1
|
Lecchini-Visintini A, Zwanenburg JJM, Wen Q, Nicholls JK, Desmidt T, Catheline S, Minhas JS, Robba C, Dvoriashyna M, Vallet A, Bamber J, Kurt M, Chung EML, Holdsworth S, Payne SJ. The pulsing brain: state of the art and an interdisciplinary perspective. Interface Focus 2025; 15:20240058. [PMID: 40191028 PMCID: PMC11969196 DOI: 10.1098/rsfs.2024.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding the pulsing dynamics of tissue and fluids in the intracranial environment is an evolving research theme aimed at gaining new insights into brain physiology and disease progression. This article provides an overview of related research in magnetic resonance imaging, ultrasound medical diagnostics and mathematical modelling of biological tissues and fluids. It highlights recent developments, illustrates current research goals and emphasizes the importance of collaboration between these fields.
Collapse
Affiliation(s)
| | - Jacobus J. M. Zwanenburg
- Translational Neuroimaging Group, Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jennifer K. Nicholls
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | | | - Jatinder S. Minhas
- Department of Cardiovascular Sciences, Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnosis, University of Genoa, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Mariia Dvoriashyna
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, UK
| | - Alexandra Vallet
- Ecole nationale supérieure des Mines de Saint-Étienne, INSERM U 1059 Sainbiose, Saint-Étienne, France
| | - Jeffrey Bamber
- Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Mehmet Kurt
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Emma M. L. Chung
- School of Life Course and Population Sciences, King's College London, London, UK
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Tairāwhiti-Gisborne, New Zealand
- Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Stephen J. Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Fumagalli I, Parolini N, Verani M. A Posteriori Error Analysis for a Coupled Stokes-Poroelastic System with Multiple Compartments. JOURNAL OF SCIENTIFIC COMPUTING 2025; 103:22. [PMID: 40065827 PMCID: PMC11890245 DOI: 10.1007/s10915-025-02814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 03/28/2025]
Abstract
The computational effort entailed in the discretization of fluid-poromechanics systems is typically highly demanding. This is particularly true for models of multiphysics flows in the brain, due to the geometrical complexity of the cerebral anatomy-requiring a very fine computational mesh for finite element discretization-and to the high number of variables involved. Indeed, this kind of problems can be modeled by a coupled system encompassing the Stokes equations for the cerebrospinal fluid in the brain ventricles and Multiple-network Poro-Elasticity (MPE) equations describing the brain tissue, the interstitial fluid, and the blood vascular networks at different space scales. The present work aims to rigorously derive a posteriori error estimates for the coupled Stokes-MPE problem, as a first step towards the design of adaptive refinement strategies or reduced order models to decrease the computational demand of the problem. Through numerical experiments, we verify the reliability and optimal efficiency of the proposed a posteriori estimator and identify the role of the different solution variables in its composition.
Collapse
Affiliation(s)
- Ivan Fumagalli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Parolini
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Verani
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
3
|
Hannum AJ, Cork TE, Setsompop K, Ennis DB. Phase stabilization with motion compensated diffusion weighted imaging. Magn Reson Med 2024; 92:2312-2327. [PMID: 38997801 PMCID: PMC11444045 DOI: 10.1002/mrm.30218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Diffusion encoding gradient waveforms can impart intra-voxel and inter-voxel dephasing owing to bulk motion, limiting achievable signal-to-noise and complicating multishot acquisitions. In this study, we characterize improvements in phase consistency via gradient moment nulling of diffusion encoding waveforms. METHODS Healthy volunteers received neuro (N = 10 $$ N=10 $$ ) and cardiac (N = 10 $$ N=10 $$ ) MRI. Three gradient moment nulling levels were evaluated: compensation for position (M 0 $$ {M}_0 $$ ), position + velocity (M 1 $$ {M}_1 $$ ), and position + velocity + acceleration (M 1 + M 2 $$ {M}_1+{M}_2 $$ ). Three experiments were completed: (Exp-1) Fixed Trigger Delay Neuro DWI; (Exp-2) Mixed Trigger Delay Neuro DWI; and (Exp-3) Fixed Trigger Delay Cardiac DWI. Significant differences (p < 0 . 05 $$ p<0.05 $$ ) of the temporal phase SD between repeated acquisitions and the spatial phase gradient across a given image were assessed. RESULTS M 0 $$ {M}_0 $$ moment nulling was a reference for all measures. In Exp-1, temporal phase SD forG z $$ {G}_z $$ diffusion encoding was significantly reduced withM 1 $$ {M}_1 $$ (35% of t-tests) andM 1 + M 2 $$ {M}_1+{M}_2 $$ (68% of t-tests). The spatial phase gradient was reduced in 23% of t-tests forM 1 $$ {M}_1 $$ and 2% of cases forM 1 + M 2 $$ {M}_1+{M}_2 $$ . In Exp-2, temporal phase SD significantly decreased withM 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling only forG z $$ {G}_z $$ (83% of t-tests), but spatial phase gradient significantly decreased with onlyM 1 $$ {M}_1 $$ (50% of t-tests). In Exp-3,M 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling significantly reduced temporal phase SD and spatial phase gradients (100% of t-tests), resulting in less signal attenuation and more accurate ADCs. CONCLUSION We characterized gradient moment nulling phase consistency for DWI. Using M1 for neuroimaging and M1 + M2 for cardiac imaging minimized temporal phase SDs and spatial phase gradients.
