1
|
McKenna E, Futrega K, Klein TJ, Altalhi TA, Popat A, Kumeria T, Doran MR. Spray nebulization enables polycaprolactone nanofiber production in a manner suitable for generation of scaffolds or direct deposition of nanofibers onto cells. Biofabrication 2023; 15:025003. [PMID: 36595260 DOI: 10.1088/1758-5090/aca5b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Spray nebulization is an elegant, but relatively unstudied, technique for scaffold production. Herein we fabricated mesh scaffolds of polycaprolactone (PCL) nanofibers via spray nebulization of 8% PCL in dichloromethane (DCM) using a 55.2 kPa compressed air stream and 17 ml h-1polymer solution flow rate. Using a refined protocol, we tested the hypothesis that spray nebulization would simultaneously generate nanofibers and eliminate solvent, yielding a benign environment at the point of fiber deposition that enabled the direct deposition of nanofibers onto cell monolayers. Nanofibers were collected onto a rotating plate 20 cm from the spray nozzle, but could be collected onto any static or moving surface. Scaffolds exhibited a mean nanofiber diameter of 910 ± 190 nm, ultimate tensile strength of 2.1 ± 0.3 MPa, elastic modulus of 3.3 ± 0.4 MPa, and failure strain of 62 ± 6%.In vitro, scaffolds supported growth of human keratinocyte cell epithelial-like layers, consistent with potential utility as a dermal scaffold. Fourier-transform infrared spectroscopy demonstrated that DCM had vaporized and was undetectable in scaffolds immediately following production. Exploiting the rapid elimination of DCM during fiber production, we demonstrated that nanofibers could be directly deposited on to cell monolayers, without compromising cell viability. This is the first description of spray nebulization generating nanofibers using PCL in DCM. Using this method, it is possible to rapidly produce nanofiber scaffolds, without need for high temperatures or voltages, yielding a method that could potentially be used to deposit nanofibers onto cell cultures or wound sites.
Collapse
Affiliation(s)
- Eamonn McKenna
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Kathryn Futrega
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tariq A Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Amirali Popat
- School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia
| | - Tushar Kumeria
- School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Michael R Doran
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States of America
- Mater Research Institute-University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Assessment of nonreleasing antifungal surface coatings bearing covalently attached pharmaceuticals. Biointerphases 2021; 16:061001. [PMID: 34794317 DOI: 10.1116/6.0001099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release. The strongest biological evidence initially supporting permanent antifungal activity was the demonstration of the ability to reuse samples in multiple, sequential pathogen challenges. However, additional supporting evidence from washing studies and instrumental analysis is also required to probe the possibility of gradual desorption of strongly physisorbed compounds versus covalently attached compounds. Potent antifungal surface coatings were prepared from approved pharmaceutical compounds from the echinocandin drug class (caspofungin, anidulafungin, and micafungin) and assessed by microbiological tests and instrumental methods. Carbonyl diimidazole linking chemistry enabled covalent attachment of caspofungin, anidulafungin, and micafungin to plasma polymer surfaces, with antifungal surface activity likely caused by molecular orientations that present the lipophilic tail toward interfacing fungal cells. This study demonstrates the instrumental and biological evidence required to convincingly ascertain activity due to nonreleasing, surface active compounds and summarize these as three criteria for assessing other reports on surface-immobilized antimicrobial compounds.
Collapse
|
3
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
4
|
Combatting fungal biofilm formation by diffusive release of fluconazole from heptylamine plasma polymer coating. Biointerphases 2020; 15:061012. [PMID: 33339460 DOI: 10.1116/6.0000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A drug-eluting coating applied onto biomedical devices and implants is an appropriate way to ensure that an inhibitory concentration of antimicrobial drugs is present at the device surface, thus preventing surface colonization and subsequent biofilm formation. In this study, a thin polymer coating was applied to materials, and it acted as a drug-delivery reservoir capable of surface delivery of the antifungal drug fluconazole to amounts up to 21 μg/cm2. The release kinetics into aqueous solution were quantified by UV spectroscopy and conformed to the Ritger-Peppas and Korsmeyer-Peppas model. Complementary microbiological assays were used to determine effectiveness against Candida albicans attachment and biofilm formation, and against the control heptylamine plasma polymer coating without drug loading, on which substantial fungal growth occurred. Fluconazole release led to marked antifungal activity in all assays, with log 1.6 reduction in CFUs/cm2. Cell viability assays and microscopy revealed that fungal cells attached to the fluconazole-loaded coating remained rounded and did not form hyphae and biofilm. Thus, in vitro screening results for fluconazole-releasing surface coatings showed efficacy in the prevention of the formation of Candida albicans biofilm.
