1
|
Roeters SJ, Strunge K, Pedersen KB, Golbek TW, Bregnhøj M, Zhang Y, Wang Y, Dong M, Nielsen J, Otzen DE, Schiøtt B, Weidner T. Elevated concentrations cause upright alpha-synuclein conformation at lipid interfaces. Nat Commun 2023; 14:5731. [PMID: 37723164 PMCID: PMC10507035 DOI: 10.1038/s41467-023-39843-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/23/2023] [Indexed: 09/20/2023] Open
Abstract
The amyloid aggregation of α-synuclein (αS), related to Parkinson's disease, can be catalyzed by lipid membranes. Despite the importance of lipid surfaces, the 3D-structure and orientation of lipid-bound αS is still not known in detail. Here, we report interface-specific vibrational sum-frequency generation (VSFG) experiments that reveal how monomeric αS binds to an anionic lipid interface over a large range of αS-lipid ratios. To interpret the experimental data, we present a frame-selection method ("ViscaSelect") in which out-of-equilibrium molecular dynamics simulations are used to generate structural hypotheses that are compared to experimental amide-I spectra via excitonic spectral calculations. At low and physiological αS concentrations, we derive flat-lying helical structures as previously reported. However, at elevated and potentially disease-related concentrations, a transition to interface-protruding αS structures occurs. Such an upright conformation promotes lateral interactions between αS monomers and may explain how lipid membranes catalyze the formation of αS amyloids at elevated protein concentrations.
Collapse
Affiliation(s)
- Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Yuge Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Yin Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Guo W, Lu T, Crisci R, Nagao S, Wei T, Chen Z. Determination of protein conformation and orientation at buried solid/liquid interfaces. Chem Sci 2023; 14:2999-3009. [PMID: 36937592 PMCID: PMC10016606 DOI: 10.1039/d2sc06958j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Protein structures at solid/liquid interfaces mediate interfacial protein functions, which are important for many applications. It is difficult to probe interfacial protein structures at buried solid/liquid interfaces in situ at the molecular level. Here, a systematic methodology to determine protein molecular structures (orientation and conformation) at buried solid/liquid interfaces in situ was successfully developed with a combined approach using a nonlinear optical spectroscopic technique - sum frequency generation (SFG) vibrational spectroscopy, isotope labeling, spectra calculation, and computer simulation. With this approach, molecular structures of protein GB1 and its mutant (with two amino acids mutated) were investigated at the polymer/solution interface. Markedly different orientations and similar (but not identical) conformations of the wild-type protein GB1 and its mutant at the interface were detected, due to the varied molecular interfacial interactions. This systematic strategy is general and can be widely used to elucidate protein structures at buried interfaces in situ.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Tieyi Lu
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Ralph Crisci
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| | - Satoshi Nagao
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Ako-gun Kamigouri-cho Hyogo 678-1297 Japan
| | - Tao Wei
- Department of Chemical Engineering, Howard University 2366 Sixth Street NW Washington 20059 DC USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan 930 North University Avenue Ann Arbor 48109 Michigan USA
| |
Collapse
|
3
|
Schmüser L, Trefz M, Roeters SJ, Beckner W, Pfaendtner J, Otzen D, Woutersen S, Bonn M, Schneider D, Weidner T. Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13452-13459. [PMID: 34729987 DOI: 10.1021/acs.langmuir.1c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF), an aquaporin membrane channel finely tuned to selectively transport water and glycerol molecules across the membrane barrier. We find subtle but significant differences between the XRD structure and the inferred in situ structure of GlpF.
Collapse
Affiliation(s)
- L Schmüser
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - M Trefz
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - W Beckner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - J Pfaendtner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - D Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - S Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - D Schneider
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| |
Collapse
|
4
|
Roeters SJ, Mertig R, Lutz H, Roehrich A, Drobny G, Weidner T. Backbone Structure of Diatom Silaffin Peptide R5 in Biosilica Determined by Combining Solid-State NMR with Theoretical Sum-Frequency Generation Spectra. J Phys Chem Lett 2021; 12:9657-9661. [PMID: 34586816 DOI: 10.1021/acs.jpclett.1c02786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silaffin peptide R5 is key for the biogenesis of silica cell walls of diatoms. Biosilification by the R5 peptide has potential in biotechnology, drug development, and materials science due to its ability to precipitate stable, high fidelity silica sheets and particles. A true barrier for the design of novel peptide-based architectures for wider applications has been the limited understanding of the interfacial structure of R5 when precipitating silica nanoparticles. While R5-silica interactions have been studied in detail at flat surfaces, the structure within nanophase particles is still being debated. We herein elucidate the conformation of R5 in its active form within silica particles by combining interface-specific vibrational spectroscopy data with solid-state NMR torsion angles using theoretical spectra. Our calculations show that R5 is structured and undergoes a conformational transition from a strand-type motif in solution to a more curved, contracted structure when interacting with silica precursors.
