1
|
Ge C, Zhang W, Huang J, Qiao B, Rexiati M, Zebibula A. Research progress of near-infrared fluorescence imaging in accurate theranostics in bladder cancer. Photodiagnosis Photodyn Ther 2025; 52:104480. [PMID: 39798775 DOI: 10.1016/j.pdpdt.2025.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND With among the highest 5-year recurrence rate, bladder cancer is a relatively common type of malignancy that typically originates from the urothelial cells lining the bladder. Additionally, bladder cancer is one of the most financially burdensome neoplasms to medical institutions in terms of management. Hence, prompt identification and accurate handling of bladder cancer are pivotal for enhancing patient prognosis. Optical imaging has experienced remarkable advancements in fundamental medical research owing to its cost-effectiveness and capacity for real-time imaging. The utilization of near-infrared imaging techniques has also become a prominent area of research in recent times. By effectively decreasing the adverse effects of light scattering and tissue autofluorescence, this technique offers a deeper penetration depth, a better signal-to-noise ratio of images, and a clear resolution for imaging. Thus, this article introduces the application of near-infrared fluorescence imaging in diagnosing and treating bladder cancer. Furthermore, the paper delves into the field's obstacles, possibilities, and upcoming prospects. RESULTS Near-infrared fluorescence has advantages over white or blue light in theory and in most articles. However, the lack of penetration depth of NIR fluorescence imaging is still a challenge. CONCLUSION Despite notable improvements in the depth of near-infrared fluorescence imaging, the penetration of deeper tissues remains a barrier. It is our hope and pursuit that NIR fluorescence imaging technology can achieve good depth and precision in surgery.
Collapse
Affiliation(s)
- Chang Ge
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China
| | - Weijie Zhang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China
| | - Jinying Huang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China
| | - Bingzhang Qiao
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China
| | - Mulati Rexiati
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Xinjiang Clinical Reseach Center for Genitourinary System, China
| | - Abudureheman Zebibula
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University, China; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia, China; Xinjiang Clinical Reseach Center for Genitourinary System, China.
| |
Collapse
|
2
|
Hu X, Sun C, Ren X, Ge S, Xie C, Li X, Zhu Y, Ding H. Contrast-enhanced Ultrasound Combined With Elastography for the Evaluation of Muscle-invasive Bladder Cancer in Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:1999-2011. [PMID: 36896871 DOI: 10.1002/jum.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES By comparing with the control group, we evaluated the usefulness of contrast-enhanced ultrasound (CEUS) combined with elastography for the assessment of muscle invasion by bladder cancer (MIBC) in a Sprague-Dawley (SD) rat model. METHODS In the experimental group, 40 SD rats developed in situ bladder cancer (BLCA) in response to N-methyl-N-nitrosourea treatment, whereas 40 SD rats were included in the control group for comparison. We compared PI, Emean , microvessel density (MVD), and collagen fiber content (CFC) between the two groups. In the experimental group, Bland-Altman test was used to assess the relationships between various parameters. The largest Youden value was used as the cut-off point, and binomial logistic regression analysis was performed to analyze the PI and Emean . Receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic power of parameters, individually and in combination. RESULTS The PI, Emean , MVD, and CFC were significantly lower in the control group than in the experimental group (P < .05). The PI, Emean , MVD, and CFC were significantly higher for MIBC than for non-muscle-invasive bladder cancer (P < .05). There were significant correlations between PI and MVD, and between Emean and CFC. The diagnostic efficiency analysis showed PI had the highest sensitivity, CFC had the highest specificity, and PI + Emean had the highest diagnostic efficacy. CONCLUSION CEUS and elastography can distinguish lesions from normal tissue. PI, MVD, Emean , and CFC were useful for the detection of BLCA myometrial invasion. The comprehensive utilization of PI and Emean improved diagnostic accuracy and have clinical application.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanyu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinping Ren
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shengyang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunmei Xie
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiangyu Li
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A Renal‐Clearable Macromolecular Reporter for Near‐Infrared Fluorescence Imaging of Bladder Cancer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911859] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingchao Li
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Shasha He
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| |
Collapse
|
4
|
