1
|
Wang S, Larina IV. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart. J Cardiovasc Dev Dis 2022; 9:jcdd9080267. [PMID: 36005431 PMCID: PMC9409458 DOI: 10.3390/jcdd9080267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
In vertebrates, the coordinated beat of the early heart tube drives cardiogenesis and supports embryonic growth. How the heart pumps at this valveless stage marks a fascinating problem that is of vital significance for understanding cardiac development and defects. The developing heart achieves its function at the same time as continuous and dramatic morphological changes, which in turn modify its pumping dynamics. The beauty of this muti-time-scale process also highlights its complexity that requires interdisciplinary approaches to study. High-resolution optical imaging, particularly fast, four-dimensional (4D) imaging, plays a critical role in revealing the process of pumping, instructing numerical modeling, and enabling biomechanical analyses. In this review, we aim to connect the investigation of valveless pumping mechanisms with the recent advancements in embryonic cardiodynamic imaging, facilitating interactions between these two areas of study, in hopes of encouraging and motivating innovative work to further understand the early heartbeat.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Correspondence:
| | - Irina V. Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Cetnar AD, Tomov ML, Ning L, Jing B, Theus AS, Kumar A, Wijntjes AN, Bhamidipati SR, Pham K, Mantalaris A, Oshinski JN, Avazmohammadi R, Lindsey BD, Bauser-Heaton HD, Serpooshan V. Patient-Specific 3D Bioprinted Models of Developing Human Heart. Adv Healthc Mater 2021; 10:e2001169. [PMID: 33274834 PMCID: PMC8175477 DOI: 10.1002/adhm.202001169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Indexed: 12/19/2022]
Abstract
The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development. This study investigates the use of 3D bioprinting and perfusion bioreactor technologies to create bioartificial constructs that can serve as high-fidelity models of the developing human heart. Bioprinted hydrogel-based, anatomically accurate models of the human embryonic heart tube (e-HT, day 22) and fetal left ventricle (f-LV, week 33) are perfused and analyzed both computationally and experimentally using ultrasound and magnetic resonance imaging. Results demonstrate comparable flow hemodynamic patterns within the 3D space. We demonstrate endothelial cell growth and function within the bioprinted e-HT and f-LV constructs, which varied significantly in varying cardiac geometries and flow. This study introduces the first generation of anatomically accurate, 3D functional models of developing human heart. This platform enables precise tuning of microenvironmental factors, such as flow and geometry, thus allowing the study of normal developmental processes and underlying diseases.
Collapse
Affiliation(s)
- Alexander D. Cetnar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Andrea S. Theus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akaash Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Amanda N. Wijntjes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | - Katherine Pham
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - John N. Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine,Atlanta, Georgia, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Brooks D. Lindsey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Foo YY, Motakis E, Tiang Z, Shen S, Lai JKH, Chan WX, Wiputra H, Chen N, Chen CK, Winkler C, Foo RSY, Yap CH. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Dev Dyn 2021; 250:1759-1777. [PMID: 34056790 DOI: 10.1002/dvdy.378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.
Collapse
Affiliation(s)
- Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Efthymios Motakis
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shuhao Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jason Kuan Han Lai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Roger Sik Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Benslimane FM, Zakaria ZZ, Shurbaji S, Abdelrasool MKA, Al-Badr MAHI, Al Absi ESK, Yalcin HC. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron 2020; 136:102876. [PMID: 32512409 DOI: 10.1016/j.micron.2020.102876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the last few decades, zebrafish (Danio rerio) were introduced as a model organism to investigate human diseases including cardiovascular and neuronal disorders. In most zebrafish investigations, cardiac function and blood flow hemodynamics need to be assessed to study the effects of the interference on the cardiovascular system. For heart function assessment, most important parameters include heart rate, cardiac output, ejection fraction, fractional area change, and fractional shortening. METHODS A 10 s high-speed video of beating heart and flowing blood within major vessels of zebrafish that are less than 5 days post fertilization (dpf) were recorded via a stereo microscope equipped with a high speed camera. The videos were analyzed using MicroZebraLab and image J software for the assessment of cardiac function. RESULTS Using the technique described here, we were able to simply yet effectively assess cardiac function and blood flow dynamics of normal zebrafish embryos. We believe that the practical method presented here will help cardiac researchers using the zebrafish as a model to examine cardiac function by using tools that could be available in their laboratory.
