1
|
Foong TY, Hua Y, Amini R, Sigal IA. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell. Exp Eye Res 2023; 230:109446. [PMID: 36935071 PMCID: PMC10133210 DOI: 10.1016/j.exer.2023.109446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Collagen is the main load-bearing component of cornea and sclera. When stretched, both of these tissues exhibit a behavior known as collagen fiber recruitment. In recruitment, as the tissues stretch the constitutive collagen fibers lose their natural waviness, progressively straightening. Recruited, straight, fibers bear substantially more mechanical load than non-recruited, wavy, fibers. As such, the process of recruitment underlies the well-established nonlinear macroscopic behavior of the corneoscleral shell. Recruitment has an interesting implication: when recruitment is incomplete, only a fraction of the collagen fibers is actually contributing to bear the loads, with the rest remaining "in reserve". In other words, at a given intraocular pressure (IOP), it is possible that not all the collagen fibers of the cornea and sclera are actually contributing to bear the loads. To the best of our knowledge, the fraction of corneoscleral shell fibers recruited and contributing to bear the load of IOP has not been reported. Our goal was to obtain regionally-resolved estimates of the fraction of corneoscleral collagen fibers recruited and in reserve. We developed a fiber-based microstructural constitutive model that could account for collagen fiber undulations or crimp via their tortuosity. We used experimentally-measured collagen fiber crimp tortuosity distributions in human eyes to derive region-specific nonlinear hyperelastic mechanical properties. We then built a three-dimensional axisymmetric model of the globe, assigning region-specific mechanical properties and regional anisotropy. The model was used to simulate the IOP-induced shell deformation. The model-predicted tissue stretch was then used to quantify collagen recruitment within each shell region. The calculations showed that, at low IOPs, collagen fibers in the posterior equator were recruited the fastest, such that at a physiologic IOP of 15 mmHg, over 90% of fibers were recruited, compared with only a third in the cornea and the peripapillary sclera. The differences in recruitment between regions, in turn, mean that at a physiologic IOP the posterior equator had a fiber reserve of only 10%, whereas the cornea and peripapillary sclera had two thirds. At an elevated IOP of 50 mmHg, collagen fibers in the limbus and the anterior/posterior equator were almost fully recruited, compared with 90% in the cornea and the posterior sclera, and 70% in the peripapillary sclera and the equator. That even at such an elevated IOP not all the fibers were recruited suggests that there are likely other conditions that challenge the corneoscleral tissues even more than IOP. The fraction of fibers recruited may have other potential implications. For example, fibers that are not bearing loads may be more susceptible to enzymatic digestion or remodeling. Similarly, it may be possible to control tissue stiffness through the fraction of recruited fibers without the need to add or remove collagen.
Collapse
Affiliation(s)
- Tian Yong Foong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Biomedical Engineering, University of Mississippi, MS, United States; Department of Mechanical Engineering, University of Mississippi, MS, United States
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States; Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
2
|
Salinas SD, Farra YM, Amini Khoiy K, Houston J, Lee CH, Bellini C, Amini R. The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valves. PLoS One 2022; 17:e0267131. [PMID: 35560311 PMCID: PMC9106221 DOI: 10.1371/journal.pone.0267131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022] Open
Abstract
Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function.