Huang J, Jiang Y, Li J, He S, Huang J, Pu K. A Renal-Clearable Macromolecular Reporter for Near-Infrared Fluorescence Imaging of Bladder Cancer. Angew Chem Int Ed Engl 2020; 59:4415-4420. [PMID: 31876017 DOI: 10.1002/anie.201911859] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BC) is a prevalent disease with high morbidity and mortality; however, in vivo optical imaging of BC remains challenging because of the lack of cancer-specific optical agents with high renal clearance. Herein, a macromolecular reporter (CyP1) was synthesized for real-time near-infrared fluorescence (NIRF) imaging and urinalysis of BC in living mice. Because of the high renal clearance (ca. 94 % of the injection dosage at 24 h post-injection) and its cancer biomarker (APN=aminopeptidase N) specificity, CyP1 can be efficiently transported to the bladder and specially turn on its NIRF signal to report the detection of BC in living mice. Moreover, CyP1 can be used for optical urinalysis, permitting the ex vivo tracking of tumor progression for therapeutic evaluation and easy translation of CyP2 as an in vitro diagnostic assay. This study not only provides new opportunities for non-invasive diagnosis of BC, but also reveals useful guidelines for the development of molecular reporters for the detection of bladder diseases.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
5
|
Li H, Chen W, Ma J, Zang R, You D, Liu S, Li C, Song Y. Involved-field irradiation for elderly bladder cancer patients. Curr Probl Cancer 2019; 43:195-204. [DOI: 10.1016/j.currproblcancer.2018.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
|
6
|
Combination of High-Resolution Optical Coherence Tomography and Raman Spectroscopy for Improved Staging and Grading in Bladder Cancer. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We present a combination of optical coherence tomography (OCT) and Raman spectroscopy (RS) for improved diagnosis and discrimination of different stages and grades of bladder cancer ex vivo by linking the complementary information provided by these two techniques. Bladder samples were obtained from biopsies dissected via transurethral resection of the bladder tumor (TURBT). As OCT provides structural information rapidly, it was used as a red-flag technology to scan the bladder wall for suspicious lesions with the ability to discriminate malignant tissue from healthy urothelium. Upon identification of degenerated tissue via OCT, RS was implemented to determine the molecular characteristics via point measurements at suspicious sites. Combining the complementary information of both modalities allows not only for staging, but also for differentiation of low-grade and high-grade cancer based on a multivariate statistical analysis. OCT was able to clearly differentiate between healthy and malignant tissue by tomogram inspection and achieved an accuracy of 71% in the staging of the tumor, from pTa to pT2, through texture analysis followed by k-nearest neighbor classification. RS yielded an accuracy of 93% in discriminating low-grade from high-grade lesions via principal component analysis followed by k-nearest neighbor classification. In this study, we show the potential of a multi-modal approach with OCT for fast pre-screening and staging of cancerous lesions followed by RS for enhanced discrimination of low-grade and high-grade bladder cancer in a non-destructive, label-free and non-invasive way.
Collapse
|
7
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
8
|
Di Stasi SM, De Carlo F, Pagliarulo V, Masedu F, Verri C, Celestino F, Riedl C. Hexaminolevulinate hydrochloride in the detection of nonmuscle invasive cancer of the bladder. Ther Adv Urol 2015; 7:339-50. [PMID: 26622319 DOI: 10.1177/1756287215603274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clinical trials have shown that hexaminolevulinate (HAL) fluorescence cystoscopy improves the detection of bladder tumors compared with standard white-light cystoscopy, resulting in more efficacious treatment. However, some recent meta-analyses report controversially on recurrence-free rates with this procedure. A systematic review of literature was performed from December 2014 to January 2015 using the PubMed, Embase and Cochrane databases for controlled trials on photodynamic diagnosis (PDD) with HAL. A total of 154 publications were found up to January 2015. Three of the authors separately reviewed the records to evaluate eligibility and methodological quality of clinical trials. A total of 16 publications were considered eligible for analysis. HAL-PDD-guided cystoscopy increased overall tumor detection rate (proportion difference 19%, 95% confidence interval [CI] 0.152-0.236) although the benefit was particularly significant in patients with carcinoma in situ (CIS) lesion (proportion difference 15.7%, 95% CI 0.069-0.245) and was reduced in papillary lesions (Ta proportion difference 5.9%, 95% CI 0.014-0.103 and T1 proportion difference 1.2%, 95% CI 0.033-0.057). Moreover, there were 15% of patients (95% CI 0.098-0.211) with at least one additional tumor seen with PDD. With regard to recurrence rates, the data sample was insufficient for a statistical analysis, although the evaluation of raw data showed a trend in favor of HAL-PDD. This meta-analysis confirms the increased tumor detection rate by HAL-PDD with a most pronounced benefit for CIS lesion.