Collapse
Affiliation(s)
| | - Zain Z Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | | | | |
Collapse
|
5
|
Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV. J Biomech 2017; 50:50-55. [DOI: 10.1016/j.jbiomech.2016.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/23/2022]
|
6
|
Burggren WW, Dubansky B, Bautista NM. Cardiovascular Development in Embryonic and Larval Fishes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Bulk A, Bark D, Johnson B, Garrity D, Dasi LP. Mechanisms influencing retrograde flow in the atrioventricular canal during early embryonic cardiogenesis. J Biomech 2016; 49:3162-3167. [DOI: 10.1016/j.jbiomech.2016.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
8
|
Begay RL, Tharp CA, Martin A, Graw SL, Sinagra G, Miani D, Sweet ME, Slavov DB, Stafford N, Zeller MJ, Alnefaie R, Rowland TJ, Brun F, Jones KL, Gowan K, Mestroni L, Garrity DM, Taylor MRG. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy. JACC Basic Transl Sci 2016; 1:344-359. [PMID: 28008423 PMCID: PMC5166708 DOI: 10.1016/j.jacbts.2016.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A genetic etiology has been identified in 30% to 40% of dilated cardiomyopathy (DCM) patients, yet only 50% of these cases are associated with a known causative gene variant. Thus, in order to understand the pathophysiology of DCM, it is necessary to identify and characterize additional genes. In this study, whole exome sequencing in combination with segregation analysis was used to identify mutations in a novel gene, filamin C (FLNC), resulting in a cardiac-restricted DCM pathology. Here we provide functional data via zebrafish studies and protein analysis to support a model implicating FLNC haploinsufficiency as a mechanism of DCM. Deoxyribonucleic acid obtained from 2 large DCM families was studied using whole-exome sequencing and cosegregation analysis resulting in the identification of a novel disease gene, FLNC. The 2 families, from the same Italian region, harbored the same FLNC splice-site mutation (FLNC c.7251+1G>A). A third U.S. family was then identified with a novel FLNC splice-site mutation (FLNC c.5669-1delG) that leads to haploinsufficiency as shown by the FLNC Western blot analysis of the heart muscle. The FLNC ortholog flncb morpholino was injected into zebrafish embryos, and when flncb was knocked down caused a cardiac dysfunction phenotype. On electron microscopy, the flncb morpholino knockdown zebrafish heart showed defects within the Z-discs and sarcomere disorganization.
Collapse
Affiliation(s)
- Rene L Begay
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Charles A Tharp
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - August Martin
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Daniela Miani
- Department of Cardiothoracic Science, University Hospital S. Maria della Misericordia, Udine, Italy
| | - Mary E Sweet
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Dobromir B Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Neil Stafford
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO; Cardiovascular and Biofluid Mechanics Laboratory, Colorado State University, Fort Collins, CO
| | - Molly J Zeller
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Rasha Alnefaie
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Francesca Brun
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| | - Deborah M Garrity
- Center for Cardiovascular Research and Department of Biology, Colorado State University, Fort Collins, CO
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO
| |
Collapse
|
9
|
Lai CQ, Lim GL, Jamil M, Mattar CNZ, Biswas A, Yap CH. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans. Biomech Model Mechanobiol 2015; 15:1159-72. [DOI: 10.1007/s10237-015-0750-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
|
10
|
Johnson B, Bark D, Van Herck I, Garrity D, Dasi LP. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol 2015; 14:1379-89. [DOI: 10.1007/s10237-015-0681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 04/29/2015] [Indexed: 01/29/2023]
|
11
|
The Transitional Cardiac Pumping Mechanics in the Embryonic Heart. Cardiovasc Eng Technol 2013; 4:246-255. [PMID: 29637499 DOI: 10.1007/s13239-013-0120-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Several studies have linked abnormal blood flow dynamics to the formation of congenital heart defects during the early stages of development. The objective of this study is to document the transition of pumping mechanics from the early tube stage to the late looping stage of the embryonic heart. The optically transparent zebrafish embryonic heart was utilized as the in vivo model and was studied using standard bright field microscopy at three relevant stages within the transitional period: (1) tube stage at 30 hours post-fertilization (hpf); (2) early cardiac looping stage at 36 hpf; and (3) late cardiac looping stage at 48 hpf. High-speed videos were collected at 1000 fps at a spatial resolution of 1.1 μm/pixel at each of these stages and were post-processed to yield blood velocity patterns as well as wall kinematics. Results show that several relevant trends exist. Morphological trends from tube through late looping include: (a) ballooning of the chambers, (b) increasing constriction at the atrioventricular junction (AVJ), and (c) repositioning of the ventricle toward the side of the atrium. Blood flow trends include: (a) higher blood velocities, (b) increased AVJ regurgitation, and (c) larger percentages of blood from the upper atrium expelled backward toward the atrial inlet. Pumping mechanics trends include: (a) increasing contraction wave delay at the AVJ, (b) the AVJ begins acting as a rudimentary valve, (c) decreasing chamber constriction during maximum contraction, and (d) a transition in ventricular kinematics from a pronounced propagating wave to an independent, full-chamber contraction. The above results provide new insight into the transitional pumping mechanics from peristalsis-like pumping to a displacement pumping mechanism.
Collapse
|