1
|
Katsenou N, Spiliopoulos N, Anastassopoulos DL, Papagiannopoulos A, Toprakcioglu C. pH-response of protein-polysaccharide multilayers adsorbed on a flat gold surface: A surface plasmon resonance study. Biopolymers 2024; 115:e23609. [PMID: 38899576 DOI: 10.1002/bip.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Polysaccharide-protein multilayers (PPMLs) consisting of bovine serum albumin (BSA) and chondroitin sulfate (CS) are assembled in acidic solution (pH 4.2) via layer-by-layer deposition method. The formation of PPMLs on gold surface and their responsiveness to pH change from 4.2 to 7 is investigated by Surface Plasmon Resonance Spectroscopy. The buildup of the multilayer at pH 4.2 exhibits non-linear growth while the formation of the first layers is strongly affected by the physicochemical properties of the gold surface. Neutral solution (pH 7) affects the interactions between the biopolymers and results in a partially disassemble (disintegration) of the multilayer film. On one hand, the single pair of layers, BSA-CS and the double pair of layers, (BSA-CS)2, assemblies are stable in neutral pH, a result that will be of interest for biomedical applications. On the other hand, multilayer films consisting of more than four layers that is (BSA-CS)2
Collapse
|
2
|
Kim I, Kang SM. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA- co-TFEMA) Brushes on Solid Surfaces for Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38314692 DOI: 10.1021/acs.langmuir.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Water molecules can bind to zwitterionic polymers, such as carboxybetaine and sulfobetaine, forming strong hydration layers along the polymer chains. Such hydration layers act as a barrier to impede the attachment of marine fouling organisms; therefore, zwitterionic polymer coatings have been of considerable interest as marine antifouling coatings. However, recent studies have shown that severe adsorption of marine sediments occurs on zwitterionic-polymer-coated surfaces, resulting in the degradation of their marine antifouling performance. Therefore, a novel approach for forming amphiphilic zwitterionic polymers using zwitterionic and hydrophobic monomers is being investigated to simultaneously inhibit both sediment adsorption and marine fouling. In this study, amphiphilic zwitterionic thin polymer brushes composed of sulfobetaine methacrylate (SBMA) and trifluoroethyl methacrylate (TFEMA) were synthesized on Si/SiO2 surfaces via surface-initiated atom transfer radical polymerization. For this, a facile metal-ion-mediated method was developed for immobilizing polymerization initiators on solid substrates to subsequently form poly(SBMA-co-TFEMA) brushes on the initiator-coated substrate surface. Poly(SBMA-co-TFEMA) brushes with various SBMA/TFEMA ratios were prepared to determine the composition at which both marine diatom adhesion and sediment adsorption can be prevented effectively. The results indicate that poly(SBMA-co-TFEMA) brushes prepared with an SBMA/TFEMA ratio of 3:7 effectively inhibit both sediment adsorption and marine diatom adhesion, thereby exhibiting balanced marine antifouling properties. Thus, the findings of this study provide important insights into the design of amphiphilic marine antifouling materials.
Collapse
Affiliation(s)
- Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
3
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
4
|
Lakhan MN, Chen R, Liu F, Shar AH, Soomro IA, Chand K, Ahmed M, Hanan A, Khan A, Maitlo AA, Wang J. Construction of antifouling marine coatings via layer-by-layer assembly of chitosan and acid siloxane resin. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 2023; 19:458-473. [PMID: 35574061 PMCID: PMC9079116 DOI: 10.1016/j.bioactmat.2022.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
6
|
Manderfeld E, Thamaraiselvan C, Nunes Kleinberg M, Jusufagic L, Arnusch CJ, Rosenhahn A. Bacterial surface attachment and fouling assay on polymer and carbon surfaces using Rheinheimera sp. identified using bacteria community analysis of brackish water. BIOFOULING 2022; 38:940-951. [PMID: 36511186 DOI: 10.1080/08927014.2022.2153333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Biofouling on surfaces in contact with sea- or brackish water can severely impact the function of devices like reverse osmosis modules. Single species laboratory assays are frequently used to test new low fouling materials. The choice of bacterial strain is guided by the natural population present in the application of interest and decides on the predictive power of the results. In this work, the analysis of the bacterial community present in brackish water from Mashabei Sadeh, Israel was performed and Rheinheimera sp. was detected as a prominent microorganism. A Rheinheimera strain was selected to establish a short-term accumulation assay to probe initial bacterial attachment as well as biofilm growth to determine the biofilm-inhibiting properties of coatings. Both assays were applied to model coatings, and technically relevant polymers including laser-induced graphene. This strategy might be applied to other water sources to better predict the fouling propensity of new coatings.