Collapse
Affiliation(s)
- Savino M Di Stasi
- Department of Experimental Medicine and Surgery, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy
| | - Francesco De Carlo
- Department of Experimental, Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - Vincenzo Pagliarulo
- Department of Emergency and Organs Transplantation, 'Aldo Moro' University, Bari, Italy
| | - Francesco Masedu
- Department of Medicine and Public Health, University of L'Aquila, L'Aquila, Italy
| | - Cristian Verri
- Department of Experimental, Medicine and Surgery, Tor Vergata University, Rome, Italy
| | | | - Claus Riedl
- Department of Urology, Landesklinikum Baden-Mödling, Baden, Austria
| |
Collapse
|
9
|
Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology. Biomed Microdevices 2014; 16:415-26. [PMID: 24573502 DOI: 10.1007/s10544-014-9844-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new Micro-Opto-Mechanical System (MOMS) technology for the fabrication of optoacoustic probes on optical fiber is presented. The technology is based on the thermoelastic emission of ultrasonic waves from patterned carbon films for generation and on extrinsic polymer Fabry-Perot acousto-optical transducers for detection, both fabricated on miniaturized single-crystal silicon frames used to mount the ultrasonic transducers on the tip of an optical fiber. Thanks to the fabrication process adopted, high miniaturization levels are reached in the MOMS devices, demonstrating fiber-optic emitters and detectors with minimum diameter around 350 and 250 μm respectively. A thorough functional testing of the ultrasound emitters mounted on 200 and 600 μm diameter optical fibers is presented, in which the fiber-optic emitter with a diameter of 200 μm shows generated acoustic pressures with peak-to-peak value up to 2.8 MPa with rather flat emission spectra extended beyond 150 MHz. The possibility to use the presented optoacoustic sources in conjunction with the fiber-optic acousto-optical detectors within a minimally invasive probe is also demonstrated by successfully measuring the ultrasonic echo reflected from a rigid surface immersed in water with various concentration of scatterers. The resulting spectra highlight the possibility to discriminate the effects due to frequency selective attenuation in a very wide range of frequencies within a biological medium using the presented fiber-optic probes.
Collapse
|
10
|
Lerner SP, Goh A. Novel endoscopic diagnosis for bladder cancer. Cancer 2014; 121:169-78. [PMID: 25132313 DOI: 10.1002/cncr.28905] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022]
Abstract
Advances in endoscopic imaging technology may improve sensitivity for the detection of bladder cancer and provide a more complete understanding of the urothelial landscape, and it also may lead to improved short-term and long-term cancer control. Fluorescence cystoscopy requires intravesical administration of a photosensitizing agent (5-aminolevulinic acid or hexaminolevulinate), and imaging with a blue-light endoscopy system demonstrably improves the detection of papillary and flat bladder lesions compared with conventional white-light cystoscopy. Prospective phase 3 clinical trials have demonstrated improved diagnostic ability, enhanced tumor resection, and a small but significant reduction in recurrence-free survival. Optical coherence tomography delineates subsurface microarchitecture information about bladder lesions in real time and has the ability to discriminate between noninvasive and invasive cancers. Narrow-band imaging may augment white-light cystoscopy by providing increased contrast between normal and abnormal tissue on the basis of neovascularity. Confocal laser endoscopy has been applied to the urinary tract using thinner probes adapted from use in gastrointestinal malignancies and provides exquisite images at microscopic resolution. More technology is on the horizon that may further enhance our ability to detect and accurately stage bladder tumors and distinguish benign from malignant or dysplastic lesions.