Collapse
Affiliation(s)
- Steven J Roeters
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Rolf Mertig
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Helmut Lutz
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Adrienne Roehrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gary Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Ranathunga DTS, Arteaga A, Biguetti CC, Rodrigues DC, Nielsen SO. Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10100-10114. [PMID: 34370950 DOI: 10.1021/acs.langmuir.1c01444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to its excellent chemical and mechanical properties, titanium has become the material of choice for orthopedic and dental implants to promote rehabilitation via bone anchorage and osseointegration. Titanium osseointegration is partially related to its capability to form a TiO2 surface layer and its ability to interact with key endogenous proteins immediately upon implantation, establishing the first bone-biomaterial interface. Surgical trauma caused by implantation results in the release of high-mobility group box 1 (HMGB1) protein, which is a prototypic DAMP (damage-associated molecular pattern) with multiple roles in inflammation and tissue healing. To develop different surface strategies that improve the clinical outcome of titanium-based implants by controlling their biological activity, a molecular-scale understanding of HMGB1-surface interactions is desired. Here, we use molecular dynamics (MD) computer simulations to provide direct insight into the HMGB1 interactions and the possible molecular arrangements of HMGB1 on fully hydroxylated and nonhydroxylated rutile (110) TiO2 surfaces. The results establish that HMGB1 is most likely to be adsorbed directly onto the surface regardless of surface hydroxylation, which is undesirable because it could affect its biological activity by causing structural changes to the protein. The hydroxylated TiO2 surface shows a greater affinity for HMGB1 than the nonhydroxylated surface. The water layer on the nonhydroxylated TiO2 surface prevents ions and the protein from directly contacting the surface. However, it was observed that if the ionic strength increases, the total number of ions adsorbed on the two surfaces increases and the protein's direct adsorption ability decreases. These findings will help to understand the HMGB1-TiO2 interactions upon implantation as well as the development of different surface strategies by introducing ions or ionic materials to the titanium implant surface to modulate its interactions with HMGB1 to preserve biological function.
Collapse
Affiliation(s)
- Dineli T S Ranathunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Claudia C Biguetti
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
7
|
Golbek TW, Otto SC, Roeters SJ, Weidner T, Johnson CP, Baio JE. Direct Evidence That Mutations within Dysferlin's C2A Domain Inhibit Lipid Clustering. J Phys Chem B 2021; 125:148-157. [PMID: 33355462 DOI: 10.1021/acs.jpcb.0c07143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanical stress on sarcolemma can create small tears in the muscle cell membrane. Within the sarcolemma resides the multidomain dysferlin protein. Mutations in this protein render it unable to repair the sarcolemma and have been linked to muscular dystrophy. A key step in dysferlin-regulated repair is the binding of the C2A domain to the lipid membrane upon increased intracellular calcium. Mutations mapped to this domain cause loss of binding ability of the C2A domain. There is a crucial need to understand the geometry of dysferlin C2A at a membrane interface as well as cell membrane lipid reorientation when compared to that of a mutant. Here, we describe a comparison between the wild-type dysferlin C2A and a mutation to the conserved aspartic acids in the domain binding loops. To identify both the geometry and the cell membrane lipid reorientation, we applied sum frequency generation (SFG) vibrational spectroscopy and coupled it with simulated SFG spectra to observe and quantify the interaction with a model cell membrane composed of phosphotidylserine and phosphotidylcholine. Observed changes in surface pressure demonstrate that calcium-bridged electrostatic interactions govern the initial interaction of the C2A domains docking with a lipid membrane. SFG spectra taken from the amide-I region for the wild type and variant contain features near 1642, 1663, and 1675 cm-1 related to the C2A domain β-sandwich secondary structure, indicating that the domain binds in a specific orientation. Mapping simulated SFG spectra to the experimentally collected spectra indicated that both wild-type and variant domains have nearly the same orientation to the membrane surface. However, examining the ordering of the lipids that make up a model membrane using SFG, we find that the wild type clusters the lipids as seen by the increase in the ratio of the CD3 and CD2 symmetric intensities by 170% for the wild type and by 120% for the variant. This study highlights the capabilities of SFG to probe with great detail biological mutations in proteins at cell membrane interfaces.