Collapse
Affiliation(s)
- Ariel J Hannum
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
| |
Collapse
|
4
|
Piersanti E, Rognes ME, Vinje V. Are brain displacements and pressures within the parenchyma induced by surface pressure differences? A computational modelling study. PLoS One 2023; 18:e0288668. [PMID: 38150460 PMCID: PMC10752538 DOI: 10.1371/journal.pone.0288668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 12/29/2023] Open
Abstract
The intracranial pressure is implicated in many homeostatic processes in the brain and is a fundamental parameter in several diseases such as e.g. idiopathic normal pressure hydrocephalus. The presence of a small but persistent pulsatile intracranial pulsatile transmantle pressure gradient (on the order of a few mmHg/m at peak) has recently been demonstrated in hydrocephalus subjects. A key question is whether pulsatile intracranial pressure and displacements can be induced by a small pressure gradient originating from the brain surface alone. In this study, we model the brain parenchyma as either a linearly elastic or a poroelastic medium, and impose a pulsatile pressure gradient acting between the ventricular and the pial surfaces but no additional external forces. Using this high-resolution physics-based model, we use in vivo pulsatile pressure gradients from subjects with idiopathic normal pressure hydrocephalus to compute parenchyma displacement, volume change, fluid pressure, and fluid flux. The resulting displacement field is pulsatile and in qualitatively and quantitatively good agreement with the literature, both with elastic and poroelastic models. However, the pulsatile forces on the boundaries are not sufficient for pressure pulse propagation through the brain parenchyma. Our results suggest that pressure differences at the brain surface, originating e.g. from pulsating arteries surrounding the brain, are not alone sufficient to drive interstitial fluid flow within the brain parenchyma and that potential pressure gradients found within the parenchyma rather arise from a large portion of the blood vessel network, including smaller blood vessels within the brain parenchyma itself.
Collapse
Affiliation(s)
- Eleonora Piersanti
- Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
| | | | - Vegard Vinje
- Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
| |
Collapse
|
5
|
Mohsenian S, Ibrahimy A, Al Samman MMF, Oshinski JN, Bhadelia RA, Barrow DL, Allen PA, Amini R, Loth F. Association between resistance to cerebrospinal fluid flow and cardiac-induced brain tissue motion for Chiari malformation type I. Neuroradiology 2023; 65:1535-1543. [PMID: 37644163 PMCID: PMC10497658 DOI: 10.1007/s00234-023-03207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Chiari malformation type I (CMI) patients have been independently shown to have both increased resistance to cerebrospinal fluid (CSF) flow in the cervical spinal canal and greater cardiac-induced neural tissue motion compared to healthy controls. The goal of this paper is to determine if a relationship exists between CSF flow resistance and brain tissue motion in CMI subjects. METHODS Computational fluid dynamics (CFD) techniques were employed to compute integrated longitudinal impedance (ILI) as a measure of unsteady resistance to CSF flow in the cervical spinal canal in thirty-two CMI subjects and eighteen healthy controls. Neural tissue motion during the cardiac cycle was assessed using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) technique. RESULTS The results demonstrate a positive correlation between resistance to CSF flow and the maximum displacement of the cerebellum for CMI subjects (r = 0.75, p = 6.77 × 10-10) but not for healthy controls. No correlation was found between CSF flow resistance and maximum displacement in the brainstem for CMI or healthy subjects. The magnitude of resistance to CSF flow and maximum cardiac-induced brain tissue motion were not statistically different for CMI subjects with and without the presence of five CMI symptoms: imbalance, vertigo, swallowing difficulties, nausea or vomiting, and hoarseness. CONCLUSION This study establishes a relationship between CSF flow resistance in the cervical spinal canal and cardiac-induced brain tissue motion in the cerebellum for CMI subjects. Further research is necessary to understand the importance of resistance and brain tissue motion in the symptomatology of CMI.
Collapse
Affiliation(s)
- Saeed Mohsenian
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115 USA
| | - Alaaddin Ibrahimy
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06520 USA
| | | | - John N. Oshinski
- Departments of Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 USA
| | - Rafeeque A. Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center & Harvard University School of Medicine, 330 Brookline Ave, Boston, MA 02215 USA
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322 USA
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325 USA
| | - Rouzbeh Amini
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 508, Boston, MA 02120 USA
| | - Francis Loth
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 360 Huntington Ave, SN 257, Boston, MA 02115 USA
| |
Collapse
|
6
|
Al Samman MMF, Ibrahimy A, Nwotchouang BST, Oshinski JN, Barrow DL, Allen PA, Amini R, Bhadelia RA, Loth F. The Relationship Between Imbalance Symptom and Cardiac Pulsation Induced Mechanical Strain in the Brainstem and Cerebellum for Chiari Malformation Type I. J Biomech Eng 2023; 145:081005. [PMID: 37295931 PMCID: PMC10782862 DOI: 10.1115/1.4062723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Chiari malformation Type I (CMI) is known to have an altered biomechanical environment for the brainstem and cerebellum; however, it is unclear whether these altered biomechanics play a role in the development of CMI symptoms. We hypothesized that CMI subjects have a higher cardiac-induced strain in specific neurological tracts pertaining to balance, and postural control. We measured displacement over the cardiac cycle using displacement encoding with stimulated echoes magnetic resonance imaging in the cerebellum, brainstem, and spinal cord in 37 CMI subjects and 25 controls. Based on these measurements, we computed strain, translation, and rotation in tracts related to balance. The global strain on all tracts was small (<1%) for CMI subject and controls. Strain was found to be nearly doubled in three tracts for CMI subjects compared to controls (p < 0.03). The maximum translation and rotation were ∼150 μm and ∼1 deg, respectively and 1.5-2 times greater in CMI compared to controls in four tracts (p < 0.005). There was no significant difference between strain, translation, and rotation on the analyzed tracts in CMI subjects with imbalance compared to those without imbalance. A moderate correlation was found between cerebellar tonsillar position and strain on three tracts. The lack of statistically significant difference between strain in CMI subjects with and without imbalance could imply that the magnitude of the observed cardiac-induced strain was too small to cause substantial damage to the tissue (<1%). Activities such as coughing, or Valsalva may produce a greater strain.
