the proximal neck angle on the blood flow state in the lumen. CONCLUSION As the angle of the proximal neck increased, it caused stronger eddy currents and turbulent blood flow due to a high-speed area near the neck. The region with the largest diameter in the abdominal aortic aneurysm was prone to the highest stress, indicating a higher risk of rupture. The corner of the proximal neck experienced the greatest shear stress, potentially leading to endothelial injury and further enlargement of the aneurysm.
Collapse
Affiliation(s)
- Yang-Yi-Jing Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jie Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Dong-Yang Luo
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Hui Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-He Deng
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Meng-Zhi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Si-Yuan Mi
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Qian-Qian Xie
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Qing-Qing Zou
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Guo-Zuo Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Guo-Shan Bi
- Department of Vascular Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
2
|
Rego BV, Weiss D, Humphrey JD. A Fast, Robust Method for Quantitative Assessment of Collagen Fibril Architecture from Transmission Electron Micrographs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2099-2107. [PMID: 37856696 PMCID: PMC11419845 DOI: 10.1093/micmic/ozad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Collagen is the most abundant protein in mammals; it exhibits a hierarchical organization and provides structural support to a wide range of soft tissues, including blood vessels. The architecture of collagen fibrils dictates vascular stiffness and strength, and changes therein can contribute to disease progression. While transmission electron microscopy (TEM) is routinely used to examine collagen fibrils under normal and pathological conditions, computational tools that enable fast and minimally subjective quantitative assessment remain lacking. In the present study, we describe a novel semi-automated image processing and statistical modeling pipeline for segmenting individual collagen fibrils from TEM images and quantifying key metrics of interest, including fibril cross-sectional area and aspect ratio. For validation, we show first-of-their-kind illustrative results for adventitial collagen in the thoracic aorta from three different mouse models.
Collapse
Affiliation(s)
- Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Rego BV, Weiss D, Humphrey JD. A fast, robust method for quantitative assessment of collagen fibril architecture from transmission electron micrographs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527383. [PMID: 36798181 PMCID: PMC9934578 DOI: 10.1101/2023.02.06.527383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Collagen is the most abundant protein in mammals; it exhibits a hierarchical organization and provides structural support to a wide range of soft tissues, including blood vessels. The architecture of collagen fibrils dictates vascular stiffness and strength, and changes therein can contribute to disease progression. While transmission electron microscopy (TEM) is routinely used to examine collagen fibrils under normal and pathological conditions, computational tools that enable fast and minimally subjective quantitative assessment remain lacking. In the present study, we describe a novel semi-automated image processing and statistical modeling pipeline for segmenting individual collagen fibrils from TEM images and quantifying key metrics of interest, including fibril cross-sectional area and aspect ratio. For validation, we show illustrative results for adventitial collagen in the thoracic aorta from three different mouse models.
Collapse
Affiliation(s)
- Bruno V. Rego
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
| | - Dar Weiss
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Patient-Specific Image-Based Computational Fluid Dynamics Analysis of Abdominal Aorta and Branches. J Pers Med 2022; 12:jpm12091502. [PMID: 36143287 PMCID: PMC9503755 DOI: 10.3390/jpm12091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The complicated abdominal aorta and its branches are a portion of the circulatory system prone to developing atherosclerotic plaque and aneurysms. These disorders are closely connected to the changing blood flow environment that the area’s complicated architecture produces (between celiac artery and iliac artery bifurcation); this phenomenon is widespread at arterial bifurcations. Based on computed tomography angiography (CTA) scans, this current work offers a numerical analysis of a patient-specific reconstruction of the abdominal aorta and its branches to identify and emphasize the most likely areas to develop atherosclerosis. The simulations were run following the heart cycle and under physiological settings. The wall shear stress (WSS), velocity field, and streamlines were examined. According to the findings, complex flow is primarily present at the location of arterial bifurcations, where abnormal flow patterns create recirculation zones with low and fluctuating WSS (<0.5 Pa), which are known to affect endothelial homeostasis and cause adverse vessel remodeling. The study provides a patient-specific hemodynamic analysis model, which couples in vivo CT imaging with in silico simulation under physiological circumstances. The study offers quantitative data on the range fluctuations of important hemodynamic parameters, such as WSS and recirculation region expansion, which are directly linked to the onset and progression of atherosclerosis. The findings could also help drug targeting at this vascular level by understanding blood flow patterns in the abdominal aorta and its branches.