Collapse
Affiliation(s)
- Samuel D. Salinas
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Yasmeen M. Farra
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
| | - Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - James Houston
- Department of Psychology, Middle Tennessee State University, Murfreesboro, TN, United States of America
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, United States of America
| | - Chiara Bellini
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA, United States of America
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Khoiy KA, Pant AD, Amini R. Quantification of Material Constants for a Phenomenological Constitutive Model of Porcine Tricuspid Valve Leaflets for Simulation Applications. J Biomech Eng 2019; 140:2681002. [PMID: 29801174 DOI: 10.1115/1.4040126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/08/2022]
Abstract
The tricuspid valve is a one-way valve on the pulmonary side of the heart, which prevents backflow of blood during ventricular contractions. Development of computational models of the tricuspid valve is important both in understanding the normal valvular function and in the development/improvement of surgical procedures and medical devices. A key step in the development of such models is quantification of the mechanical properties of the tricuspid valve leaflets. In this study, after examining previously measured five-loading-protocol biaxial stress-strain response of porcine tricuspid valves, a phenomenological constitutive framework was chosen to represent this response. The material constants were quantified for all three leaflets, which were shown to be highly anisotropic with average anisotropy indices of less than 0.5 (an anisotropy index value of 1 indicates a perfectly isotropic response, whereas a smaller value of the anisotropy index indicates an anisotropic response). To obtain mean values of material constants, stress-strain responses of the leaflet samples were averaged and then fitted to the constitutive model (average R2 over 0.9). Since the sample thicknesses were not hugely different, averaging the data using the same tension levels and stress levels produced similar average material constants for each leaflet.
Collapse
Affiliation(s)
- Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron Olson Research Center, Room 322/3 260 South Forge Street, Akron, OH 44325 e-mail:
| | - Anup D Pant
- Department of Biomedical Engineering, The University of Akron Olson Research Center, Room 322/3 260 South Forge Street, Akron, OH 44325 e-mail:
| | - Rouzbeh Amini
- Mem. ASME Department of Biomedical Engineering, The University of Akron Olson Research Center, , Akron, OH 44325 e-mail:
| |
Collapse
|
4
|
Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts. PLoS One 2018; 13:e0206744. [PMID: 30408050 PMCID: PMC6226105 DOI: 10.1371/journal.pone.0206744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/18/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose Chordae rupture is one of the main lesions observed in traumatic heart events that might lead to severe tricuspid valve (TV) regurgitation. TV regurgitation following chordae rupture is often well tolerated with few or no symptoms for most patients. However, early repair of the TV is of great importance, as it might prevent further exacerbation of the regurgitation due to remodeling responses. To understand how TV regurgitation develops following this acute event, we investigated the changes on TV geometry, mechanics, and function of ex-vivo porcine hearts following chordae rupture. Methods Sonomicrometry techniques were employed in an ex-vivo heart apparatus to identify how the annulus geometry alters throughout the cardiac cycle after chordae rupture, leading to the development of TV regurgitation. Results We observed that the TV annulus significantly dilated (~9% in area) immediately after chordae rupture. The annulus area and circumference ranged from 11.4 ± 2.8 to 13.3 ± 2.9 cm2 and from 12.5 ± 1.5 to 13.5 ± 1.3 cm, respectively, during the cardiac cycle for the intact heart. After chordae rupture, the annulus area and circumference were larger and ranged from 12.3 ± 3.0 to 14.4 ± 2.9 cm2 and from 13.0 ± 1.5 to 14.0 ± 1.2 cm, respectively. Conclusions In our ex-vivo study, we showed for the first time that the TV annulus dilates immediately after chordae rupture. Consequently, secondary TV regurgitation may be developed because of such changes in the annulus geometry. In addition, the TV leaflet and the right ventricle myocardium are subjected to a different mechanical environment, potentially causing further negative remodeling responses and exacerbating the detrimental outcomes of chordae rupture.
Collapse
|
5
|
Pahlavian SH, Oshinski J, Zhong X, Loth F, Amini R. Regional Quantification of Brain Tissue Strain Using Displacement-Encoding With Stimulated Echoes Magnetic Resonance Imaging. J Biomech Eng 2018; 140:2681446. [PMID: 30003253 DOI: 10.1115/1.4040227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intrinsic cardiac-induced deformation of brain tissue is thought to be important in the pathophysiology of various neurological disorders. In this study, we evaluated the feasibility of utilizing displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify two-dimensional (2D) neural tissue strain using cardiac-driven brain pulsations. We examined eight adult healthy volunteers with an electrocardiogram-gated spiral DENSE sequence performed at the midsagittal plane on a 3 Tesla MRI scanner. Displacement, pixel-wise trajectories, and principal strains were determined in seven regions of interest (ROI): the brain stem, cerebellum, corpus callosum, and four cerebral lobes. Quantification of small neural tissue motion and strain along with their spatial and temporal variations in different brain regions was found to be feasible using DENSE. The medial and inferior brain structures (brain stem, cerebellum, and corpus callosum) had significantly larger motion and strain compared to structures located more peripherally. The brain stem had the largest peak mean displacement (PMD) (187 ± 50 μm, mean ± SD). The largest mean principal strains in compression and extension were observed in the brain stem (0.38 ± 0.08%) and the corpus callosum (0.37 ± 0.08%), respectively. Measured values in percent strain were altered by as much as 0.1 between repeated scans. This study showed that DENSE can quantify regional variations in brain tissue motion and strain and has the potential to be utilized as a tool to evaluate the changes in brain tissue dynamics resulting from alterations in biomechanical stresses and tissue properties.