Collapse
Affiliation(s)
- Emily Manderfeld
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru, India
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Lejla Jusufagic
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Faculty for Chemistry and Biochemistry, Bochum, Germany
| |
Collapse
|
7
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
8
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
9
|
Gnanasampanthan T, Beyer CD, Yu W, Karthäuser JF, Wanka R, Spöllmann S, Becker HW, Aldred N, Clare AS, Rosenhahn A. Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5950-5963. [PMID: 33969986 DOI: 10.1021/acs.langmuir.1c00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | |
Collapse
|
10
|
Yu W, Wang Y, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A. Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS APPLIED BIO MATERIALS 2021; 4:2385-2397. [PMID: 35014359 DOI: 10.1021/acsabm.0c01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol-gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol-gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide-silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection-Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yongxiang Wang
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Patricia Gnutt
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lutz M K Krause
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
11
|
Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However, none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion.
Collapse
|
12
|
Hedayati M, Krapf D, Kipper MJ. Dynamics of long-term protein aggregation on low-fouling surfaces. J Colloid Interface Sci 2021; 589:356-366. [PMID: 33482534 DOI: 10.1016/j.jcis.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 01/12/2023]
Abstract
Understanding the mechanisms of protein interactions with solid surfaces is critical to predict how proteins affect the performance of materials in biological environments. Low-fouling and ultra-low fouling surfaces are often evaluated in short-term protein adsorption experiments, where 'short-term' is defined as the time required to reach an initial apparent or pseudo-equilibrium, which is usually less than 600 s. However, it has long been recognized that these short-term observations fail to predict protein adsorption behavior in the long-term, characterized by irreversible accumulation of protein on the surface. This important long-term behavior is frequently ignored or attributed to slow changes in surface chemistry over time-such as oxidation-often with little or no experimental evidence. Here, we report experiments measuring protein adsorption on "low-fouling" and "ultralow-fouling" surfaces using single-molecule localization microscopy to directly probe protein adsorption and desorption. The experiments detect protein adsorption for thousands of seconds, enabling direct observation of both short-term (reversible adsorption) and long-term (irreversible adsorption leading to accumulation) protein-surface interactions. By bridging the gap between these two time scales in a single experiment, this work enables us to develop a single mathematical model that predicts behavior in both temporal regimes. The experimental data in combination with the resulting model provide several important insights: (1) short-term measurements of protein adsorption using ensemble-averaging methods may not be sufficient for designing antifouling materials; (2) all investigated surfaces eventually foul when in long-term contact with protein solutions; (3) fouling can occur through surface-induced oligomerization of proteins which may be a distinct step from irreversible adsorption; and (4) surfaces can be designed to reduce oligomerization or the adsorption of oligomers, to prevent or delay fouling.
