1
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
2
|
Untracht GR, Chen M, Wijesinghe P, Mas J, Yura HT, Marti D, Andersen PE, Dholakia K. Spatially offset optical coherence tomography: Leveraging multiple scattering for high-contrast imaging at depth in turbid media. SCIENCE ADVANCES 2023; 9:eadh5435. [PMID: 37418534 DOI: 10.1126/sciadv.adh5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
The penetration depth of optical coherence tomography (OCT) reaches well beyond conventional microscopy; however, signal reduction with depth leads to rapid degradation of the signal below the noise level. The pursuit of imaging at depth has been largely approached by extinguishing multiple scattering. However, in OCT, multiple scattering substantially contributes to image formation at depth. Here, we investigate the role of multiple scattering in OCT image contrast and postulate that, in OCT, multiple scattering can enhance image contrast at depth. We introduce an original geometry that completely decouples the incident and collection fields by introducing a spatial offset between them, leading to preferential collection of multiply scattered light. A wave optics-based theoretical framework supports our experimentally demonstrated improvement in contrast. The effective signal attenuation can be reduced by more than 24 decibels. Notably, a ninefold enhancement in image contrast at depth is observed in scattering biological samples. This geometry enables a powerful capacity to dynamically tune for contrast at depth.
Collapse
Affiliation(s)
- Gavrielle R Untracht
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Philip Wijesinghe
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Josep Mas
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Harold T Yura
- Electronics and Photonics Laboratory, The Aerospace Corporation, El Segundo, CA 90245, USA
| | - Dominik Marti
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter E Andersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
- Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
4
|
Gitajn IL, Slobogean GP, Henderson ER, von Keudell AG, Harris MB, Scolaro JA, O’Hara NN, Elliott JT, Pogue BW, Jiang S. Perspective on optical imaging for functional assessment in musculoskeletal extremity trauma surgery. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200070-PER. [PMID: 32869567 PMCID: PMC7457961 DOI: 10.1117/1.jbo.25.8.080601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Extremity injury represents the leading cause of trauma hospitalizations among adults under the age of 65 years, and long-term impairments are often substantial. Restoring function depends, in large part, on bone and soft tissue healing. Thus, decisions around treatment strategy are based on assessment of the healing potential of injured bone and/or soft tissue. However, at the present, this assessment is based on subjective clinical clues and/or cadaveric studies without any objective measure. Optical imaging is an ideal method to solve several of these issues. AIM The aim is to highlight the current challenges in assessing bone and tissue perfusion/viability and the potentially high impact applications for optical imaging in orthopaedic surgery. APPROACH The prospective will review the current challenges faced by the orthopaedic surgeon and briefly discuss optical imaging tools that have been published. With this in mind, it will suggest key research areas that could be evolved to help make surgical assessments more objective and quantitative. RESULTS Orthopaedic surgical procedures should benefit from incorporation of methods to measure functional blood perfusion or tissue metabolism. The types of measurements though can vary in the depth of tissue sampled, with some being quite superficial and others sensing several millimeters into the tissue. Most of these intrasurgical imaging tools represent an ideal way to improve surgical treatment of orthopaedic injuries due to their inherent point-of-care use and their compatibility with real-time management. CONCLUSION While there are several optical measurements to directly measure bone function, the choice of tools can determine also the signal strength and depth of sampling. For orthopaedic surgery, real-time data regarding bone and tissue perfusion should lead to more effective patient-specific management of common orthopaedic conditions, requiring deeper penetrance commonly seen with indocyanine green imaging. This will lower morbidity and result in decreased variability associated with how these conditions are managed.