Collapse
Affiliation(s)
- Soroush Heidari Pahlavian
- Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, 264 Wolf Ledges Parkway 1st floor, RM 211b, Akron, OH 44325 e-mail:
| | - John Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 e-mail:
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, 1364 Clifton Road NE, Atlanta, GA 30322; Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, GA 30322 e-mail:
| | - Francis Loth
- Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, 264 Wolf Ledges Parkway 1st floor, RM 211b, Akron, OH 44325 e-mail:
| | - Rouzbeh Amini
- Department of Biomedical Engineering, Conquer Chiari Research Center, The University of Akron, 260 S Forge Street, Olson Research Center Room 301F, Akron, OH 44325 e-mail:
| |
Collapse
|
6
|
Pant AD, Thomas VS, Black AL, Verba T, Lesicko JG, Amini R. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater 2018; 67:248-258. [PMID: 29199067 DOI: 10.1016/j.actbio.2017.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
Quantifying mechanically-induced changes in the tricuspid valve extracellular matrix (ECM) structural components, e.g. collagen fiber spread and distribution, is important as it determines the overall macro-scale tissue responses and subsequently its function/malfunction in physiological/pathophysiological states. For example, functional tricuspid regurgitation, a common tricuspid valve disorder, could be caused by elevated right ventricular pressure due to pulmonary hypertension. In such patients, the geometry and the normal function of valve leaflets alter due to chronic pressure overload, which could cause remodeling responses in the ECM and change its structural components. To understand such a relation, we developed an experimental setup and measured alteration of leaflet microstructure in response to pressure increase in porcine tricuspid valves using the small angle light scattering technique. The anisotropy index, a measure of the fiber spread and distribution, was obtained and averaged for each region of the anterior, posterior, and septal leaflet using four averaging methods. The average anisotropy indices (mean ± standard error) in the belly region of the anterior, posterior, and septal leaflets of non-pressurized valves were found to be 12 ± 2%, 21 ± 3% and 12 ± 1%, respectively. For the pressurized valve, the average values of the anisotropy index in the belly region of the anterior, posterior, and septal leaflets were 56 ± 5%, 39 ± 7% and 32 ± 5%, respectively. Overall, the average anisotropy index was found to be higher for all leaflets in the pressurized valves as compared to the non-pressurized valves, indicating that the ECM fibers became more aligned in response to an increased ventricular pressure. STATEMENT OF SIGNIFICANCE Mechanics plays a critical role in development, regeneration, and remodeling of tissues. In the current study, we have conducted experiments to examine how increasing the ventricular pressure leads to realignment of protein fibers comprising the extracellular matrix (ECM) of the tricuspid valve leaflets. Like many other tissues, in cardiac valves, cell-matrix interactions and gene expressions are heavily influenced by changes in the mechanical microenvironment at the ECM/cellular level. We believe that our study will help us better understand how abnormal increases in the right ventricular pressure (due to pulmonary hypertension) could change the structural architecture of tricuspid valve leaflets and subsequently the mechanical microenvironment at the ECM/cellular level.