Collapse
|
5
|
Vera-González N, Shukla A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front Microbiol 2020; 11:538602. [PMID: 33042051 PMCID: PMC7527432 DOI: 10.3389/fmicb.2020.538602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Candida species can readily colonize a multitude of indwelling devices, leading to biofilm formation. These three-dimensional, surface-associated Candida communities employ a multitude of sophisticated mechanisms to evade treatment, leading to persistent and recurrent infections with high mortality rates. Further complicating matters, the current arsenal of antifungal therapeutics that are effective against biofilms is extremely limited. Antifungal biomaterials are gaining interest as an effective strategy for combating Candida biofilm infections. In this review, we explore biomaterials developed to prevent Candida biofilm formation and those that treat existing biofilms. Surface functionalization of devices employing clinically utilized antifungals, other antifungal molecules, and antifungal polymers has been extremely effective at preventing fungi attachment, which is the first step of biofilm formation. Several mechanisms can lead to this attachment inhibition, including contact killing and release-based killing of surrounding planktonic cells. Eliminating mature biofilms is arguably much more difficult than prevention. Nanoparticles have shown the most promise in disrupting existing biofilms, with the potential to penetrate the dense fungal biofilm matrix and locally target fungal cells. We will describe recent advances in both surface functionalization and nanoparticle therapeutics for the treatment of Candida biofilms.
Collapse
Affiliation(s)
- Noel Vera-González
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:polym12061409. [PMID: 32586068 PMCID: PMC7361790 DOI: 10.3390/polym12061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.
Collapse
|
7
|
Burzava ALS, Jasieniak M, Cockshell MP, Voelcker NH, Bonder CS, Griesser HJ, Moore E. Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells. ACS APPLIED BIO MATERIALS 2020; 3:3718-3730. [DOI: 10.1021/acsabm.0c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anouck L. S. Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Marek Jasieniak
- Cooperative Research Centre for Cell Therapy Manufacturing, Adelaide, SA 5000, Australia
| | - Michaelia P. Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Hans J. Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Kesarwani V, Kelly HG, Shankar M, Robinson KJ, Kent SJ, Traven A, Corrie SR. Characterization of Key Bio-Nano Interactions between Organosilica Nanoparticles and Candida albicans. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34676-34687. [PMID: 31483991 DOI: 10.1021/acsami.9b10853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticle-cell interactions between silica nanomaterials and mammalian cells have been investigated extensively in the context of drug delivery, diagnostics, and imaging. While there are also opportunities for applications in infectious disease, the interactions of silica nanoparticles with pathogenic microbes are relatively underexplored. To bridge this knowledge gap, here, we investigate the effects of organosilica nanoparticles of different sizes, concentrations, and surface coatings on surface association and viability of the major human fungal pathogen Candida albicans. We show that uncoated and PEGylated organosilica nanoparticles associate with C. albicans in a size and concentration-dependent manner, but on their own, do not elicit antifungal activity. The particles are also shown to associate with human white blood cells, in a similar trend as observed with C. albicans, and remain noncytotoxic toward neutrophils. Smaller particles are shown to have low association with C. albicans in comparison to other sized particles and their association with blood cells was also observed to be minimal. We further demonstrate that by chemically immobilizing the clinically important echinocandin class antifungal drug, caspofungin, to PEGylated nanoparticles, the cell-material interaction changes from benign to antifungal, inhibiting C. albicans growth when provided in high local concentration on a surface. Our study provides the foundation for defining how organosilica particles could be tailored for clinical applications against C. albicans. Possible future developments include designing biomaterials that could detect, prevent, or treat bloodstream C. albicans infections, which at present have very high patient mortality.