Collapse
Affiliation(s)
| | - Alaaddin Ibrahimy
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06520
| | | | - John N. Oshinski
- Departments of Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325
| | - Rouzbeh Amini
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 508, Boston, MA 02120
| | - Rafeeque A. Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center & Harvard University School of Medicine, 330 Brookline Ave, Boston, MA 02215
| | - Francis Loth
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 360 Huntington Ave, SN 257, Boston, MA 02115
| |
Collapse
|
7
|
Almudayni A, Alharbi M, Chowdhury A, Ince J, Alablani F, Minhas JS, Lecchini-Visintini A, Chung EML. Magnetic resonance imaging of the pulsing brain: a systematic review. MAGMA (NEW YORK, N.Y.) 2023; 36:3-14. [PMID: 36242710 PMCID: PMC9992013 DOI: 10.1007/s10334-022-01043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To perform a systematic review of the literature exploring magnetic resonance imaging (MRI) methods for measuring natural brain tissue pulsations (BTPs) in humans. METHODS A prospective systematic search of MEDLINE, SCOPUS and OpenGrey databases was conducted by two independent reviewers using a pre-determined strategy. The search focused on identifying reported measurements of naturally occurring BTP motion in humans. Studies involving non-human participants, MRI in combination with other modalities, MRI during invasive procedures and MRI studies involving externally applied tests were excluded. Data from the retrieved records were combined to create Forest plots comparing brain tissue displacement between Chiari-malformation type 1 (CM-I) patients and healthy controls using an independent samples t-test. RESULTS The search retrieved 22 eligible articles. Articles described 5 main MRI techniques for visualisation or quantification of intrinsic brain motion. MRI techniques generally agreed that the amplitude of BTPs varies regionally from 0.04 mm to ~ 0.80 mm, with larger tissue displacements occurring closer to the centre and base of the brain compared to peripheral regions. Studies of brain pathology using MRI BTP measurements are currently limited to tumour characterisation, idiopathic intracranial hypertension (IIH), and CM-I. A pooled analysis confirmed that displacement of tissue in the cerebellar tonsillar region of CM-I patients was + 0.31 mm [95% CI 0.23, 0.38, p < 0.0001] higher than in healthy controls. DISCUSSION MRI techniques used for measurements of brain motion are at an early stage of development with high heterogeneity across the methods used. Further work is required to provide normative data to support systematic BTPs characterisation in health and disease.
Collapse
Affiliation(s)
- Alanoud Almudayni
- College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
| | - Meshal Alharbi
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alimul Chowdhury
- University Hospitals of Leicester NHS Trust, Leicester, LE1 5WW UK
| | - Jonathan Ince
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
| | - Fatmah Alablani
- College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
| | - Jatinder Singh Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, LE5 4PW UK
| | - Andrea Lecchini-Visintini
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ UK
| | - Emma Ming Lin Chung
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Room 419, Robert Kilpatrick Building, Leicester Royal Infirmary, Infirmary Square, Leicester, LE1 5WW UK
- University Hospitals of Leicester NHS Trust, Leicester, LE1 5WW UK
- National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, LE5 4PW UK
- School of Life Course and Population Sciences, King’s College London, Room 3.25a, Shepherd’s House, Guy’s Campus, King’s College London, London, SE1 7EH UK
| |
Collapse
|
8
|
Causemann M, Vinje V, Rognes ME. Human intracranial pulsatility during the cardiac cycle: a computational modelling framework. Fluids Barriers CNS 2022; 19:84. [PMID: 36320038 PMCID: PMC9623946 DOI: 10.1186/s12987-022-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Today's availability of medical imaging and computational resources set the scene for high-fidelity computational modelling of brain biomechanics. The brain and its environment feature a dynamic and complex interplay between the tissue, blood, cerebrospinal fluid (CSF) and interstitial fluid (ISF). Here, we design a computational platform for modelling and simulation of intracranial dynamics, and assess the models' validity in terms of clinically relevant indicators of brain pulsatility. Focusing on the dynamic interaction between tissue motion and ISF/CSF flow, we treat the pulsatile cerebral blood flow as a prescribed input of the model. METHODS We develop finite element models of cardiac-induced fully coupled pulsatile CSF flow and tissue motion in the human brain environment. The three-dimensional model geometry is derived from magnetic resonance images (MRI) and features a high level of detail including the brain tissue, the ventricular system, and the cranial subarachnoid space (SAS). We model the brain parenchyma at the organ-scale as an elastic medium permeated by an extracellular fluid network