Collapse
Affiliation(s)
- Anup D Pant
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.
| | - Vineet S Thomas
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.
| | - Anthony L Black
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.
| | - Taylor Verba
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.
| | | | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States.
| |
Collapse
|
7
|
Amini Khoiy K, Biswas D, Decker TN, Asgarian KT, Loth F, Amini R. Surface Strains of Porcine Tricuspid Valve Septal Leaflets Measured in Ex Vivo Beating Hearts. J Biomech Eng 2017; 138:2551875. [PMID: 27598222 DOI: 10.1115/1.4034621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/08/2022]
Abstract
Quantification of the tricuspid valve (TV) leaflets mechanical strain is important in order to understand valve pathophysiology and to develop effective treatment strategies. Many of the traditional methods used to dynamically open and close the cardiac valves in vitro via flow simulators require valve dissection. Recent studies, however, have shown that restriction of the atrioventricular valve annuli could significantly change their in vivo deformation. For the first time, the porcine valve leaflets deformation was measured in a passive ex vivo beating heart without isolating and remounting the valve annuli. In particular, the right ventricular apexes of porcine hearts (n = 8) were connected to a pulse-duplicator pump that maintained a pulsatile flow from and to a reservoir connected to the right atrium and the pulmonary arteries. This pump provided a right ventricular pressure (RVP) waveform that closely matched physiological values, leading to opening and closure of the tricuspid and pulmonary valves (PVs). At the midsection of the valve leaflets, the peak areal strain was 9.8 ± 2.0% (mean±standard error). The peak strain was 5.6 ± 1.1% and 4.3 ± 1.0% in the circumferential and radial directions, respectively. Although the right ventricle was beating passively, the leaflet peak areal strains closely matched the values measured in other atrioventricular valves (i.e., the mitral valve (MV)) in vivo. This technique can be used to measure leaflet strains with and without the presence of valve lesions to help develop/evaluate treatment strategies to restore normal valve deformation.
Collapse
Affiliation(s)
- Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Dipankar Biswas
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Thomas N Decker
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Kourosh T Asgarian
- Cardiothoracic Surgery, St. Joseph's Regional Medical Center, Paterson, NJ 07503 e-mail:
| | - Francis Loth
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Rouzbeh Amini
- Mem. ASME Department of Biomedical Engineering, The University of Akron, 260 S Forge Street, Olson Research Center Room 301F, Akron, OH 44325 e-mail:
| |
Collapse
|
8
|
Amini Khoiy K, Abdulhai S, Glenn IC, Ponsky TA, Amini R. Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery. J Mech Behav Biomed Mater 2017; 78:154-163. [PMID: 29156354 DOI: 10.1016/j.jmbbm.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 11/29/2022]
Abstract
Intestinal malrotation places pediatric patients at the risk of midgut volvulus, a complication that can lead to ischemic bowel, short gut syndrome, and even death. Even though the treatments for symptomatic patients of this complication are clear, it is still a challenge to identify asymptomatic patients who are at a higher risk of midgut volvulus and decide on a suitable course of treatment. Development of an accurate computerized model of this intestinal abnormality could help in gaining a better understanding of its integral behavior. To aid in developing such a model, in the current study, we have characterized the biaxial mechanical properties of the porcine small bowel mesentery. First, the tissue stress-strain response was determined using a biaxial tensile testing equipment. The stress-strain data were then fitted into a Fung-type phenomenological constitutive model to quantify the tissue material parameters. The stress-strain responses were highly nonlinear, showing more compliance at the lower strains following by a rapid transition into a stiffer response at higher strains. The tissue was anisotropic and showed more stiffness in the radial direction. The data fitted the Fung-type constitutive model with an average R-squared value of 0.93. An averaging scheme was used to produce a set of material parameters which can represent the generic mechanical behavior of the tissue in the models.