Collapse
Affiliation(s)
| | - Shauna C Otto
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
8
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
9
|
Baio JE, Graham DJ, Castner DG. Surface analysis tools for characterizing biological materials. Chem Soc Rev 2020; 49:3278-3296. [PMID: 32390029 PMCID: PMC7337324 DOI: 10.1039/d0cs00181c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required.
Collapse
Affiliation(s)
- Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Graham
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA and Department of Chemical Engineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Characterizing protein G B1 orientation and its effect on immunoglobulin G antibody binding using XPS, ToF-SIMS, and quartz crystal microbalance with dissipation monitoring. Biointerphases 2020; 15:021002. [PMID: 32168986 DOI: 10.1116/1.5142560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Controlling how proteins are immobilized (e.g., controlling their orientation and conformation) is essential for developing and optimizing the performance of in vitro protein-binding devices, such as enzyme-linked immunosorbent assays. Characterizing the identity, orientation, etc., of proteins in complex mixtures of immobilized proteins requires a multitechnique approach. The focus of this work was to control and characterize the orientation of protein G B1, an immunoglobulin G (IgG) antibody-binding domain of protein G, on well-defined surfaces and to measure the effect of protein G B1 orientation on IgG antibody binding. The surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to distinguish between different proteins and their orientation on both flat and nanoparticle gold surfaces by monitoring intensity changes of characteristic amino acid mass fragments. Amino acids distributed asymmetrically were used to calculate peak intensity ratios from ToF-SIMS data to determine the orientation of protein G B1 cysteine mutants covalently attached to a maleimide surface. To study the effect of protein orientation on antibody binding, multilayer protein films on flat gold surfaces were formed by binding IgG to the immobilized protein G B1 films. Quartz crystal microbalance with dissipation monitoring and x-ray photoelectron spectroscopy analysis revealed that coverage and orientation affected the antibody-binding process. At high protein G B1 coverage, the cysteine mutant immobilized in an end-on orientation with the C-terminus exposed bound 443 ng/cm2 of whole IgG (H + L) antibodies. In comparison, the high coverage cysteine mutant immobilized in an end-on orientation with the N-terminus exposed did not bind detectable amounts of whole IgG (H + L) antibodies.
Collapse
|
11
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
|
13
|
Wei S, Zou X, Tian J, Huang H, Guo W, Chen Z. Control of Protein Conformation and Orientation on Graphene. J Am Chem Soc 2019; 141:20335-20343. [PMID: 31774666 DOI: 10.1021/jacs.9b10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene-based biosensors have attracted considerable attention due to their advantages of label-free detection and high sensitivity. Many such biosensors utilize noncovalent van der Waals force to attach proteins onto graphene surface while preserving graphene's high conductivity. Maintaining the protein structure without denaturation/substantial conformational change and controlling proper protein orientation on the graphene surface are critical for biosensing applications of these biosensors fabricated with proteins on graphene. Based on the knowledge we obtained from our previous experimental study and computer modeling of amino acid residual level interactions between graphene and peptides, here we systemically redesigned an important protein for better conformational stability and desirable orientation on graphene. In this paper, immunoglobulin G (IgG) antibody-binding domain of protein G (protein GB1) was studied to demonstrate how we can preserve the protein native structure and control the protein orientation on graphene surface by redesigning protein mutants. Various experimental tools including sum frequency generation vibrational spectroscopy, attenuated total refection-Fourier transform infrared spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy were used to study the protein GB1 structure on graphene, supplemented by molecular dynamics simulations. By carefully designing the protein GB1 mutant, we can avoid strong unfavorable interactions between protein and graphene to preserve protein conformation and to enable the protein to adopt a preferred orientation. The methodology developed in this study is general and can be applied to study different proteins on graphene and beyond. With the knowledge obtained from this research, one could apply this method to optimize protein function on surfaces (e.g., to enhance biosensor sensitivity).