Collapse
Affiliation(s)
- Vidhishri Kesarwani
- Department of Chemical Engineering and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Clayton , Victoria 3800 , Australia
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and ARC Centre of Excellence in Convergent BioNano Science and Technology , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Madhu Shankar
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Kye J Robinson
- Department of Chemical Engineering and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Clayton , Victoria 3800 , Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, and ARC Centre of Excellence in Convergent BioNano Science and Technology , The University of Melbourne , Melbourne , Victoria 3010 , Australia
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute , Monash University , Clayton , Victoria 3800 , Australia
| | - Simon R Corrie
- Department of Chemical Engineering and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
9
|
Naderi J, Giles C, Saboohi S, Griesser HJ, Coad BR. Surface-grafted antimicrobial drugs: Possible misinterpretation of mechanism of action. Biointerphases 2018; 13:06E409. [PMID: 30482023 PMCID: PMC6905654 DOI: 10.1116/1.5050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial surface coatings that act through a contact-killing mechanism (not diffusive release) could offer many advantages to the design of medical device coatings that prevent microbial colonization and infections. However, as the authors show here, to prevent arriving at an incorrect conclusion about their mechanism of action, it is essential to employ thorough washing protocols validated by surface analytical data. Antimicrobial surface coatings were fabricated by covalently attaching polyene antifungal drugs to surface coatings. Thorough washing (often considered to be sufficient to remove noncovalently attached molecules) was used after immobilization and produced samples that showed a strong antifungal effect, with a log 6 reduction in Candida albicans colony forming units. However, when an additional washing step using surfactants and warmed solutions was used, more firmly adsorbed compounds were eluted from the surface as evidenced by XPS and ToF-SIMS, resulting in reduction and complete elimination of in vitro antifungal activity. Thus, polyene molecules covalently attached to surfaces appear not to have a contact-killing effect, probably because they fail to reach their membrane target. Without additional stringent washing and surface analysis, the initial favorable antimicrobial testing results could have been misinterpreted as evidencing activity of covalently grafted polyenes, while in reality activity arose from desorbing physisorbed molecules. To avoid unintentional confirmation bias, they suggest that binding and washing protocols be analytically verified by qualitative/quantitative instrumental methods, rather than relying on false assumptions of the rigors of washing/soaking protocols.
Collapse
Affiliation(s)
- Javad Naderi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Carla Giles
- Department of Primary Industries Parks Water and Environment Tasmania, Centre for Aquatic Animal Health and Vaccines, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Solmaz Saboohi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
10
|
Naderi J, Giles C, Saboohi S, Griesser HJ, Coad BR. Surface coatings with covalently attached anidulafungin and micafungin preventCandida albicansbiofilm formation. J Antimicrob Chemother 2018; 74:360-364. [DOI: 10.1093/jac/dky437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/28/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Javad Naderi
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Carla Giles
- Future Industries Institute, University of South Australia, Adelaide, Australia
- Centre for Aquatic Animal Health & Vaccines, Tasmania Department of Primary Industries, Parks Water & Environment, 165 Westbury Road, Prospect, Tasmania, Australia
| | - Solmaz Saboohi
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Adelaide, Australia
- School of Agriculture, Food & Wine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
11
|
Xu X, Billing M, Ruths M, Klok HA, Yu J. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective. Chem Asian J 2018; 13:3411-3436. [PMID: 30080310 DOI: 10.1002/asia.201800920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 11/11/2022]
Abstract
The unique functionality of polyelectrolyte brushes depends on several types of specific interactions, including solvent structure effects, hydrophobic forces, electrostatic interactions, and specific ion interactions. Subtle variations in the solution environment can lead to conformational and surface structural changes of the polyelectrolyte brushes, which are mainly discussed from a surface-interaction perspective in this Focus Review. A brief overview is given of recent theoretical and experimental progress in the structure of polyelectrolyte brushes in various environments. Two important techniques for surface-force measurements are described, the surface forces apparatus (SFA) and atomic force microscopy (AFM), and some recent results on polyelectrolyte brushes are shown. Lastly, this Focus Review highlights the use of these surface-grafted polyelectrolyte brushes in the creation of functional surfaces for various applications, including nonfouling surfaces, boundary lubricants, and stimuli-responsive surfaces.
Collapse
Affiliation(s)
- Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Mark Billing
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Harm-Anton Klok
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
12
|
Michl TD, Jung D, Pertoldi A, Schulte A, Mocny P, Klok HA, Schönherr H, Giles C, Griesser HJ, Coad BR. An Acid Test: Facile SI-ARGET-ATRP of Methacrylic Acid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas D. Michl
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Dimitri Jung
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Andrea Pertoldi
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Anna Schulte
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Piotr Mocny
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Carla Giles
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Hans J. Griesser
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Bryan R. Coad
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
- School of Agriculture, Food & Wine; Food and Wine; University of Adelaide; SA 5005 Adelaide Australia
| |
Collapse
|
13
|
Some changes, but still communicating exciting key insights from the biointerface. Biointerphases 2018; 12:050201. [PMID: 29301402 DOI: 10.1116/1.5018515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Editorial: In Focus Issue on Bacterial-Surface Interactions. Biointerphases 2017; 12:05G201. [PMID: 29246034 DOI: 10.1116/1.5017990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR. The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv 2017; 36:264-280. [PMID: 29199134 DOI: 10.1016/j.biotechadv.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms. However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.
Collapse
Affiliation(s)
- Carla Giles
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Stephanie J Lamont-Friedrich
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Thomas D Michl
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia; School of Agriculture Food & Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5000, Australia.
| |
Collapse
|