Collapse
Affiliation(s)
- Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, 260 South Forge St., Akron, OH 44325-0302, USA
| | - Sophia Abdulhai
- Division of Pediatric Surgery, Akron Children's Hospital, Akron, OH, USA
| | - Ian C Glenn
- Division of Pediatric Surgery, Akron Children's Hospital, Akron, OH, USA
| | - Todd A Ponsky
- Division of Pediatric Surgery, Akron Children's Hospital, Akron, OH, USA
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, 260 South Forge St., Akron, OH 44325-0302, USA.
| |
Collapse
|
9
|
Kahan LG, Lake SP, McAllister JM, Tan WH, Yu J, Thompson D, Brunt LM, Blatnik JA. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model. Surg Endosc 2017; 32:820-830. [DOI: 10.1007/s00464-017-5749-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022]
|
10
|
Kahan LG, Guertler C, Blatnik JA, Lake SP. Validation of Single C-Arm Fluoroscopic Technique for Measuring In Vivo Abdominal Wall Deformation. J Biomech Eng 2017; 139:2633404. [DOI: 10.1115/1.4037073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 11/08/2022]
Abstract
Hernia meshes significantly reduce the recurrence rates in hernia repair. It is known that they affect the abdominal wall postimplantation, yet the understanding of in vivo mechanics in the mesh placement area is lacking. We established a single C-arm biplane fluoroscopic system to study strains at the interface between the mesh and repaired abdominal tissues. We aimed to validate this system for future porcine hernia repair studies. Custom matlab programs were written to correct for pincushion distortion, and direct linear transformation (DLT) reconstructed objects in 3D. Using a custom biplane-trough setup, image sets were acquired throughout the calibrated volume to evaluate a radio-opaque test piece with known distances between adjacent beads. Distances were measured postprocessing and compared to known measurements. Repeatability testing was conducted by taking image sets of the test piece in a fixed location to determine system movement. The error in areal stretch tracking was evaluated by imaging a square plate with fixed radio-opaque beads and using matlab programs to compare the measured areal stretch to known bead positions. Minor differences between measured and known distances in the test piece were not statistically different, and the system yielded a 0.01 mm bias in the XY plane and a precision of 0.61 mm. The measured areal stretch was 0.996, which was not significantly different than the expected value of 1. In addition, preliminary stretch data for a hernia mesh in a porcine model demonstrated technique feasibility to measure in vivo porcine abdominal mechanics.
Collapse
Affiliation(s)
- Lindsey G. Kahan
- Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63130 e-mail:
| | - Charlotte Guertler
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 e-mail:
| | - Jeffrey A. Blatnik
- Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63130 e-mail:
| | - Spencer P. Lake
- Mem. ASME Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130
- Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| |
Collapse
|
11
|
Amini Khoiy K, Amini R. On the Biaxial Mechanical Response of Porcine Tricuspid Valve Leaflets. J Biomech Eng 2016; 138:2545527. [DOI: 10.1115/1.4034426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/16/2022]
Abstract
Located on the right side of the heart, the tricuspid valve (TV) prevents blood backflow from the right ventricle to the right atrium. Similar to other cardiac valves, quantification of TV biaxial mechanical properties is essential in developing accurate computational models. In the current study, for the first time, the biaxial stress–strain behavior of porcine TV was measured ex vivo under different loading protocols using biaxial tensile testing equipment. The results showed a highly nonlinear response including a compliant region followed by a rapid transition to a stiff region for all of the TV leaflets both in the circumferential and in the radial directions. Based on the data analysis, all three leaflets were found to be anisotropic, and they were stiffer in the circumferential direction in comparison to the radial direction. It was also concluded that the posterior leaflet was the most anisotropic leaflet.
Collapse
Affiliation(s)
- Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 322/3, 260 South Forge Street, Akron, OH 44325 e-mail:
| | - Rouzbeh Amini
- Mem. ASME Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301F, 260 South Forge Street, Akron, OH 44325 e-mail:
| |
Collapse
|
12
|
Claeson AA, Barocas VH. Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces. J Mech Behav Biomed Mater 2016; 65:127-136. [PMID: 27569760 DOI: 10.1016/j.jmbbm.2016.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68N and 3.01N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67N) but smaller than normal forces in the fiber direction (16.11N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.
