1
|
Torres VC, Li C, Zhou W, Brankov JG, Tichauer KM. Characterization of an angular domain fluorescence optical projection tomography system for mesoscopic lymph node imaging. APPLIED OPTICS 2021; 60:135-146. [PMID: 33362081 DOI: 10.1364/ao.411577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Transmittance and fluorescence optical projection tomography can offer high-resolution and high-contrast visualization of whole biological specimens; however, applications are limited to samples exhibiting minimal light scattering. Our previous work demonstrated that angular-domain techniques permitted imaging of ∼1cm diameter noncleared lymph nodes because of their low scattering nature. Here, an angle-restricted transmittance/fluorescence system is presented and characterized in terms of geometric and fluorescence concentration reconstruction accuracy as well as spatial resolution, depth of focus, and fluorescence limits of detection. Using lymph node mimicking phantoms, results demonstrated promising detection and localization capabilities relevant for clinical lymph node applications.
Collapse
|
2
|
Torres VC, Li C, He Y, Sinha L, Papavasiliou G, Sattar HA, Brankov JG, Tichauer KM. Angular restriction fluorescence optical projection tomography to localize micrometastases in lymph nodes. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-4. [PMID: 31705637 PMCID: PMC6839382 DOI: 10.1117/1.jbo.24.11.110501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-μm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.
Collapse
Affiliation(s)
- Veronica C. Torres
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Chengyue Li
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Yusheng He
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Lagnojita Sinha
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Georgia Papavasiliou
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Husain A. Sattar
- University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Jovan G. Brankov
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
- Illinois Institute of Technology, Department of Electrical and Computer Engineering, Chicago, Illinois, United States
| | - Kenneth M. Tichauer
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| |
Collapse
|
3
|
Dinnes J, Deeks JJ, Saleh D, Chuchu N, Bayliss SE, Patel L, Davenport C, Takwoingi Y, Godfrey K, Matin RN, Patalay R, Williams HC, Cochrane Skin Cancer Diagnostic Test Accuracy Group, Cochrane Skin Group. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev 2018; 12:CD013190. [PMID: 30521681 PMCID: PMC6492459 DOI: 10.1002/14651858.cd013190] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Early detection and treatment is key to improving survival; however, anxiety around missing early cases needs to be balanced against appropriate levels of referral and excision of benign lesions. Used in conjunction with clinical or dermoscopic suspicion of malignancy, or both, reflectance confocal microscopy (RCM) may reduce unnecessary excisions without missing melanoma cases. OBJECTIVES To determine the diagnostic accuracy of reflectance confocal microscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults with any lesion suspicious for melanoma and lesions that are difficult to diagnose, and to compare its accuracy with that of dermoscopy. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; and seven other databases. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies of any design that evaluated RCM alone, or RCM in comparison to dermoscopy, in adults with lesions suspicious for melanoma or atypical intraepidermal melanocytic variants, compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities per algorithm and threshold using the bivariate hierarchical model. To compare RCM with dermoscopy, we grouped studies by population (defined by difficulty of lesion diagnosis) and combined data using hierarchical summary receiver operating characteristic (SROC) methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of specificity at the point on the SROC curve with 90% sensitivity as this value lies within the estimates for the majority of analyses. We investigated the impact of using a purposely developed RCM algorithm and in-person test interpretation. MAIN RESULTS The search identified 18 publications reporting on 19 study cohorts with 2838 lesions (including 658 with melanoma), which provided 67 datasets for RCM and seven for dermoscopy. Studies were generally at high or unclear risk of bias across almost all domains and of high or unclear concern regarding applicability of the evidence. Selective participant recruitment, lack of blinding of the reference test to the RCM result, and differential verification were particularly problematic. Studies may not be representative of populations eligible for RCM, and test interpretation was often undertaken remotely from the patient and blinded to clinical information.Meta-analysis found RCM to be more accurate than dermoscopy in studies of participants with any lesion suspicious for melanoma and in participants with lesions that were more difficult to diagnose (equivocal lesion populations). Assuming a fixed sensitivity of 90% for both tests, specificities were 82% for RCM and 42% for dermoscopy for any lesion suspicious for melanoma (9 RCM datasets; 1452 lesions and 370 melanomas). For a hypothetical population of 1000 lesions at the median observed