Collapse
|
5
|
Utrera A, Navarrete Á, González-Candia A, García-Herrera C, Herrera EA. Biomechanical and structural responses of the aorta to intermittent hypobaric hypoxia in a rat model. Sci Rep 2022; 12:3790. [PMID: 35260626 PMCID: PMC8904842 DOI: 10.1038/s41598-022-07616-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
High altitude hypoxia is a condition experienced by diverse populations worldwide. In addition, several jobs require working shifts where workers are exposed to repetitive cycles of hypobaric hypoxia and normobaric normoxia. Currently, few is known about the biomechanical cardiovascular responses of this condition. In the present study, we investigate the cycle-dependent biomechanical effects of intermittent hypobaric hypoxia (IHH) on the thoracic aorta artery, in terms of both structure and function. To determine the vascular effects of IHH, functional, mechanical and histological approaches were carried out in the thoracic aorta artery, using uniaxial, pre-stretch, ring opening, myography, and histological tests. Three groups of rats were established: control (normobaric normoxia, NN), 4-cycles of intermittent hypoxia (short-term intermittent hypobaric hypoxia, STH), and 10-cycles of intermittent hypoxia (long-term intermittent hypobaric hypoxia, LTH). The pre-stretch and ring opening tests, aimed at quantifying residual strains of the tissues in longitudinal and circumferential directions, showed that the hypoxia condition leads to an increase in the longitudinal stretch and a marked decrease of the circumferential residual strain. The uniaxial mechanical tests were used to determine the elastic properties of the tissues, showing that a general stiffening process occurs during the early stages of the IH (STH group), specially leading to a significative increase in the high strain elastic modulus ([Formula: see text]) and an increasing trend of low strain elastic modulus ([Formula: see text]). In contrast, the LTH group showed a more control-like mechanical behavior. Myography test, used to assess the vasoactive function, revealed that IH induces a high sensitivity to vasoconstrictor agents as a function of hypoxic cycles. In addition, the aorta showed an increased muscle-dependent vasorelaxation on the LTH group. Histological tests, used to quantify the elastic fiber, nuclei, and geometrical properties, showed that the STH group presents a state of vascular fibrosis, with a significant increase in elastin content, and a tendency towards an increase in collagen fibers. In addition, advanced stages of IH (LTH), showed a vascular remodeling effect with a significant increase of internal and external diameters. Considering all the multidimensional vascular effects, we propose the existence of a long-term passive adaptation mechanism and vascular dysfunction as cycle-dependent effects of intermittent exposures to hypobaric hypoxia.
Collapse
Affiliation(s)
- Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater 2019; 99:1-17. [PMID: 31419563 PMCID: PMC6851434 DOI: 10.1016/j.actbio.2019.08.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. The maximum diameter criterion, typically used for aneurysm rupture risk estimations, has been challenged by more sophisticated biomechanically motivated models in the past. Although these models are very helpful for the clinicians in decision-making, they do not attempt to capture material failure. Following a short overview of the microstructure of the aorta, we analyze the failure mechanisms involved in the dissection and rupture by considering also traumatic rupture. We continue with a literature review of experimental studies relevant to quantify tissue strength. More specifically, we summarize more extensively uniaxial tensile, bulge inflation and peeling tests, and we also specify trouser, direct tension and in-plane shear tests. Finally we analyze biomechanically motivated models to predict rupture risk. Based on the findings of the reviewed studies and the rather large variations in tissue strength, we propose that an appropriate material failure criterion for aortic tissues should also reflect the microstructure in order to be effective. STATEMENT OF SIGNIFICANCE: Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. Despite the advances in medical, biomedical and biomechanical research, the mortality rates of aneurysms and dissections remain high. The present review article summarizes experimental studies that quantify the aortic wall strength and it discusses biomechanically motivated models to predict rupture risk. We identified contradictory observations and a large variation within and between data sets, which may be due to biological variations, different sample sizes, differences in experimental protocols, etc. Based on the findings of the reviewed literature and the rather large variations in tissue strength, it is proposed that an appropriate criterion for aortic failure should also reflect the microstructure.