Collapse
Affiliation(s)
- Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xingquan Zou
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jiayi Tian
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Hao Huang
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wen Guo
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zhan Chen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
14
|
Ebrahim-Habibi MB, Ghobeh M, Mahyari FA, Rafii-Tabar H, Sasanpour P. An investigation into non-covalent functionalization of a single-walled carbon nanotube and a graphene sheet with protein G:A combined experimental and molecular dynamics study. Sci Rep 2019; 9:1273. [PMID: 30718580 PMCID: PMC6362288 DOI: 10.1038/s41598-018-37311-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Investigation of non-covalent interaction of hydrophobic surfaces with the protein G (PrG) is necessary due to their frequent utilization in immunosensors and ELISA. It has been confirmed that surfaces, including carbonous-nanostructures (CNS) could orient proteins for a better activation. Herein, PrG interaction with single-walled carbon nanotube (SWCNT) and graphene (Gra) nanostructures was studied by employing experimental and MD simulation techniques. It is confirmed that the PrG could adequately interact with both SWCNT and Gra and therefore fine dispersion for them was achieved in the media. Results indicated that even though SWCNT was loaded with more content of PrG in comparison with the Gra, the adsorption of the PrG on Gra did not induce significant changes in the IgG tendency. Several orientations of the PrG were adopted in the presence of SWCNT or Gra; however, SWCNT could block the PrG-FcR. Moreover, it was confirmed that SWCNT reduced the α-helical structure content in the PrG. Reduction of α-helical structure of the PrG and improper orientation of the PrG-SWCNT could remarkably decrease the PrG tendency to the Fc of the IgG. Importantly, the Gra could appropriately orient the PrG by both exposing the PrG-FcR and also by blocking the fragment of the PrG that had tendency to interact with Fab in IgG.
Collapse
Affiliation(s)
- Mohammad-Bagher Ebrahim-Habibi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Tan J, Zhang J, Luo Y, Ye S. Misfolding of a Human Islet Amyloid Polypeptide at the Lipid Membrane Populates through β-Sheet Conformers without Involving α-Helical Intermediates. J Am Chem Soc 2019; 141:1941-1948. [PMID: 30621387 DOI: 10.1021/jacs.8b08537] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation has been implicated in many fatal diseases, but its mechanism remains to be clarified due to a lack of effective methods that can capture the transient intermediates. Here, we experimentally demonstrate that sum frequency generation vibrational spectroscopy can unambiguously discriminate the intermediates during amyloid formation at the lipid membrane in situ and in real time by combining the chiral amide I and achiral amide II and amide III spectral signals of the protein backbone. Such a combination can directly identify the formation of β-hairpin-like monomers and β-sheet oligomers and fibrils. A strong correlation between the amide II signals and the formation of β-sheet oligomers and fibrils was found. With this approach, the structural evolution of human islet amyloid polypeptides (hIAPP) at negative lipid bilayers was elucidated. It was firmly confirmed that hIAPP populates through β-sheet conformers without involving α-helical intermediates. The membrane-associated assembly of hIAPP proceeds by assembling with a β-hairpin-like monomer at the lipid bilayer surface, rather than by inserting the preassembled β-sheet oligomers in solution. This newly established protocol is ready to be utilized in revealing the mechanism of amyloid aggregation at the lipid membrane.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| |
Collapse
|
16
|
Ebrahim-Habibi MB, Ghobeh M, Aghakhani Mahyari F, Rafii-Tabar H, Sasanpour P. Protein G selects two binding sites for carbon nanotube with dissimilar behavior; a molecular dynamics study. J Mol Graph Model 2018; 87:257-267. [PMID: 30594774 DOI: 10.1016/j.jmgm.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Study of nanostructure-protein interaction for development of various types of nano-devices is very essential. Among carbon nanostructures, carbon nanotube (CNT) provides a suitable platform for functionalization by proteins. Previous studies have confirmed that the CNT induces changes in the protein structure. METHODS Molecular dynamics (MD) simulation study was employed to illustrate the changes occurring in the protein G (PGB) in the presence of a CNT. In order to predict the PGB surface patches for the CNT, Autodock tools were utilized. RESULTS Docking results indicate the presence of two different surface patches with diverse amino acids: the dominant polar residues in the first (PGB-CNT1) and the aromatic residues in the second (PGB-CNT2) surface patch. Displacement of amino acids in the PGB-CNT2 complex occurred during the simulation and it caused an increase in its stability at the end of simulation. The amino acids' displacements diminished the PGB α-helix structure by breakage of hydrogen bonds and generated more transient structures. Principal component analysis determined that the interaction of the CNT with the second surface patch of the PGB raised the extent and modes of the PGB motions. In contrast, insignificant structural changes induced in the PGB while the CNT bonded through the first surface patch. CONCLUSION Even though neither of the PGB-CNT complexes could prevent structural changes in the PGB, development of the PGB-CNT1 complex induce slight structural changes in its fragment of crystallizable receptor (FCR). Dissimilar structural changes induced in the PGB-CNT complexes are possibly related to various characteristics of the PGB binding sites.