Collapse
Affiliation(s)
- Seth P Lerner
- Baylor College of Medicine, Scott Department of Urology, Baylor College of Medicine, Houston, Texas; Department of Urology, Houston Methodist Hospital, Houston, Texas
| | | |
Collapse
|
11
|
Wang HW, Chen Y. Clinical applications of optical coherence tomography in urology. INTRAVITAL 2014; 3:e28770. [PMID: 28243507 PMCID: PMC5312717 DOI: 10.4161/intv.28770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Since optical coherence tomography (OCT) was first demonstrated in 1991, it has advanced significantly in technical aspects such as imaging speed and resolution, and has been clinically demonstrated in a diverse set of medical and surgical applications, including ophthalmology, cardiology, gastroenterology, dermatology, oncology, among others. This work reviews current clinical applications in urology, particularly in bladder, urether, and kidney. Clinical applications in bladder and urether mainly focus on cancer detection and staging based on tissue morphology, image contrast, and OCT backscattering. The application in kidney includes kidney cancer detection based on OCT backscattering attenuation and non-destructive evaluation of transplant kidney viability or acute tubular necrosis based on both tissue morphology from OCT images and function from Doppler OCT (DOCT) images. OCT holds the promise to positively impact the future clinical practices in urology.
Collapse
Affiliation(s)
- Hsing-Wen Wang
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| | - Yu Chen
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| |
Collapse
|
12
|
Gillespie JA, O'Donnell MA. New imaging techniques for non-muscle invasive bladder cancer: ready for primetime. Urol Clin North Am 2013; 40:271-9. [PMID: 23540784 DOI: 10.1016/j.ucl.2013.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treatment of non-muscle invasive bladder cancer (NMBIC) requires direct visual appreciation of the tumor. Transurethral resection that is dependent solely on white light cystoscopy (WLC) often fails to accurately stage or completely resect NMIBC. These deficiencies of WLC are significant contributors to the high rates of recurrence and eventual progression to muscle invasive disease. This article looks at technologies that are being used in adjunct to WLC to augment the urologist's ability to identify, stage, and treat NMIBC.
Collapse
Affiliation(s)
- Joseph A Gillespie
- Department of Urology, University of Iowa, Iowa City, IA 52242-1089, USA
| | | |
Collapse
|
13
|
Liu JJ, Droller MJ, Liao JC. New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol 2012; 188:361-8. [PMID: 22698620 DOI: 10.1016/j.juro.2012.03.127] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Indexed: 01/08/2023]
Abstract
PURPOSE Bladder cancer presents as a spectrum of different diatheses. Accurate assessment for individualized treatment depends on initial diagnostic accuracy. Detection relies on white light cystoscopy accuracy and comprehensiveness. Aside from invasiveness and potential risks, white light cystoscopy shortcomings include difficult flat lesion detection, precise tumor delineation to enable complete resection, inflammation and malignancy differentiation, and grade and stage determination. Each shortcoming depends on surgeon ability and experience with the technology available for visualization and resection. Fluorescence cystoscopy/photodynamic diagnosis, narrow band imaging, confocal laser endomicroscopy and optical coherence tomography address the limitations and have in vivo feasibility. They detect suspicious lesions (photodynamic diagnosis and narrow band imaging) and further characterize lesions (optical coherence tomography and confocal laser endomicroscopy). We analyzed the added value of each technology beyond white light cystoscopy and evaluated their maturity to alter the cancer course. MATERIALS AND METHODS Detailed PubMed® searches were done using the terms "fluorescence cystoscopy," "photodynamic diagnosis," "narrow band imaging," "optical coherence tomography" and "confocal laser endomicroscopy" with "optical imaging," "bladder cancer" and "urothelial carcinoma." Diagnostic accuracy reports and all prospective studies were selected for analysis. We explored technological principles, preclinical and clinical evidence supporting nonmuscle invasive bladder cancer detection and characterization, and whether improved sensitivity vs specificity translates into improved correlation of diagnostic accuracy with recurrence and progression. Emerging preclinical technologies with potential application were reviewed. RESULTS Photodynamic diagnosis and narrow band imaging improve nonmuscle invasive bladder cancer detection, including carcinoma in situ. Photodynamic diagnosis identifies more papillary lesions than white light cystoscopy, enabling more complete resection and fewer residual tumors. Despite improved treatment current data on photodynamic diagnosis do not support improved high risk diathetic detection and characterization or correlation with disease progression. Prospective recurrence data are lacking on narrow band imaging. Confocal laser endomicroscopy and optical coherence tomography potentially grade and stage lesions but data are lacking on diagnostic accuracy. Several emerging preclinical technologies may enhance the diagnostic capability of endoscopic imaging. CONCLUSIONS New optical imaging technologies may improve bladder cancer detection and characterization, and transurethral resection quality. While data on photodynamic diagnosis are strongest, the clinical effectiveness of these technologies is not proven. Prospective studies are needed, particularly of narrow band imaging, confocal laser endomicroscopy and optical coherence tomography. As each technology matures and new ones emerge, cost-effectiveness analysis must be addressed in the context of the various bladder cancer types.