Collapse
Affiliation(s)
- Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
7
|
Reza MMS, Arzani A. A critical comparison of different residence time measures in aneurysms. J Biomech 2019; 88:122-129. [DOI: 10.1016/j.jbiomech.2019.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
|
8
|
Farotto D, Segers P, Meuris B, Vander Sloten J, Famaey N. The role of biomechanics in aortic aneurysm management: requirements, open problems and future prospects. J Mech Behav Biomed Mater 2018; 77:295-307. [DOI: 10.1016/j.jmbbm.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
|
9
|
Kemmerling EMC, Peattie RA. Abdominal Aortic Aneurysm Pathomechanics: Current Understanding and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:157-179. [DOI: 10.1007/978-3-319-96445-4_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Avril S. [Can bioengineers help predict the risk of aneurysmal rupture?]. JOURNAL DE MEDECINE VASCULAIRE 2017; 42:3-5. [PMID: 28705445 DOI: 10.1016/j.jdmv.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/18/2016] [Indexed: 06/07/2023]
Affiliation(s)
- S Avril
- SaInBioSE, Inserm U1059, centre ingénierie et santé, Mines Saint-Étienne, 158, cours Fauriel, CS 62362, 42023 Saint-Étienne cedex 2, France.
| |
Collapse
|
11
|
Ruiz de Galarreta S, Cazón A, Antón R, Finol EA. A Methodology for Verifying Abdominal Aortic Aneurysm Wall Stress. J Biomech Eng 2017; 139:2554137. [PMID: 27636678 DOI: 10.1115/1.4034710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/08/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta of at least 1.5 times its normal diameter. Although the criterion of maximum diameter is still used in clinical practice to decide on a timely intervention, numerical studies have demonstrated the importance of other geometric factors. However, the major drawback of numerical studies is that they must be validated experimentally before clinical implementation. This work presents a new methodology to verify wall stress predicted from the numerical studies against the experimental testing. To this end, four AAA phantoms were manufactured using vacuum casting. The geometry of each phantom was subject to microcomputed tomography (μCT) scanning at zero and three other intraluminal pressures: 80, 100, and 120 mm Hg. A zero-pressure geometry algorithm was used to calculate the wall stress in the phantom, while the numerical wall stress was calculated with a finite-element analysis (FEA) solver based on the actual zero-pressure geometry subjected to 80, 100, and 120 mm Hg intraluminal pressure loading. Results demonstrate the moderate accuracy of this methodology with small relative differences in the average wall stress (1.14%). Additionally, the contribution of geometric factors to the wall stress distribution was statistically analyzed for the four phantoms. The results showed a significant correlation between wall thickness and mean curvature (MC) with wall stress.
Collapse
Affiliation(s)
- Sergio Ruiz de Galarreta
- Department of Mechanical Engineering, TECNUN, University of Navarra, Paseo Manuel de Lardizabal, 13, San Sebastián 20018, Spain e-mail:
| | - Aitor Cazón
- Department of Mechanical Engineering, TECNUN, University of Navarra, Paseo Manuel de Lardizabal, 13, San Sebastián 20018, Spain e-mail:
| | - Raúl Antón
- Department of Mechanical Engineering, TECNUN, University of Navarra, Paseo Manuel de Lardizabal, 13, San Sebastián 20018, Spain e-mail:
| | - Ender A Finol
- Department of Biomedical Engineering, The University of Texas at San Antonio, One UTSA Circle, AET 1.360, San Antonio, TX 78249-0669 e-mail:
| |
Collapse
|
12
|
Comellas E, Gasser TC, Bellomo FJ, Oller S. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues. J R Soc Interface 2016; 13:rsif.2015.1081. [PMID: 27009177 DOI: 10.1098/rsif.2015.1081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Remodelling of soft biological tissue is characterized by interacting biochemical and biomechanical events, which change the tissue's microstructure, and, consequently, its macroscopic mechanical properties. Remodelling is a well-defined stage of the healing process, and aims at recovering or repairing the injured extracellular matrix. Like other physiological processes, remodelling is thought to be driven by homeostasis, i.e. it tends to re-establish the properties of the uninjured tissue. However, homeostasis may never be reached, such that remodelling may also appear as a continuous pathological transformation of diseased tissues during aneurysm expansion, for example. A simple constitutive model for soft biological tissues that regards remodelling as homeostatic-driven turnover is developed. Specifically, the recoverable effective tissue damage, whose rate is the sum of a mechanical damage rate and a healing rate, serves as a scalar internal thermodynamic variable. In order to integrate the biochemical and biomechanical aspects of remodelling, the healing rate is, on the one hand, driven by mechanical stimuli, but, on the other hand, subjected to simple metabolic constraints. The proposed model is formulated in accordance with continuum damage mechanics within an open-system thermodynamics framework. The numerical implementation in an in-house finite-element code is described, particularized for Ogden hyperelasticity. Numerical examples illustrate the basic constitutive characteristics of the model and demonstrate its potential in representing aspects of remodelling of soft tissues. Simulation results are verified for their plausibility, but also validated against reported experimental data.