Collapse
Affiliation(s)
- Mohammad-Bagher Ebrahim-Habibi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
17
|
Castner DG. Surface Analysis: From Single Crystals to Biomaterials. SURF INTERFACE ANAL 2018; 50:981-990. [PMID: 30386003 PMCID: PMC6205758 DOI: 10.1002/sia.6422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/11/2022]
Abstract
Surfaces and interfaces play a critical role in material performance in many applications including catalysis, biomaterials, microelectronics, tribology and adhesion. Characterizing the important surfaces and interfaces involved in each application may present different challenges, but the approach to investigating them often is rather similar. Specialized instrumentation is typically used to probe the surface region of a material and often times it is required to develop new instrumentation and data analysis methods to obtain the desired information. It usually best to use multiple experimental techniques, often coupled with theoretical calculations and simulations, to gain a more complete understanding of the surface and interface regions. Careful handling and preparation of the samples is required so the surface is not altered during these processes as well as during analysis. Using model samples with well-defined surface structures and compositions can provide information about fundamental processes as well as help develop the analytical tools and methodology needed to characterize complex surfaces and interfaces. Thus, the expertise and experience a surface analyst acquires in one field can be readily applied to other fields, even when those fields are significantly differently (e.g., biomaterials and microelectronics). This has resulted in surface analysts moving rather easily between different research and application areas. As one example my career path of small molecule chemisorption and reactivity on single crystals to industrial catalysis to biomedical surface science is presented in this manuscript.
Collapse
Affiliation(s)
- David G Castner
- National ESCA & Surface Analysis Center for Biomedical Problems, Molecular Engineering & Sciences Institute, Departments of Bioengineering & Chemical Engineering, University of Washington, Seattle, WA 98195-1653 USA
| |
Collapse
|
18
|
Rahmati M, Mozafari M. A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. CERAMICS INTERNATIONAL 2018; 44:16137-16149. [DOI: 10.1016/j.ceramint.2018.06.196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
19
|
Abstract
The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.
Collapse
|
20
|
|
21
|
Lysozyme orientation and conformation on MoS 2 surface: Insights from molecular simulations. Biointerphases 2017; 12:02D416. [PMID: 28576080 DOI: 10.1116/1.4984803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two-dimensional molybdenum disulfide (MoS2) has attracted intense interest owing to its unique properties and promising biosensor applications. To develop effective biocompatible platforms, it is crucial to understand the interactions between MoS2 and biological molecules such as proteins, but little knowledge exists on the orientation and conformation of proteins on the MoS2 surface at the molecular level. In this work, the lysozyme adsorption on the MoS2 surface was studied by molecular dynamics simulations, wherein six different orientations were selected based on the different faces of lysozyme. Simulation results showed that lysozyme tends to adsorb on the MoS2 surface in an "end-on" orientation, indicating that orientations within this range are favorable for stable adsorption. The end-on orientation could be further categorized into "bottom end-on" and "top end-on" orientations. The driving forces responsible for the adsorption were dominated by van der Waals interactions and supplemented by electrostatic interactions. Further, the conformations of the lysozyme adsorbed on the MoS2 surface were basically preserved. This simulation study promotes the fundamental understanding of interactions between MoS2 and proteins and can guide the development of future biomedical applications of MoS2.
Collapse
|
22
|
Castner DG. Biomedical surface analysis: Evolution and future directions (Review). Biointerphases 2017; 12:02C301. [PMID: 28438024 PMCID: PMC5403738 DOI: 10.1116/1.4982169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023] Open
Abstract
This review describes some of the major advances made in biomedical surface analysis over the past 30-40 years. Starting from a single technique analysis of homogeneous surfaces, it has been developed into a complementary, multitechnique approach for obtaining detailed, comprehensive information about a wide range of surfaces and interfaces of interest to the biomedical community. Significant advances have been made in each surface analysis technique, as well as how the techniques are combined to provide detailed information about biological surfaces and interfaces. The driving force for these advances has been that the surface of a biomaterial is the interface between the biological environment and the biomaterial, and so, the state-of-the-art in instrumentation, experimental protocols, and data analysis methods need to be developed so that the detailed surface structure and composition of biomedical devices can be determined and related to their biological performance. Examples of these advances, as well as areas for future developments, are described for immobilized proteins, complex biomedical surfaces, nanoparticles, and 2D/3D imaging of biological materials.
Collapse
Affiliation(s)
- David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Molecular Engineering and Sciences Institute, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, Washington 98195-1653
| |
Collapse
|