Collapse
Affiliation(s)
- Jen-Jane Liu
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
14
|
Ren H, Avila C, Kaplan C, Pan Y. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:116006. [PMID: 22112111 PMCID: PMC3221713 DOI: 10.1117/1.3646530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 05/31/2023]
Abstract
Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness d(DV) ≈ 92±38 μm), low-scattering chorion and trophoblast (CT, d(CT) ≈ 150±67 μm), high-scattering subepithelial amnion (A, d(A) ≈ 95±36 μm), and low-scattering epithelium (E, d(E) ≈ 29±8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses d(MCP) ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., d(MCP)>615 μm) because of its increased imaging depth.
Collapse
Affiliation(s)
- Hugang Ren
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York 11794-5281, USA
| | | | | | | |
Collapse
|
15
|
Gladkova N, Streltsova O, Zagaynova E, Kiseleva E, Gelikonov V, Gelikonov G, Karabut M, Yunusova K, Evdokimova O. Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study. JOURNAL OF BIOPHOTONICS 2011; 4:519-532. [PMID: 21780300 DOI: 10.1002/jbio.201000088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 05/31/2023]
Abstract
The capabilities of cross-polarization optical coherence tomography (CP OCT) for early bladder-cancer detection are assessed in statistical study and compared with the traditional OCT. Unlike the traditional OCT that demonstrates images only in copolarization, CP OCT acquires images in cross-polarization and copolarization simultaneously. 116 patients with localized flat suspicious lesions in the bladder were enrolled, 360 CP OCT images were obtained and analyzed. CP OCT demonstrated sensitivity 93.7% (vs. 81.2%, <0.0001), specificity 84% (vs. 70.0%, <0.001) and accuracy 85.3% (vs. 71.5%, <0.001) in detecting flat malignant bladder lesions, which is significantly better than with the traditional OCT. Higher diagnostic efficacy of CP OCT in detecting early bladder cancer is associated with the ability to detect changes in epithelium and connective tissues.
Collapse
Affiliation(s)
- Natalia Gladkova
- Institute of Applied and Fundamental Medicine, Nizhny Novgorod State Medical Academy, Minina and Pozharski Sq. 10/1, Nizhny Novgorod 603005, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hadjipanayis CG, Jiang H, Roberts DW, Yang L. Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin Oncol 2011; 38:109-18. [PMID: 21362519 DOI: 10.1053/j.seminoncol.2010.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Optical imaging is an inexpensive, fast, and sensitive imaging approach for the noninvasive detection of human cancers in locations that are accessible by an optical imaging device. Light is used to probe cellular and molecular function in the context of cancer in the living body. Recent advances in the development of optical instrumentation make it possible to detect optical signals produced at a tissue depth of several centimeters. The optical signals can be endogenous contrasts that capture the heterogeneity and biological status of different tissues, including tumors, or extrinsic optical contrasts that selectively accumulate in tumors to be imaged after local or systemic delivery. The use of optical imaging is now being applied in the clinic and operating room for the localization and resection of malignant tumors in addition to screening for cancer.