Collapse
Affiliation(s)
- Ester Comellas
- International Center for Numerical Methods in Engineering (CIMNE), Campus Nord UPC, Building C1, c/Gran Capita s/n, 08034 Barcelona, Spain Department of Strength of Materials and Structural Engineering, ETSECCPB, Universitat Politcnica de Catalunya, Barcelona Tech (UPC), Campus Nord, Building C1, c/Jordi Girona 1-3, 08034 Barcelona, Spain
| | - T Christian Gasser
- Department of Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden
| | - Facundo J Bellomo
- INIQUI (CONICET), Faculty of Engineering, National University of Salta, Av. Bolivia 5150, 4400 Salta, Argentina
| | - Sergio Oller
- International Center for Numerical Methods in Engineering (CIMNE), Campus Nord UPC, Building C1, c/Gran Capita s/n, 08034 Barcelona, Spain Department of Strength of Materials and Structural Engineering, ETSECCPB, Universitat Politcnica de Catalunya, Barcelona Tech (UPC), Campus Nord, Building C1, c/Jordi Girona 1-3, 08034 Barcelona, Spain
| |
Collapse
|
13
|
Aramburu J, Antón R, Borro D, Rivas A, Larraona GS, Ramos JC, Finol EA. A methodology for assessing local bifurcated blood vessel shape variations. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/1/015001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP. Computational fluid dynamics modelling in cardiovascular medicine. Heart 2015; 102:18-28. [PMID: 26512019 PMCID: PMC4717410 DOI: 10.1136/heartjnl-2015-308044] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022] Open
Abstract
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.
Collapse
Affiliation(s)
- Paul D Morris
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Andrew Narracott
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Hendrik von Tengg-Kobligk
- University Institute for Diagnostic, Interventional and Pediatric Radiology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Daniel Alejandro Silva Soto
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Sarah Hsiao
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK
| | - Angela Lungu
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Paul Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Neil W Bressloff
- Faculty of Engineering & the Environment, University of Southampton, Southampton, UK
| | - Patricia V Lawford
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - D Rodney Hose
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Julian P Gunn
- Department of Cardiovascular Science, University of Sheffield, Sheffield, UK Insigneo Institute for In Silico Medicine, Sheffield, UK Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
15
|
Martufi G, Forneris A, Appoo JJ, Di Martino ES. Is There a Role for Biomechanical Engineering in Helping to Elucidate the Risk Profile of the Thoracic Aorta? Ann Thorac Surg 2015; 101:390-8. [PMID: 26411753 DOI: 10.1016/j.athoracsur.2015.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022]
Abstract
Clinical estimates of rupture and dissection risk of thoracic aortic aneurysms are based on nonsophisticated measurements of maximum diameter and growth rate. The use of aortic size alone may overlook the role that vessel heterogeneity plays in assessing the risk of catastrophic complications. Biomechanics may help provide a more nuanced approach to predict the behavior of thoracic aortic aneurysms. In this report, we review modeling studies with an emphasis on mechanical and fluid dynamics analyses. We identify open problems and highlight the future possibility of a multidisciplinary approach that includes biomechanics and imaging to evaluate the likelihood of rupture or dissection.
Collapse
Affiliation(s)
- Giampaolo Martufi
- Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Arianna Forneris
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Jehangir J Appoo
- Division of Cardiac Surgery, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Elena S Di Martino
- Department of Civil Engineering, Centre for Bioengineering Research and Education, and Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Local Quantification of Wall Thickness and Intraluminal Thrombus Offer Insight into the Mechanical Properties of the Aneurysmal Aorta. Ann Biomed Eng 2015; 43:1759-71. [PMID: 25631202 DOI: 10.1007/s10439-014-1222-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Wall stress is a powerful tool to assist clinical decisions in rupture risk assessment of abdominal aortic aneurysms. Key modeling assumptions that influence wall stress magnitude and distribution are the inclusion or exclusion of the intraluminal thrombus in the model and the assumption of a uniform wall thickness. We employed a combined numerical-experimental approach to test the hypothesis that abdominal aortic aneurysm (AAA) wall tissues with different thickness as well as wall tissues covered by different thrombus thickness, exhibit differences in the mechanical behavior. Ultimate tissue strength was measured from in vitro tensile testing of AAA specimens and material properties of the wall were estimated by fitting the results of the tensile tests to a histo-mechanical constitutive model. Results showed a decrease in tissue strength and collagen stiffness with increasing wall thickness, supporting the hypothesis of wall thickening being mediated by accumulation of non load-bearing components. Additionally, an increase in thrombus deposition resulted in a reduction of elastin content, collagen stiffness and tissue strength. Local wall thickness and thrombus coverage may be used as surrogate measures of local mechanical properties of the tissue, and therefore, are possible candidates to improve the specificity of AAA wall stress and rupture risk evaluations.