and describe flow of CSF in the SAS and ventricles as viscous fluid movement. Representing vascular expansion during the cardiac cycle, a prescribed pulsatile net blood flow distributed over the brain parenchyma acts as the driver of motion. Additionally, we investigate the effect of model variations on a set of clinically relevant quantities of interest. RESULTS Our model predicts a complex interplay between the CSF-filled spaces and poroelastic parenchyma in terms of ICP, CSF flow, and parenchymal displacements. Variations in the ICP are dominated by their temporal amplitude, but with small spatial variations in both the CSF-filled spaces and the parenchyma. Induced by ICP differences, we find substantial ventricular and cranial-spinal CSF flow, some flow in the cranial SAS, and small pulsatile ISF velocities in the brain parenchyma. Moreover, the model predicts a funnel-shaped deformation of parenchymal tissue in dorsal direction at the beginning of the cardiac cycle. CONCLUSIONS Our model accurately depicts the complex interplay of ICP, CSF flow and brain tissue movement and is well-aligned with clinical observations. It offers a qualitative and quantitative platform for detailed investigation of coupled intracranial dynamics and interplay, both under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marius Causemann
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Vegard Vinje
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, 0164 Oslo, Norway
- Department of Mathematics, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
9
|
Hannum AJ, McIlvain G, Sowinski D, McGarry MD, Johnson CL. Correlated noise in brain magnetic resonance elastography. Magn Reson Med 2022; 87:1313-1328. [PMID: 34687069 PMCID: PMC8776601 DOI: 10.1002/mrm.29050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Magnetic resonance elastography (MRE) uses phase-contrast MRI to generate mechanical property maps of the in vivo brain through imaging of tissue deformation from induced mechanical vibration. The mechanical property estimation process in MRE can be susceptible to noise from physiological and mechanical sources encoded in the phase, which is expected to be highly correlated. This correlated noise has yet to be characterized in brain MRE, and its effects on mechanical property estimates computed using inversion algorithms are undetermined. METHODS To characterize the effects of signal noise in MRE, we conducted 3 experiments quantifying (1) physiomechanical sources of signal noise, (2) physiological noise because of cardiac-induced movement, and (3) impact of correlated noise on mechanical property estimates. We use a correlation length metric to estimate the extent that correlated signal persists in MRE images and demonstrate the effect of correlated noise on property estimates through simulations. RESULTS We found that both physiological noise and vibration noise were greater than image noise and were spatially correlated across all subjects. Added physiological and vibration noise to simulated data resulted in property maps with higher error than equivalent levels of Gaussian noise. CONCLUSION Our work provides the foundation to understand contributors to brain MRE data quality and provides recommendations for future work to correct for signal noise in MRE.
Collapse
Affiliation(s)
- Ariel J. Hannum
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Damian Sowinski
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | | | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| |
Collapse
|
10
|
Bayly PV, Alshareef A, Knutsen AK, Upadhyay K, Okamoto RJ, Carass A, Butman JA, Pham DL, Prince JL, Ramesh KT, Johnson CL. MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury. Ann Biomed Eng 2021; 49:2677-2692. [PMID: 34212235 PMCID: PMC8516723 DOI: 10.1007/s10439-021-02820-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
Computational models of the brain and its biomechanical response to skull accelerations are important tools for understanding and predicting traumatic brain injuries (TBIs). However, most models have been developed using experimental data collected on animal models and cadaveric specimens, both of which differ from the living human brain. Here we describe efforts to noninvasively measure the biomechanical response of the human brain with MRI-at non-injurious strain levels-and generate data that can be used to develop, calibrate, and evaluate computational brain biomechanics models. Specifically, this paper reports on a project supported by the National Institute of Neurological Disorders and Stroke to comprehensively image brain anatomy and geometry, mechanical properties, and brain deformations that arise from impulsive and harmonic skull loadings. The outcome of this work will be a publicly available dataset ( http://www.nitrc.org/projects/bbir ) that includes measurements on both males and females across an age range from adolescence to older adulthood. This article describes the rationale and approach for this study, the data available, and how these data may be used to develop new computational models and augment existing approaches; it will serve as a reference to researchers interested in using these data.
