1
|
Tatara AM, Koons GL, Watson E, Piepergerdes TC, Shah SR, Smith BT, Shum J, Melville JC, Hanna IA, Demian N, Ho T, Ratcliffe A, van den Beucken JJJP, Jansen JA, Wong ME, Mikos AG. Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proc Natl Acad Sci U S A 2019; 116:6954-6963. [PMID: 30886100 PMCID: PMC6452741 DOI: 10.1073/pnas.1819246116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large mandibular defects are clinically challenging to reconstruct due to the complex anatomy of the jaw and the limited availability of appropriate tissue for repair. We envision leveraging current advances in fabrication and biomaterials to create implantable devices that generate bone within the patients themselves suitable for their own specific anatomical pathology. The in vivo bioreactor strategy facilitates the generation of large autologous vascularized bony tissue of customized geometry without the addition of exogenous growth factors or cells. To translate this technology, we investigated its success in reconstructing a mandibular defect of physiologically relevant size in sheep. We fabricated and implanted 3D-printed in vivo bioreactors against rib periosteum and utilized biomaterial-based space maintenance to preserve the native anatomical mandibular structure in the defect site before reconstruction. Nine weeks after bioreactor implantation, the ovine mandibles were repaired with the autologous bony tissue generated from the in vivo bioreactors. We evaluated tissues generated in bioreactors by radiographic, histological, mechanical, and biomolecular assays and repaired mandibles by radiographic and histological assays. Biomaterial-aided mandibular reconstruction was successful in a large superior marginal defect in five of six (83%) sheep. Given that these studies utilized clinically available biomaterials, such as bone cement and ceramic particles, this strategy is designed for rapid human translation to improve outcomes in patients with large mandibular defects.
Collapse
Affiliation(s)
- Alexander M Tatara
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | | | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James C Melville
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Issa A Hanna
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nagi Demian
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Tang Ho
- Department of Otorhinolaryngology, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | | | | | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030;
| |
Collapse
|
2
|
Tatara AM, Rozich AJ, Kontoyiannis PD, Watson E, Albert ND, Bennett GN, Mikos AG. Econazole-releasing porous space maintainers for fungal periprosthetic joint infection. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:70. [PMID: 29752591 PMCID: PMC6009980 DOI: 10.1007/s10856-018-6073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.
Collapse
Affiliation(s)
- Alexander M Tatara
- Department of Bioengineering, Rice University, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Emma Watson
- Department of Bioengineering, Rice University, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Nathaniel D Albert
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|