Collapse
|
17
|
Xenos M, Labropoulos N, Rambhia S, Alemu Y, Einav S, Tassiopoulos A, Sakalihasan N, Bluestein D. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method. Ann Biomed Eng 2014; 43:139-53. [PMID: 25527320 DOI: 10.1007/s10439-014-1224-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023]
Abstract
Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.
Collapse
Affiliation(s)
- Michalis Xenos
- Department of Mathematics, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Arzani A, Suh GY, Dalman RL, Shadden SC. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2014; 307:H1786-95. [PMID: 25326533 DOI: 10.1152/ajpheart.00461.2014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abdominal aortic aneurysm (AAA) is often accompanied by in traluminal thrombus (ILT), which complicates AAA progression and risk of rupture. Patient-specific computational fluid dynamics modeling of 10 small human AAA was performed to investigate relations between hemodynamics and ILT progression. The patients were imaged using magnetic resonance twice in a 2- to 3-yr interval. Wall content data were obtained by a planar T1-weighted fast spin echo black-blood scan, which enabled quantification of thrombus thickness at midaneurysm location during baseline and followup. Computational simulations with patient-specific geometry and boundary conditions were performed to quantify the hemodynamic parameters of time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and mean exposure time at baseline. Spatially resolved quantifications of the change in ILT thickness were compared with the different hemodynamic parameters. Regions of low OSI had the strongest correlation with ILT growth and demonstrated a statistically significant correlation coefficient. Prominent regions of high OSI (>0.4) and low TAWSS (<1 dyn/cm(2)) did not appear to coincide with locations of thrombus deposition.
Collapse
Affiliation(s)
- Amirhossein Arzani
- Mechanical Engineering, University of California, Berkeley, California; and
| | - Ga-Young Suh
- Division of Vascular Surgery, Stanford University, Stanford, California
| | - Ronald L Dalman
- Division of Vascular Surgery, Stanford University, Stanford, California
| | - Shawn C Shadden
- Mechanical Engineering, University of California, Berkeley, California; and
| |
Collapse
|
19
|
Dihlmann S, Erhart P, Mehrabi A, Nickkholgh A, Lasitschka F, Böckler D, Hakimi M. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Mol Med 2014; 20:230-7. [PMID: 24618883 DOI: 10.2119/molmed.2013.00162] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Chronic vascular inflammation is a key hallmark in the pathogenesis of abdominal aortic aneurysm (AAA). Recent investigations have suggested that the inflammasome, a cytosolic multiprotein complex that recognizes pathogen-associated molecular patterns, plays a role in atherosclerosis. However, its role in AAA inflammation has not yet been investigated. This pilot study analyzed inflammasome activation and its intramural localization in 24 biopsy samples from 11 patients with asymptomatic AAA versus 12 aortic samples from apparently healthy controls. Using a histological inflammation scale, we identified grade 2/3 inflammatory changes with lymphoid aggregates/tertiary lymphoid organs in 21 out of 24 AAA samples, whereas only 7 of the 12 control samples exhibited local grade 1 inflammatory changes. Strong expression levels of "apoptosis-associated speck-like protein with a caspase recruitment domain" (ASC), caspase-1, caspase-5 and "absent in melanoma 2" (AIM2) were detected by immunohistochemistry in both sporadic infiltrating lymphoid cells and lymphoid aggregates located in the outer media and adventitia of AAA samples. In contrast, inflammasome-positive cells were restricted to cholesterol plaque-associated areas and to single infiltrating cells in control aortas. Analysis of gene expression using real-time polymerase chain reaction (PCR) revealed significantly increased median mRNA levels of the inflammasome core components PYCARD (ASC), CASP1 (Caspase-1) and IL1B (IL-1β) in AAA tissue compared with normal aorta. Moreover, significantly increased median amounts of AIM2 protein and mature caspase-5 (p20) were found in samples associated with high rupture risk compared with paired low rupture risk samples of the same AAA patient. We conclude from our data that AAA-associated lymphoid cells are capable of inflammasome signaling, suggesting that inflammasome activation is involved in the chronic inflammatory process driving AAA progression.