Collapse
Affiliation(s)
- Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ahmed Alshareef
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kshitiz Upadhyay
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John A Butman
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - K T Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
11
|
Eppelheimer MS, Nwotchouang BST, Pahlavian SH, Barrow JW, Barrow DL, Amini R, Allen PA, Loth F, Oshinski JN. Cerebellar and Brainstem Displacement Measured with DENSE MRI in Chiari Malformation Following Posterior Fossa Decompression Surgery. Radiology 2021; 301:187-194. [PMID: 34313469 DOI: 10.1148/radiol.2021203036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Posterior fossa decompression (PFD) surgery is a treatment for Chiari malformation type I (CMI). The goals of surgery are to reduce cerebellar tonsillar crowding and restore posterior cerebral spinal fluid flow, but regional tissue biomechanics may also change. MRI-based displacement encoding with stimulated echoes (DENSE) can be used to assess neural tissue displacement. Purpose To assess neural tissue displacement by using DENSE MRI in participants with CMI before and after PFD surgery and examine associations between tissue displacement and symptoms. Materials and Methods In a prospective, HIPAA-compliant study of patients with CMI, midsagittal DENSE MRI was performed before and after PFD surgery between January 2017 and June 2020. Peak tissue displacement over the cardiac cycle was quantified in the cerebellum and brainstem, averaged over each structure, and compared before and after surgery. Paired t tests and nonparametric Wilcoxon signed-rank tests were used to identify surgical changes in displacement, and Spearman correlations were determined between tissue displacement and presurgery symptoms. Results Twenty-three participants were included (mean age ± standard deviation, 37 years ± 10; 19 women). Spatially averaged (mean) peak tissue displacement demonstrated reductions of 46% (79/171 µm) within the cerebellum and 22% (46/210 µm) within the brainstem after surgery (P < .001). Maximum peak displacement, calculated within a circular 30-mm2 area, decreased by 64% (274/427 µm) in the cerebellum and 33% (100/300 µm) in the brainstem (P < .001). No significant associations were identified between tissue displacement and CMI symptoms (r < .74 and P > .012 for all; Bonferroni-corrected P = .0002). Conclusion Neural tissue displacement was reduced after posterior fossa decompression surgery, indicating that surgical intervention changes brain tissue biomechanics. For participants with Chiari malformation type I, no relationship was identified between presurgery tissue displacement and presurgical symptoms. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Maggie S Eppelheimer
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Blaise Simplice Talla Nwotchouang
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Soroush Heidari Pahlavian
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Jack W Barrow
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Daniel L Barrow
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Rouzbeh Amini
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Philip A Allen
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Francis Loth
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - John N Oshinski
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| |
Collapse
|
12
|
Nwotchouang BST, Eppelheimer MS, Pahlavian SH, Barrow JW, Barrow DL, Qiu D, Allen PA, Oshinski JN, Amini R, Loth F. Regional Brain Tissue Displacement and Strain is Elevated in Subjects with Chiari Malformation Type I Compared to Healthy Controls: A Study Using DENSE MRI. Ann Biomed Eng 2021; 49:1462-1476. [PMID: 33398617 PMCID: PMC8482962 DOI: 10.1007/s10439-020-02695-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022]
Abstract
While the degree of cerebellar tonsillar descent is considered the primary radiologic marker of Chiari malformation type I (CMI), biomechanical forces acting on the brain tissue in CMI subjects are less studied and poorly understood. In this study, regional brain tissue displacement and principal strains in 43 CMI subjects and 25 controls were quantified using a magnetic resonance imaging (MRI) methodology known as displacement encoding with stimulated echoes (DENSE). Measurements from MRI were obtained for seven different brain regions-the brainstem, cerebellum, cingulate gyrus, corpus callosum, frontal lobe, occipital lobe, and parietal lobe. Mean displacements in the cerebellum and brainstem were found to be 106 and 64% higher, respectively, for CMI subjects than controls (p < .001). Mean compression and extension strains in the cerebellum were 52 and 50% higher, respectively, in CMI subjects (p < .001). Brainstem mean extension strain was 41% higher in CMI subjects (p < .001), but no significant difference in compression strain was observed. The other brain structures revealed no significant differences between CMI and controls. These findings demonstrate that brain tissue displacement and strain in the cerebellum and brainstem might represent two new biomarkers to distinguish between CMI subjects and controls.
Collapse
Affiliation(s)
| | - Maggie S Eppelheimer
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
| | | | - Jack W Barrow
- Department of Radiology, University of Tennessee, Knoxville, TN, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, USA
| | - Philip A Allen
- Conquer Chiari Research Center, Department of Psychology, The University of Akron, Akron, OH, USA
| | - John N Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, USA
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Francis Loth
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
- Department of Mechanical Engineering, The University of Akron, Akron, OH, USA
| |
Collapse
|
13
|
