1
|
Chen K, Cheong LY, Gao Y, Zhang Y, Feng T, Wang Q, Jin L, Honoré E, Lam KSL, Wang W, Hui X, Xu A. Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects. Nat Commun 2022; 13:7838. [PMID: 36539421 PMCID: PMC9767940 DOI: 10.1038/s41467-022-35470-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone (TH) is a thermogenic activator with anti-obesity potential. However, systemic TH administration has no obvious clinical benefits on weight reduction. Herein we selectively delivered triiodothyronine (T3) to adipose tissues by encapsulating T3 in liposomes modified with an adipose homing peptide (PLT3). Systemic T3 administration failed to promote thermogenesis in brown and white adipose tissues (WAT) due to a feedback suppression of sympathetic innervation. PLT3 therapy effectively obviated this feedback suppression on adrenergic inputs, and potently induced browning and thermogenesis of WAT, leading to alleviation of obesity, glucose intolerance, insulin resistance, and fatty liver in obese mice. Furthermore, PLT3 was much more effective than systemic T3 therapy in reducing hypercholesterolemia and atherosclerosis in apoE-deficient mice. These findings uncover WAT as a viable target mediating the therapeutic benefits of TH and provide a safe and efficient therapeutic strategy for obesity and its complications by delivering TH to adipose tissue.
Collapse
Affiliation(s)
- Kang Chen
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Lai Yee Cheong
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Tianshi Feng
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leigang Jin
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Honoré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Karen S. L. Lam
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Xiaoyan Hui
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Welhaven HD, Vahidi G, Walk ST, Bothner B, Martin SA, Heveran CM, June RK. The cortical bone metabolome of
C57BL
/
6J
mice is sexually dimorphic. JBMR Plus 2022; 6:e10654. [PMID: 35866150 PMCID: PMC9289981 DOI: 10.1002/jbm4.10654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical bone quality, which is sexually dimorphic, depends on bone turnover and therefore on the activities of remodeling bone cells. However, sex differences in cortical bone metabolism are not yet defined. Adding to the uncertainty about cortical bone metabolism, the metabolomes of whole bone, isolated cortical bone without marrow, and bone marrow have not been compared. We hypothesized that the metabolome of isolated cortical bone would be distinct from that of bone marrow and would reveal sex differences. Metabolite profiles from liquid chromatography–mass spectrometry (LC‐MS) of whole bone, isolated cortical bone, and bone marrow were generated from humeri from 20‐week‐old female C57Bl/6J mice. The cortical bone metabolomes were then compared for 20‐week‐old female and male C57Bl/6J mice. Femurs from male and female mice were evaluated for flexural material properties and were then categorized into bone strength groups. The metabolome of isolated cortical bone was distinct from both whole bone and bone marrow. We also found sex differences in the isolated cortical bone metabolome. Based on metabolite pathway analysis, females had higher lipid metabolism, and males had higher amino acid metabolism. High‐strength bones, regardless of sex, had greater tryptophan and purine metabolism. For males, high‐strength bones had upregulated nucleotide metabolism, whereas lower‐strength bones had greater pentose phosphate pathway metabolism. Because the higher‐strength groups (females compared with males, high‐strength males compared with lower‐strength males) had higher serum type I collagen cross‐linked C‐telopeptide (CTX1)/procollagen type 1 N propeptide (P1NP), we estimate that the metabolomic signature of bone strength in our study at least partially reflects differences in bone turnover. These data provide novel insight into bone bioenergetics and the sexual dimorphic nature of bone material properties in C57Bl/6 mice. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hope D. Welhaven
- Department of Chemistry & Biochemistry Montana State University Bozeman MT
- Molecular Biosciences Program Montana State University Bozeman MT
| | - Ghazal Vahidi
- Department of Mechanical & Industrial Engineering Montana State University Bozeman MT
| | - Seth T. Walk
- Department of Microbiology and Cell Biology Montana State University Bozeman MT
| | - Brian Bothner
- Department of Chemistry & Biochemistry Montana State University Bozeman MT
| | - Stephen A. Martin
- Translational Biomarkers Core Laboratory Montana State University Bozeman MT
| | - Chelsea M. Heveran
- Department of Mechanical & Industrial Engineering Montana State University Bozeman MT
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering Montana State University Bozeman MT
- Department of Microbiology and Cell Biology Montana State University Bozeman MT
| |
Collapse
|