Collapse
Affiliation(s)
- Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Wanka R, Koc J, Clarke J, Hunsucker KZ, Swain GW, Aldred N, Finlay JA, Clare AS, Rosenhahn A. Sol-Gel-Based Hybrid Materials as Antifouling and Fouling-Release Coatings for Marine Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53286-53296. [PMID: 33180471 DOI: 10.1021/acsami.0c15288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid materials (HMs) offer unique properties as they combine inorganic and organic components into a single material. Here, we developed HM coatings for marine antifouling applications using sol-gel chemistry and naturally occurring polysaccharides. The coatings were characterized by spectroscopic ellipsometry, contact angle goniometry, AFM, and ATR-FTIR, and their stability was tested in saline media. Marine antifouling and fouling-release properties were tested in laboratory assays against the settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of the diatom Navicula incerta. Furthermore, laboratory data were confirmed in short-term dynamic field assays in Florida, USA. All hybrid coatings revealed a superior performance in the assays compared to a hydrophobic reference. Within the hybrids, those with the highest degree of hydrophilicity and negative net charge across the surface performed best. Alginate and heparin showed good performance, making these hybrid materials promising building blocks for fouling-resistant coatings.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Julian Koc
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
14
|
Kim D, Kang SM. Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules 2020; 21:5086-5092. [PMID: 33201682 DOI: 10.1021/acs.biomac.0c01248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a facile approach for the fabrication of a marine antifouling coating using the red algae-derived polysaccharide, carrageenan (CAR). Because CAR is hydrophilic and negatively charged, we hypothesized that it would form strong hydration layers upon adsorption onto solid surfaces, thereby exhibiting marine antifouling properties. Although various types of CAR can be used for marine antifouling, a universally applicable coating method has not yet been developed; thus, a systematic study on the marine antifouling property of CAR coating is lacking. Here, we fabricated a versatile CAR coating via ZrIV-mediated multiple cross-linking reactions between the sulfate groups of CAR and metal ions and successfully deposited κ-, ι-, and λ-CAR onto solid surfaces. Specifically, λ-CAR showed superior marine antifouling performance, as evidenced by the results of the marine diatom adhesion assays.
Collapse
Affiliation(s)
- Dahee Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
15
|
Sun Y, Cai H, Wang X, Zhan S. Layer analysis of axial spatial distribution of surface plasmon resonance sensing. Anal Chim Acta 2020; 1136:141-150. [PMID: 33081938 DOI: 10.1016/j.aca.2020.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Abstract
The spatial distribution detection and characterization of multi-adsorption layers, biomembranes, and cells are important techniques to study biomolecular properties and mechanisms. Using the surface plasmon resonance (SPR) technology, we investigated the spatial characteristics, penetration mechanism, and detection depth of the interaction between evanescent waves and a complex medium. In addition, parameters correlated with the axial spatial distribution were analyzed. We found that the spatial refractive-index distribution of an axial layered model has a unique correlation with the following three characteristic parameters: resonance angle at different wavelengths, first-derivative extreme-point of the angular spectrum, and effective refractive index. A new layer-analysis, based on wavelength-scanning angle interrogation (WSAI), was introduced to enable refractive-index measurements in an axial spatial medium. This new method extends the detection capabilities of SPR sensors and provides a more accurate analysis method for interaction events within an evanescent field.
Collapse
Affiliation(s)
- Yi Sun
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China; Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, 316021, China; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haoyuan Cai
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China; Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, 316021, China
| | - Xiaoping Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China; Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, 316021, China
| | - Shuyue Zhan
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China; Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
16
|
Yu W, Wanka R, Finlay JA, Clarke JL, Clare AS, Rosenhahn A. Degradable hyaluronic acid/chitosan polyelectrolyte multilayers with marine fouling-release properties. BIOFOULING 2020; 36:1049-1064. [PMID: 33251857 DOI: 10.1080/08927014.2020.1846725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Polysaccharide multilayers consisting of hyaluronic acid and chitosan were prepared by layer-by-layer assembly. To be used in seawater, the multilayers were crosslinked to a different degree using thermal or chemical methods. ATR-FTIR revealed different amide densities as a result of the crosslinking conditions. AFM showed that the crosslinking affected the roughness and swelling behavior of the coatings. The stability and degradability of the multilayers in aqueous environments were monitored with spectroscopic ellipsometry. The resistance of the coatings against non-specific protein adsorption was characterized by SPR spectroscopy. Settlement assays using Ulva linza zoospores and removal assays using the diatom Navicula incerta showed that the slowly degradable coatings were less prone to fouling than the strongly crosslinked ones. Thus, the coatings were a suitable model system to show that crosslinking the multilayers under mild conditions and equipping the coatings with controlled degradation rates enhances their antifouling and fouling-release properties against marine fouling organisms.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Axel Rosenhahn