Terem I, Dang L, Champagne A, Abderezaei J, Pionteck A, Almadan Z, Lydon AM, Kurt M, Scadeng M, Holdsworth SJ. 3D amplified MRI (aMRI). Magn Reson Med 2021; 86:1674-1686. [PMID: 33949713 PMCID: PMC8252598 DOI: 10.1002/mrm.28797] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Purpose Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. Methods 3D aMRI was developed and tested for its ability to amplify sub‐voxel motion in all three directions. In addition, 3D aMRI was qualitatively compared to 2D aMRI on multi‐slice and 3D (volumetric) balanced steady‐state free precession cine data and phase contrast (PC‐MRI) acquired on healthy volunteers at 3T. Optical flow maps and 4D animations were produced from volumetric 3D aMRI data. Results 3D aMRI exhibits better image quality and fewer motion artifacts compared to 2D aMRI. The tissue motion was seen to match that of PC‐MRI, with the predominant brain tissue displacement occurring in the cranial‐caudal direction. Optical flow maps capture the brain tissue motion and display the physical change in shape of the ventricles by the relative movement of the surrounding tissues. The 4D animations show the complete brain tissue and cerebrospinal fluid (CSF) motion, helping to highlight the “piston‐like” motion of the ventricles. Conclusions Here, we introduce a novel 3D aMRI approach that enables one to visualize amplified cardiac‐ and CSF‐induced brain motion in striking detail. 3D aMRI captures brain motion with better image quality than 2D aMRI and supports a larger amplification factor. The optical flow maps and 4D animations of 3D aMRI may open up exciting applications for neurological diseases that affect the biomechanics of the brain and brain fluids.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Leo Dang
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| | - Allen Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Javid Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Aymeric Pionteck
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Zainab Almadan
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna-Maria Lydon
- Centre for Advanced MRI, University of Auckland, Auckland, New Zealand
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA.,Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand.,Department of Radiology, University of California, San Diego, California, USA
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| |
Collapse
|
14
|
Development, calibration, and testing of 3D amplified MRI (aMRI) for the quantification of intrinsic brain motion. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Sloots JJ, Biessels GJ, de Luca A, Zwanenburg JJM. Strain Tensor Imaging: Cardiac-induced brain tissue deformation in humans quantified with high-field MRI. Neuroimage 2021; 236:118078. [PMID: 33878376 DOI: 10.1016/j.neuroimage.2021.118078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
The cardiac cycle induces blood volume pulsations in the cerebral microvasculature that cause subtle deformation of the surrounding tissue. These tissue deformations are highly relevant as a potential source of information on the brain's microvasculature as well as of tissue condition. Besides, cyclic brain tissue deformations may be a driving force in clearance of brain waste products. We have developed a high-field magnetic resonance imaging (MRI) technique to capture these tissue deformations with full brain coverage and sufficient signal-to-noise to derive the cardiac-induced strain tensor on a voxel by voxel basis, that could not be assessed non-invasively before. We acquired the strain tensor with 3 mm isotropic resolution in 9 subjects with repeated measurements for 8 subjects. The strain tensor yielded both positive and negative eigenvalues (principle strains), reflecting the Poison effect in tissue. The principle strain associated with expansion followed the known funnel shaped brain motion pattern pointing towards the foramen magnum. Furthermore, we evaluate two scalar quantities from the strain tensor: the volumetric strain and octahedral shear strain. These quantities showed consistent patterns between subjects, and yielded repeatable results: the peak systolic volumetric strain (relative to end-diastolic strain) was 4.19⋅10-4 ± 0.78⋅10-4 and 3.98⋅10-4 ± 0.44⋅10-4 (mean ± standard deviation for first and second measurement, respectively), and the peak octahedral shear strain was 2.16⋅10-3 ± 0.31⋅10-3 and 2.31⋅10-3 ± 0.38⋅10-3, for the first and second measurement, respectively. The volumetric strain was typically highest in the cortex and lowest in the periventricular white matter, while anisotropy was highest in the subcortical white matter and basal ganglia. This technique thus reveals new, regional information on the brain's cardiac-induced deformation characteristics, and has the potential to advance our understanding of the role of microvascular pulsations in health and disease.
Collapse
Affiliation(s)
| | - Geert Jan Biessels
- Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | - Alberto de Luca
- Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | | |
Collapse
|
16
|
Nwotchouang BST, Eppelheimer MS, Biswas D, Pahlavian SH, Zhong X, Oshinski JN, Barrow DL, Amini R, Loth F. Accuracy of cardiac-induced brain motion measurement using displacement-encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI): A phantom study. Magn Reson Med 2020; 85:1237-1247. [PMID: 32869349 DOI: 10.1002/mrm.28490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The goal of this study was to determine the accuracy of displacement-encoding with stimulated echoes (DENSE) MRI in a tissue motion phantom with displacements representative of those observed in human brain tissue. METHODS The phantom was comprised of a plastic shaft rotated at a constant speed. The rotational motion was converted to a vertical displacement through a camshaft. The phantom generated repeatable cyclical displacement waveforms with a peak displacement ranging from 92 µm to 1.04 mm at 1-Hz frequency. The surface displacement of the tissue was obtained using a laser Doppler vibrometer (LDV) before and after the DENSE MRI scans to check for repeatability. The accuracy of DENSE MRI displacement was assessed by comparing the laser Doppler vibrometer and DENSE MRI waveforms. RESULTS Laser Doppler vibrometer measurements of the tissue motion demonstrated excellent cycle-to-cycle repeatability with a maximum root mean square error of 9 µm between the ensemble-averaged displacement waveform and the individual waveforms over 180 cycles. The maximum difference between DENSE MRI and the laser Doppler vibrometer waveforms ranged from 15 to 50 µm. Additionally, the peak-to-peak difference between the 2 waveforms ranged from 1 to 18 µm. CONCLUSION Using a tissue phantom undergoing cyclical motion, we demonstrated the percent accuracy of DENSE MRI to measure displacement similar to that observed for in vivo cardiac-induced brain tissue.