Collapse
Affiliation(s)
- Amy A Claeson
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MRK, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 2016; 103:278-292. [PMID: 27414719 DOI: 10.1016/j.biomaterials.2016.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - John Saliba
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Ahmed Bakhaty
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
14
|
Hobson CM, Amoroso NJ, Amini R, Ungchusri E, Hong Y, D'Amore A, Sacks MS, Wagner WR. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. J Biomed Mater Res A 2015; 103:3101-6. [PMID: 25771748 DOI: 10.1002/jbm.a.35450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 01/10/2023]
Abstract
Native semi-lunar heart valves are composed of a dense fibrous network that generally follows a curvilinear path along the width of the leaflet. Recent models of engineered valve leaflets have predicted that such curvilinear fiber orientations would homogenize the strain field and reduce stress concentrations at the commissure. In the present work, a method was developed to reproduce this curvilinear fiber alignment in electrospun scaffolds by varying the geometry of the collecting mandrel. Elastomeric poly(ester urethane)urea was electrospun onto rotating conical mandrels of varying angles to produce fibrous scaffolds where the angle of fiber alignment varied linearly over scaffold length. By matching the radius of the conical mandrel to the radius of curvature for the native pulmonary valve, the electrospun constructs exhibited a curvilinear fiber structure similar to the native leaflet. Moreover, the constructs had local mechanical properties comparable to conventional scaffolds and native heart valves. In agreement with prior modeling results, it was found under quasi-static loading that curvilinear fiber microstructures reduced strain concentrations compared to scaffolds generated on a conventional cylindrical mandrels. Thus, this simple technique offers an attractive means for fabricating scaffolds where key microstructural features of the native leaflet are imitated for heart valve tissue engineering.
Collapse
Affiliation(s)
- Christopher M Hobson
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine.,Department of Bioengineering
| | - Nicholas J Amoroso
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine.,Department of Surgery
| | - Rouzbeh Amini
- Department of Biomedical Engineering, the University of Akron, Ohio
| | - Ethan Ungchusri
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine
| | - Yi Hong
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, 76019
| | - Antonio D'Amore
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine.,Department of Bioengineering.,Department of Surgery.,Foundation RiMED, Palermo, Italy.,DICGIM, University of Palermo, Palermo, Italy
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering and the University of Texas at Austin, Austin, Texas
| | - William R Wagner
- Bioengineering and Surgery, McGowan Institute for Regenerative Medicine.,Department of Bioengineering.,Department of Surgery.,Department of Chemical Engineering, University of Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Barone WR, Amini R, Maiti S, Moalli PA, Abramowitch SD. The impact of boundary conditions on surface curvature of polypropylene mesh in response to uniaxial loading. J Biomech 2015; 48:1566-74. [PMID: 25843260 DOI: 10.1016/j.jbiomech.2015.02.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
Exposure following pelvic organ prolapse repair has been observationally associated with wrinkling of the implanted mesh. The purpose of this study was to quantify the impact of variable boundary conditions on the out-of-plane deformations of mesh subjected to tensile loading. Using photogrammetry and surface curvature analyses, deformed geometries were accessed for two commercially available products. Relative to standard clamping methods, the amount of out-of-plane deformation significantly increased when point loads were introduced to simulate suture fixation in-vivo. These data support the hypothesis that regional increases in the concentration of mesh potentially enhance the host׳s foreign body response, leading to exposure.
Collapse
Affiliation(s)
- William R Barone
- Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Rouzbeh Amini
- Department of Bioengineering, University of Pittsburgh, Department of Biomedical Engineering, The University of Akron, 260 S. Forge St., Akron, OH 44325, USA.
| | - Spandan Maiti
- Department of Bioengineering, University of Pittsburgh, 360B Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA.
| | - Pamela A Moalli
- Magee-Womens Research Institute, Magee-Womens Hospital, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| | - Steven D Abramowitch
- Magee-Womens Research Institute, Magee-Womens Hospital, University of Pittsburgh, Musculoskeletal Research Center, Department of Bioengineering, University of Pittsburgh, 405 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
16
|
Pregnancy-Induced Remodeling of Collagen Architecture and Content in the Mitral Valve. Ann Biomed Eng 2014; 42:2058-71. [DOI: 10.1007/s10439-014-1077-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|