- Analytical Chemistry- Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Durmaz EN, Baig MI, Willott JD, de Vos WM. Polyelectrolyte Complex Membranes via Salinity Change Induced Aqueous Phase Separation. ACS APPLIED POLYMER MATERIALS 2020; 2:2612-2621. [PMID: 32685925 PMCID: PMC7359294 DOI: 10.1021/acsapm.0c00255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/29/2020] [Indexed: 05/19/2023]
Abstract
Polymeric membranes are used on very large scales for drinking water production and kidney dialysis, but they are nearly always prepared by using large quantities of unsustainable and toxic aprotic solvents. In this study, a water-based, sustainable, and simple way of making polymeric membranes is presented without the need for harmful solvents or extreme pH conditions. Membranes were prepared from water-insoluble polyelectrolyte complexes (PECs) via aqueous phase separation (APS). Strong polyelectrolytes (PEs), poly(sodium 4-styrenesulfonate) (PSS), and poly(diallyldimethylammonium chloride) (PDADMAC) were mixed in the presence of excess of salt, thereby preventing complexation. Immersing a thin film of this mixture into a low-salinity bath induces complexation and consequently the precipitation of a solid PEC-based membrane. This approach leads to asymmetric nanofiltration membranes, with thin dense top layers and porous, macrovoid-free support layers. While the PSS molecular weight and the total polymer concentrations of the casting mixture did not significantly affect the membrane structure, they did affect the film formation process, the resulting mechanical stability of the films, and the membrane separation properties. The salt concentration of the coagulation bath has a large effect on membrane structure and allows for control over the thickness of the separation layer. The nanofiltration membranes prepared by APS have a low molecular weight cutoff (<300 Da), a high MgSO4 retention (∼80%), and good stability even at high pressures (10 bar). PE complexation induced APS is a simple and sustainable way to prepare membranes where membrane structure and performance can be tuned with molecular weight, polymer concentration, and ionic strength.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane Science and Technology, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Muhammad Irshad Baig
- Membrane Science and Technology, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Joshua D. Willott
- Membrane Science and Technology, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wiebe M. de Vos
- Membrane Science and Technology, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
18
|
Cao P, Liu K, Liu X, Sun W, Wu D, Yuan C, Bai X, Zhang C. Antibacterial properties of Magainin II peptide onto 304 stainless steel surfaces: A comparison study of two dopamine modification methods. Colloids Surf B Biointerfaces 2020; 194:111198. [PMID: 32569889 DOI: 10.1016/j.colsurfb.2020.111198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
Marine biofouling is perplexing the development of marine industry, and the traditional antifouling methods are restricted by the requirements of marine environmental friendliness. Marine bacteria attachment is the initial stage of marine fouling and it can be effectively reduced by reducing bacterial attachment. In this study, two modification methods were reported to synthesize antibacterial surfaces based on the different order of Magainin Ⅱ (MAG Ⅱ) modification. The preparation of SS-DA-M was generated by modifying the 304 stainless steel (304 SS) surface with dopamine firstly and then grafting the MAG Ⅱ onto the dopamine modified surface; SS-M-DA was obtained by modifying 304 SS surface using MAG Ⅱ derivative which synthesized by MAG Ⅱ and dopamine under weak acid condition. XPS, contact angle, film thickness and surface topography analysis showed that both methods grafted MAG Ⅱ onto the 304 SS surface successfully, changing the morphology and wettability of the substrates. Antibacterial results demonstrated that the two modified surfaces possessed strong resistance against V. natriegens, and the antibacterial efficiency of SS-DA-M and SS-M-DA reached 98.07 % and 99.79 %, respectively. Robustness results illustrated that the modified surface could keep strong antibacterial capacity in seawater for a long time. The phy-chemical properties and antibacterial properties of SS-M-DA surface were superior to SS-DA-M surface because more MAG Ⅱ were grafted onto 304 SS surface and the distribution was more uniform than the SS-DA-M surface. The investigation may offer a new and promising strategy to tackle surface fouling of hull, aquaculture cage and other marine facilities.
Collapse
Affiliation(s)
- Pan Cao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Kewei Liu
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Duoli Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chengqing Yuan
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, 430063, China.
| | - Xiuqin Bai
- Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, 430063, China
| | - Chao Zhang
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|