Collapse
Affiliation(s)
| | - Maggie S Eppelheimer
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, Ohio, USA
| | - Dipankar Biswas
- Fluids and Structure (FaST) Laboratory, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Soroush Heidari Pahlavian
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | | | - John N Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Francis Loth
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, Ohio, USA.,Department of Mechanical Engineering, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
17
|
Huang CWC, Chang YM, Brook A, Bezuidenhout AF, Bhadelia RA. Clinical utility of 2-D anatomic measurements in predicting cough-associated headache in Chiari I malformation. Neuroradiology 2020; 62:593-599. [PMID: 31996967 DOI: 10.1007/s00234-019-02356-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Cough-associated headache (CAH) is the most distinctive symptom of patients with Chiari I malformation (CMI) and indicates clinically significant disease. We determined the clinical utility of simple 2D anatomic measurements performed on a PACS workstation by assessing their diagnostic accuracy in predicting CAH in CMI patients. METHODS Seventy-two consecutive CMI patients (cerebellar tonsillar herniation > 5 mm) with headache seen by neurosurgeons over 6 years were included. Sagittal T1 images were used by two readers to measure: extent of tonsillar herniation, lengths of the clivus and supra-occiput, McRae and pB-C2 lines, as well as clivus-canal, odontoid retroversion, and skull base angles. Neurosurgery notes were reviewed to determine presence of CAH. Mann-Whitney test was used to compare measurements between patients with and without CAH. Predictive accuracy was assessed by receiver operating characteristic (ROC) curve. RESULTS 47/72 (65.3%) CMI patients reported CAH. Tonsillar herniation with CAH (10.2 mm, 7-14 mm; median, interquartile range) was significantly greater than those without CAH (7.9 mm, 6.3-10.9 mm; p = 0.02). Tonsillar herniation ≥ 10 mm showed sensitivity and specificity of 51% and 68%, and tonsillar herniation > 14 mm showed sensitivity and specificity of 30% and 100%, respectively, for predicting CAH. Other 2D measurements showed no statistically significant differences. CONCLUSIONS Among the 2D measurements used, only the extent of tonsillar herniation is different between CMI patients with and without CAH. Although CMI is diagnosed with tonsillar herniation of only 5 mm, we found that a much higher extent of herniation is needed to be predictive of CAH.
Collapse
Affiliation(s)
- Chi Wen C Huang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City, Taiwan, 110
| | - Yu-Ming Chang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - A Fourie Bezuidenhout
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rafeeque A Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Beth Israel Deaconess Medical Center, WCB90, 330 Brookline Ave, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Sloots JJ, Biessels GJ, Zwanenburg JJM. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 2020; 210:116581. [PMID: 31982580 DOI: 10.1016/j.neuroimage.2020.116581] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 01/20/2023] Open
Abstract
Microvascular blood volume pulsations due to the cardiac and respiratory cycles induce brain tissue deformation and, as such, are considered to drive the brain's waste clearance system. We have developed a high-field magnetic resonance imaging (MRI) technique to quantify both cardiac and respiration-induced tissue deformations, which could not be assessed noninvasively before. The technique acquires motion encoded snapshot images in which various forms of motion and confounders are entangled. First, we optimized the motion sensitivity for application in the human brain. Next, we isolated the heartbeat and respiration-related deformations, by introducing a linear model that fits the snapshot series to the recorded physiological information. As a result, we obtained maps of the physiological tissue deformation with 3mm isotropic spatial resolution. Heartbeat and respiration-induced volumetric strain were significantly different from zero in the basal ganglia (median (25-75% interquartile range): 0.85·10-3 (0.39·10-3-1.05·10-3), p = 0.0008 and -0.28·10-3 (-0.41·10-3-0.06·10-3), p = 0.047, respectively. Smaller volumetric strains were observed in the white matter of the centrum semi ovale (0.28·10-3 (0-0.59·10-3) and -0.06·10-3 (-0.17·10-3-0.20·10-3)), which was only significant for the heartbeat (p = 0.02 and p = 0.7, respectively). Furthermore, heartbeat-induced volumetric strain was about three times larger than respiration-induced volumetric strain. This technique opens a window on the driving forces of the human brain clearance system.
Collapse
|
19
|
Adams AL, Viergever MA, Luijten PR, Zwanenburg JJM. Validating faster DENSE measurements of cardiac-induced brain tissue expansion as a potential tool for investigating cerebral microvascular pulsations. Neuroimage 2019; 208:116466. [PMID: 31843712 DOI: 10.1016/j.neuroimage.2019.116466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022] Open
Abstract
Displacement Encoding with Stimulated Echoes (DENSE) has recently shown potential for measuring cardiac-induced cerebral volumetric strain in the human brain. As such, it may provide a powerful tool for investigating the cerebral small vessels. However, further development and validation are necessary. This study aims, first, to validate a retrospectively-gated implementation of the DENSE method for assessing brain tissue pulsations as a physiological marker, and second, to use the acquired measurements to explore intracranial volume dynamics. We acquired repeated measurements of cerebral volumetric strain in 8 healthy subjects, and internally validated these measurements by comparing them to spinal CSF stroke volumes obtained in the same scan session. Peak volumetric strain was found to be highly repeatable between scan sessions. First/second measured peak volumetric strains were: (6.4 ± 1.7)x10-4/(6.7 ± 1.6)x10-4 for whole brain, (9.5 ± 2.5)x10-4/(9.6 ± 2.4)x10-4 for grey matter, and (4.4 ± 1.7)x10-4/(4.1 ± 0.8)x10-4 for white matter. Grey matter showed significantly higher peak strain (p < 0.001) and earlier time-to-peak strain (p < 0.02) than white matter. An approximately linear relationship was found between CSF and brain tissue volume pulsations over the cardiac cycle (mean slope and R2 of 0.88 ± 0.23 and 0.89 ± 0.07, respectively). The close similarity between CSF and brain tissue volume pulsations implies limited contributions from large intracranial vessel pulsations, providing further evidence for venous compression as an additional mechanism for maintaining stable intracranial pressures over the cardiac cycle. Cerebral pulsatility showed consistent inter-subject peak values in healthy subjects, and was strongly correlated to CSF stroke volumes. These results strengthen the potential of brain tissue volumetric strain as a means for investigating the intracranial dynamics of the ageing brain in normal or diseased states.