Collapse
Affiliation(s)
- Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Philipp Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arash Nickkholgh
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Aparício P, Mandaltsi A, Boamah J, Chen H, Selimovic A, Bratby M, Uberoi R, Ventikos Y, Watton PN. Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:563-586. [PMID: 24424963 DOI: 10.1002/cnm.2620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 09/19/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
We sophisticate a fluid-solid growth computational framework for modelling aneurysm evolution. A realistic structural model of the arterial wall is integrated into a patient-specific geometry of the vasculature. This enables physiologically representative distributions of haemodynamic stimuli, obtained from a rigid-wall computational fluid dynamics analysis, to be linked to growth and remodelling algorithms. Additionally, a quasistatic structural analysis quantifies the cyclic deformation of the arterial wall so that collagen growth and remodelling can be explicitly linked to the cyclic deformation of vascular cells. To simulate aneurysm evolution, degradation of elastin is driven by reductions in wall shear stress (WSS) below homeostatic thresholds. Given that the endothelium exhibits spatial and temporal heterogeneity, we propose a novel approach to define the homeostatic WSS thresholds: We allow them to be spatially and temporally heterogeneous. We illustrate the application of this novel fluid-solid growth framework to model abdominal aortic aneurysm (AAA) evolution and to examine how the influence of the definition of the WSS homeostatic threshold influences AAA progression. We conclude that improved understanding and modelling of the endothelial heterogeneity is important for modelling aneurysm evolution and, more generally, other vascular diseases where haemodynamic stimuli play an important role.
Collapse
Affiliation(s)
- P Aparício
- Systems Biology Doctoral Training Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Martufi G, Gasser TC, Appoo JJ, Di Martino ES. Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech Model Mechanobiol 2014; 13:917-28. [DOI: 10.1007/s10237-014-0557-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/27/2014] [Indexed: 01/22/2023]
|
22
|
A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg 2014; 47:288-95. [PMID: 24456739 DOI: 10.1016/j.ejvs.2013.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To translate the individual abdominal aortic aneurysm (AAA) patient's biomechanical rupture risk profile to risk-equivalent diameters, and to retrospectively test their predictability in ruptured and non-ruptured aneurysms. METHODS Biomechanical parameters of ruptured and non-ruptured AAAs were retrospectively evaluated in a multicenter study. General patient data and high resolution computer tomography angiography (CTA) images from 203 non-ruptured and 40 ruptured aneurysmal infrarenal aortas. Three-dimensional AAA geometries were semi-automatically derived from CTA images. Finite element (FE) models were used to predict peak wall stress (PWS) and peak wall rupture index (PWRI) according to the individual anatomy, gender, blood pressure, intra-luminal thrombus (ILT) morphology, and relative aneurysm expansion. Average PWS diameter and PWRI diameter responses were evaluated, which allowed for the PWS equivalent and PWRI equivalent diameters for any individual aneurysm to be defined. RESULTS PWS increased linearly and PWRI exponentially with respect to maximum AAA diameter. A size-adjusted analysis showed that PWS equivalent and PWRI equivalent diameters were increased by 7.5 mm (p = .013) and 14.0 mm (p < .001) in ruptured cases when compared to non-ruptured controls, respectively. In non-ruptured cases the PWRI equivalent diameters were increased by 13.2 mm (p < .001) in females when compared with males. CONCLUSIONS Biomechanical parameters like PWS and PWRI allow for a highly individualized analysis by integrating factors that influence the risk of AAA rupture like geometry (degree of asymmetry, ILT morphology, etc.) and patient characteristics (gender, family history, blood pressure, etc.). PWRI and the reported annual risk of rupture increase similarly with the diameter. PWRI equivalent diameter expresses the PWRI through the diameter of the average AAA that has the same PWRI, i.e. is at the same biomechanical risk of rupture. Consequently, PWRI equivalent diameter facilitates a straightforward interpretation of biomechanical analysis and connects to diameter-based guidelines for AAA repair indication. PWRI equivalent diameter reflects an additional diagnostic parameter that may provide more accurate clinical data for AAA repair indication.
Collapse
|