Collapse
Affiliation(s)
- Ida L. Gitajn
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Gerard P. Slobogean
- University of Maryland, Orthopaedic Associates, Baltimore, Maryland, United States
| | - Eric R. Henderson
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Arvind G. von Keudell
- Brigham and Women’s Hospital, Department of Orthopaedic Surgery, Boston, Massachusetts, United States
| | - Mitchel B. Harris
- Massachusetts General Hospital, Department of Orthopaedic Surgery, Boston, Massachusetts, United States
| | - John A. Scolaro
- University of California, Irvine, Department of Orthopaedic Surgery, Orange, California, United States
| | - Nathan N. O’Hara
- University of Maryland, Orthopaedic Associates, Baltimore, Maryland, United States
| | - Jonathan T. Elliott
- Dartmouth-Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
5
|
Ding J, Liu W, Sadr A, He Y, Ebihara A, Li Y. Detection of Simulated Periradicular Lesions in Porcine Bone by Optical Coherence Tomography. J Endod 2019; 45:1024-1029. [PMID: 31248699 DOI: 10.1016/j.joen.2019.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The accurate detection of periradicular lesions located under a nonperforated cortical plate poses a challenge in endodontic microsurgery. Optical coherence tomography (OCT) is a noninvasive imaging method that has been successfully used in many dental applications. In this study, we investigated if spectral-domain OCT (SD-OCT) could be used to determine simulated periradicular lesions. METHODS Twenty-eight cavities with different depths were prepared on bone plates obtained from 5 porcine mandibles. Both 3-dimensional SD-OCT imaging and micro-computed tomographic (micro-CT) imaging were used to image the bottom of the air-filled cavity and the cavity filled with soft tissue for comparison. The residual bone thickness under the cavity was measured by SD-OCT and micro-CT imaging and compared using the Pearson correlation. RESULTS The air-filled lesions were readily detected; yet, filling of the cavity with soft tissue diminished the appearance of the lesion boundaries in the SD-OCT images. The optical values of residual bone thickness obtained from SD-OCT ranged from 0.14-2.11 mm, which corresponded to the range of 0.26-1.18 mm from micro-CT imaging. A strong correlation was found between the 2 imaging modalities (r = 0.96; range, 0.94-0.98). The slope (1.56) of the linear regression matched the bulk refractive index of bone tissues. CONCLUSIONS SD-OCT allows for visualization of the lesion boundaries via intact bone surfaces and may be a promising, practical, and nonirradiating adjunct tool for chairside localization of periradicular lesions in bone.
Collapse
Affiliation(s)
- Jiangfeng Ding
- Department of Stomatology, Shenzhen Nanshan People's Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Guangdong Province, China; Central Laboratory, Shenzhen Nanshan People's Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Guangdong Province, China
| | - Weixiang Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Alireza Sadr
- Department of Restorative Dentistry, University of Washington School of Dentistry, Seattle, Washington
| | - Yonghong He
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Arata Ebihara
- Division of Oral Health Sciences, Medical and Dental Sciences Track, Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yifan Li
- Central Laboratory, Shenzhen Nanshan People's Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Guangdong Province, China.
| |
Collapse
|
6
|
Luca RE, Todea CD, Duma VF, Bradu A, Podoleanu AG. Quantitative assessment of rat bone regeneration using complex master-slave optical coherence tomography. Quant Imaging Med Surg 2019; 9:782-798. [PMID: 31281774 PMCID: PMC6571200 DOI: 10.21037/qims.2019.05.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/25/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND The need for hard and soft tissues in oral implantology determined the development of methods and techniques to increase bone volume and their quality with different alternative materials used as substituents of patient's natural bone. In addition, laser radiation can be used to accelerate the repair of fractures and to produce an increased volume of formed callus, as well as an increased bone mineral density. METHODS The aim of this work is to evaluate the capability of an in-house developed multimodal complex master slave (CMS) enhanced swept source (SS) optical coherence tomography (OCT) imaging instrument to analyze the increase in the quantity and the improvement of the quality of newly-formed bone using low level laser therapy (LLLT). Bone formation is quantitatively assessed in 5 mm cylindrical defects made in the calvaria part of the skull of living rats. Samples are divided in three study groups: A, a negative control group, for which the natural healing process of the defect is investigated; B, a positive control group, for which bovine graft is used to stimulate bone formation, and C, a study group, in which bovine graft is added to the created defects and LLLT is applied throughout the entire healing period. The animals are sacrificed after 14, 21, and 30 days, and the samples are imaged using the multimodal CMS/SS-OCT instrument. RESULTS The method allows for the simultaneous monitoring of the bone tissue via two perpendicular cross-sections and nine en-face images taken at adjustable depths into the sample. A global image with course axial resolution allows for the positioning of the field-of-view of the system on the area of interest on the tissue. The quantitative assessment of the process of bone formation is completed using the differences in brightness between the native bone, the artificial bone graft, and the newly-formed bone. CONCLUSIONS Group C is demonstrated to have a higher volume of newly-formed bone than Group B, which is better from this point of view than Group A. By analyzing the evolution of this volume of new bone in time, the most significant difference was after 21 days, therefore approximately after two thirds of the total time interval analyzed. After 30 days, the volumes of bone tend to move closer, as they begin to fill the available gap. The study demonstrates that OCT can assess quantitatively the positive impact of LLLT on bone regeneration.