Collapse
Affiliation(s)
- Ayodeji L Adams
- Department of Radiology, University Medical Center Utrecht, E 01.132, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, E 01.132, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| | - Jaco J M Zwanenburg
- Department of Radiology, University Medical Center Utrecht, E 01.132, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Dawes BH, Lloyd RA, Rogers JM, Magnussen JS, Bilston LE, Stoodley MA. Cerebellar Tissue Strain in Chiari Malformation with Headache. World Neurosurg 2019; 130:e74-e81. [PMID: 31158545 DOI: 10.1016/j.wneu.2019.05.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The pathogenesis of Chiari malformation type 1 (CM-1)-associated Valsalva headache is unknown, but it may be caused by abnormal cerebellar tonsil tissue strain. Advances in cardiac-gated magnetic resonance imaging (MRI) techniques such as balanced fast-field echo (bFFE) allow quantification of the motion of anatomic structures and can be used to measure tissue strain. The current study investigated the relationship between Valsalva heachache and tonsillar motion in patients with CM-1. METHODS A retrospective review of patients with CM-1 who had undergone cardiac-gated bFFE MRI was performed. Headache symptoms were retrieved from the medical records. Anatomic landmarks were manually selected on the cine bFFE, and a validated motion-tracking software was used to assess motion over the cardiac cycle in patients at rest. For each patient, displacement, strain, and strain rate were calculated for 3 anatomic segments. Patients undergoing surgery were examined before and after surgery. RESULTS From 88 patients, a total of 108 bFFE sequences were analyzed. Valsalva headache was present in 50% of patients. Cerebellar tonsil displacement (P = 0.003), strain (P = 0.012), and maximum strain rate (P = 0.04) were reduced after surgery (n = 20). There was no statistically significant association between tissue motion and headache symptoms. CONCLUSION The results of this study do not support a relationship between cardiac cycle cerebellar strain and Valsalva headache in patients with CM-1. It is possible that cerebellar strain related to respiratory maneuvers is associated with headache in Chiari patients. Further investigation of tissue strain is warranted because it represents a potential biomarker for outcomes after surgery.
Collapse
Affiliation(s)
- Bryden H Dawes
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Robert A Lloyd
- Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeffrey M Rogers
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - John S Magnussen
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcus A Stoodley
- Department of Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Adams AL, Kuijf HJ, Viergever MA, Luijten PR, Zwanenburg JJ. Quantifying cardiac-induced brain tissue expansion using DENSE. NMR IN BIOMEDICINE 2019; 32:e4050. [PMID: 30575151 PMCID: PMC6519010 DOI: 10.1002/nbm.4050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Brain tissue undergoes viscoelastic deformation and volumetric strain as it expands over the cardiac cycle due to blood volume changes within the underlying microvasculature. Volumetric strain measurements may therefore provide insights into small vessel function and tissue viscoelastic properties. Displacement encoding via stimulated echoes (DENSE) is an MRI technique that can quantify the submillimetre displacements associated with brain tissue motion. Despite previous studies reporting brain tissue displacements using DENSE and other MRI techniques, a complete picture of brain tissue volumetric strain over the cardiac cycle has not yet been obtained. To address this need we implemented 3D cine-DENSE at 7 T and 3 T to investigate the feasibility of measuring cardiac-induced volumetric strain as a marker for small vessel blood volume changes. Volumetric strain over the entire cardiac cycle was computed for the whole brain and for grey and white matter tissue separately in six healthy human subjects. Signal-to-noise ratio (SNR) measurements were used to determine the voxel-wise volumetric strain noise. Mean peak whole brain volumetric strain at 7 T (mean ± SD) was (4.5 ± 1.0) × 10-4 (corresponding to a volume expansion of 0.48 ± 0.1 mL), which is in agreement with literature values for cerebrospinal fluid that is displaced into the spinal canal to maintain a stable intracranial pressure. The peak volumetric strain ratio of grey to white matter was 4.4 ± 2.8, reflecting blood volume and tissue stiffness differences between these tissue types. The mean peak volumetric strains of grey and white matter tissue were found to be significantly different (p < 0.001). The mean SNR at 7 T and 3 T of the DENSE measurements was 22.0 ± 7.3 and 7.0 ± 2.8 respectively, which currently limits a voxel-wise strain analysis at both field strengths. We demonstrate that tissue specific quantification of volumetric strain is feasible with DENSE. This metric holds potential for studying blood volume pulsations in the ageing brain in healthy and diseased states.
Collapse
Affiliation(s)
- Ayodeji L. Adams
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hugo J. Kuijf
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|