Collapse
Affiliation(s)
- Costas G Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
17
|
Chen CW, Betz MW, Fisher JP, Paek A, Chen Y. Macroporous hydrogel scaffolds and their characterization by optical coherence tomography. Tissue Eng Part C Methods 2010; 17:101-12. [PMID: 20666607 DOI: 10.1089/ten.tec.2010.0072] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A simple porogen-leaching method to fabricate macroporous cyclic acetal hydrogel cell scaffolds is presented. Optical coherence tomography (OCT) was applied for nondestructive imaging and quantitative characterization of the scaffold structures. High-resolution OCT reveals the microstructures of the engineered tissue scaffolds in three dimensions. It also enables subsequent image processing to investigate quantitatively several key morphological design parameters for macroporous scaffolds, including the volume porosity, pore interconnectivity, and pore size. Two image-processing algorithms were adapted: three-dimensional labeling was applied to assess the interconnectivity, and erosion was applied to assess the pore size. Scaffolds with different design parameters were imaged, characterized, and compared. OCT imaging and image processing successfully discriminated scaffolds made from different formulations in terms of volume porosity, interconnectivity, and pore size. The cell viability and their spread across the scaffolds were confirmed by the fluorescence microscopy co-registered with OCT.
Collapse
Affiliation(s)
- Chao-Wei Chen
- 1 Department of Electrical and Computer Engineering, University of Maryland , College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
18
|
Cicchi R, Crisci A, Cosci A, Nesi G, Kapsokalyvas D, Giancane S, Carini M, Pavone FS. Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. OPTICS EXPRESS 2010; 18:3840-9. [PMID: 20389394 DOI: 10.1364/oe.18.003840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined non-linear imaging techniques were used to deeply image human ex-vivo fresh biopsies of bladder as well as to discriminate between healthy bladder mucosa and carcinoma in situ. Morphological examination by two-photon excited fluorescence and second-harmonic generation has shown a good agreement with corresponding common routine histology performed on the same samples. Tumor cells appeared slightly different in shape and with a smaller cellular-to-nuclear dimension ratio with respect to corresponding normal cells. Further differences between the two tissue types were found in both spectral emission and fluorescence lifetime distribution by performing temporal- and spectral- resolved analysis of fluorescence. This method may represent a promising tool to be used in a multi-photon endoscope, in a confocal endoscope or in a spectroscopic probe for in-vivo optical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Riccardo Cicchi
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, I-50019, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ren H, Waltzer WC, Bhalla R, Liu J, Yuan Z, Lee CS, Darras F, Schulsinger D, Adler HL, Kim J, Mishail A, Pan Y. Diagnosis of bladder cancer with microelectromechanical systems-based cystoscopic optical coherence tomography. Urology 2009; 74:1351-7. [PMID: 19660795 PMCID: PMC2789875 DOI: 10.1016/j.urology.2009.04.090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/16/2009] [Accepted: 04/14/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To examine the utility and potential limitations of microelectromechanical systems-based spectral-domain cystoscopic optical coherence tomography (COCT) so as to improve the diagnosis of early bladder cancer. METHODS An optical coherence tomography catheter was integrated into the single instrument channel of a 22F cystoscope to permit white-light-guided COCT over a large field of view (4.6 mm wide and 2.1 mm deep per scan at 8 frames/s) and 10-microm resolution. Intraoperative COCT diagnosis was performed in 56 patients, with a total of 110 lesions examined and compared with biopsied histology. RESULTS The overall sensitivity of COCT (94%) was significantly higher than cystoscopy (75%, P = .02) and voided cytology (59%, P = .005); the major enhancement over cystoscopy was for low-grade pTa-1 cancer and carcinoma in situ (P < .018). The overall specificity of COCT (81%) was comparable to voided cytology (88.9%, P = .49), but significantly higher than cystoscopy (62.5%, P = .02). CONCLUSIONS The microelectromechanical systems-based COCT, owing to its high resolution and detection sensitivity and large field of view, offers great potential for "optical biopsy" to enhance the diagnosis of nonpapillary bladder tumors and their recurrences and to guide bladder tumor resection.
Collapse
Affiliation(s)
- Hugang Ren
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Wayne C. Waltzer
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Rahuldev Bhalla
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Jingxuan Liu
- Department of Pathology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Zhijia Yuan
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| | | | - Frank Darras
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | | | - Howard L. Adler
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Jason Kim
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Alek Mishail
- Department of Urology, SUNY at Stony Brook, Stony Brook, NY 11794
| | - Yingtian Pan
- Department of Biomedical Engineering, SUNY at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|