Collapse
Affiliation(s)
- Ruxandra Elena Luca
- School of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| | - Carmen Darinca Todea
- School of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| | - Virgil-Florin Duma
- 3OM Optomechatronics Group, Faculty of Engineering, Aurel Vlaicu University of Arad, Arad, Romania
- Doctoral School, Polytechnic University of Timisoara, Timisoara, Romania
| | - Adrian Bradu
- School of Physical Sciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
7
|
Nam HS, Song JW, Jang SJ, Lee JJ, Oh WY, Kim JW, Yoo H. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75004. [PMID: 27391375 DOI: 10.1117/1.jbo.21.7.075004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 05/23/2023]
Abstract
Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.
Collapse
Affiliation(s)
- Hyeong Soo Nam
- Hanyang University, Department of Biomedical Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Joon Woo Song
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Guro-gu, Seoul 08308 Republic of Korea
| | - Sun-Joo Jang
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Gwahang-no, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Joong Lee
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Guro-gu, Seoul 08308 Republic of Korea
| | - Wang-Yuhl Oh
- Korea Advanced Institute of Science and Technology, Department of Mechanical Engineering, 291 Gwahang-no, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jin Won Kim
- Korea University Guro Hospital, Cardiovascular Center, 148 Gurodong-ro, Guro-gu, Seoul 08308 Republic of Korea
| | - Hongki Yoo
- Hanyang University, Department of Biomedical Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
8
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
9
|
Puhakka PH, Ylärinne JH, Lammi MJ, Saarakkala S, Tiitu V, Kröger H, Virén T, Jurvelin JS, Töyräs J. Dependence of light attenuation and backscattering on collagen concentration and chondrocyte density in agarose scaffolds. Phys Med Biol 2014; 59:6537-48. [PMID: 25310088 DOI: 10.1088/0031-9155/59/21/6537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optical coherence tomography (OCT) has been applied for high resolution imaging of articular cartilage. However, the contribution of individual structural elements of cartilage on OCT signal has not been thoroughly studied. We hypothesize that both collagen and chondrocytes, essential structural components of cartilage, act as important light scatterers and that variation in their concentrations can be detected by OCT through changes in backscattering and attenuation. To evaluate this hypothesis, we established a controlled model system using agarose scaffolds embedded with variable collagen concentrations and chondrocyte densities. Using OCT, we measured the backscattering coefficient (µb) and total attenuation coefficient (µt) in these scaffolds. Along our hypothesis, light backscattering and attenuation in agarose were dependent on collagen concentration and chondrocyte density. Significant correlations were found between µt and chondrocyte density (ρ = 0.853, p < 0.001) and between µt and collagen concentration (ρ = 0.694, p < 0.001). µb correlated significantly with chondrocyte density (ρ = 0.504, p < 0.001) but not with collagen concentration (ρ = 0.103, p = 0.422) of the scaffold. Thus, quantitation of light backscattering and, especially, attenuation could be valuable when evaluating the integrity of soft tissues, such as articular cartilage with OCT.
Collapse
Affiliation(s)
- P H Puhakka
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland. Department of Clinical Neurophysiology, Kuopio University Hospital, PO Box 1777, FI-70029 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaiplavil S, Mandelis A, Wang X, Feng T. Photothermal tomography for the functional and structural evaluation, and early mineral loss monitoring in bones. BIOMEDICAL OPTICS EXPRESS 2014; 5:2488-2502. [PMID: 25136480 PMCID: PMC4132983 DOI: 10.1364/boe.5.002488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/15/2013] [Accepted: 01/07/2014] [Indexed: 05/31/2023]
Abstract
Salient features of a new non-ionizing bone diagnostics technique, truncated-correlation photothermal coherence tomography (TC-PCT), exhibiting optical-grade contrast and capable of resolving the trabecular network in three dimensions through the cortical region with and without a soft-tissue overlayer are presented. The absolute nature and early demineralization-detection capability of a marker called thermal wave occupation index, estimated using the proposed modality, have been established. Selective imaging of regions of a specific mineral density range has been demonstrated in a mouse femur. The method is maximum-permissible-exposure compatible. In a matrix of bone and soft-tissue a depth range of ~3.8 mm has been achieved, which can be increased through instrumental and modulation waveform optimization. Furthermore, photoacoustic microscopy, a comparable modality with TC-PCT, has been used to resolve the trabecular structure and for comparison with the photothermal tomography.
Collapse
Affiliation(s)
- Sreekumar Kaiplavil
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Andreas Mandelis
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Dept. of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Xueding Wang
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109-5667, USA
| | - Ting Feng
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109-5667, USA
| |
Collapse
|