melanoma prevalence of 30%, this equated to a reduction in unnecessary excisions with RCM of 280 compared to dermoscopy, with 30 melanomas missed by both tests. For studies in equivocal lesions, specificities of 86% would be observed for RCM and 49% for dermoscopy (7 RCM datasets; 1177 lesions and 180 melanomas). At the median observed melanoma prevalence of 20%, this reduced unnecessary excisions by 296 with RCM compared with dermoscopy, with 20 melanomas missed by both tests. Across all populations, algorithms and thresholds assessed, the sensitivity and specificity of the Pellacani RCM score at a threshold of three or greater were estimated at 92% (95% confidence interval (CI) 87 to 95) for RCM and 72% (95% CI 62 to 81) for dermoscopy. AUTHORS' CONCLUSIONS RCM may have a potential role in clinical practice, particularly for the assessment of lesions that are difficult to diagnose using visual inspection and dermoscopy alone, where the evidence suggests that RCM may be both more sensitive and specific in comparison to dermoscopy. Given the paucity of data to allow comparison with dermoscopy, the results presented require further confirmation in prospective studies comparing RCM with dermoscopy in a real-world setting in a representative population.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Daniel Saleh
- Newcastle Hospitals NHS Trust, Royal Victoria InfirmaryNewcastle HospitalsNewcastleUK
- The University of Queensland, PA‐Southside Clinical UnitSchool of Clinical MedicineBrisbaneQueenslandAustralia
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Lopa Patel
- Royal Stoke HospitalPlastic SurgeryStoke‐on‐TrentStaffordshireUKST4 6QG
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Rakesh Patalay
- Guy's and St Thomas' NHS Foundation TrustDepartment of DermatologyDSLU, Cancer CentreGreat Maze PondLondonUKSE1 9RT
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
4
|
Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, Godfrey K, O'Sullivan C, Matin RN, Deeks JJ, Williams HC, Cochrane Skin Cancer Diagnostic Test Accuracy Group, Cochrane Skin Group. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013188. [PMID: 30521683 PMCID: PMC6516989 DOI: 10.1002/14651858.cd013188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early, accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers with the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Ultrasound is a non-invasive imaging technique that relies on the measurement of sound wave reflections from the tissues of the body. At lower frequencies, the deeper structures of the body such as the internal organs can be visualised, while high-frequency ultrasound (HFUS) with transducer frequencies of 20 MHz or more has a much lower depth of tissue penetration but produces a higher resolution image of tissues and structures closer to the skin surface. Used in conjunction with clinical and/or dermoscopic examination of suspected skin cancer, HFUS may offer additional diagnostic information compared to other technologies. OBJECTIVES To assess the diagnostic accuracy of HFUS to assist in the diagnosis of a) cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, b) cutaneous squamous cell carcinoma (cSCC), and c) basal cell carcinoma (BCC) in adults. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA Studies evaluating HFUS (20 MHz or more) in adults with lesions suspicious for melanoma, cSCC or BCC versus a reference standard of histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and the poor quality of studies, we did not undertake a meta-analysis for this review. For illustrative purposes, we plot estimates of sensitivity and specificity on coupled forest plots. MAIN RESULTS We included six studies, providing 29 datasets: 20 for diagnosis of melanoma (1125 lesions and 242 melanomas) and 9 for diagnosis of BCC (993 lesions and 119 BCCs). We did not identify any data relating to the diagnosis of cSCC.Studies were generally poorly reported, limiting judgements of methodological quality. Half the studies did not set out to establish test accuracy, and all should be considered preliminary evaluations of the potential usefulness of HFUS. There were particularly high concerns for applicability of findings due to selective study populations and data-driven thresholds for test positivity. Studies reporting qualitative assessments of HFUS images excluded up to 22% of lesions (including some melanomas) due to lack of visualisation in the test.Derived sensitivities for qualitative HFUS characteristics were at least 83% (95% CI 75% to 90%) for the detection of melanoma; the combination of three features (lesions appearing hypoechoic, homogenous and well defined) demonstrating 100% sensitivity in two studies (lower limits of the 95% CIs were 94% and 82%), with variable corresponding specificities of 33% (95% CI 20% to 48%) and 73% (95% CI 57% to 85%), respectively. Quantitative measurement of HFUS outputs in two studies enabled decision thresholds to be set to achieve 100% sensitivity; specificities were 93% (95% CI 77% to 99%) and 65% (95% CI 51% to 76%). It was not possible to make summary statements regarding HFUS accuracy for the diagnosis of BCC due to highly variable sensitivities and specificities. AUTHORS' CONCLUSIONS Insufficient data are available on the potential value of HFUS in the diagnosis of melanoma or BCC. Given the between-study heterogeneity, unclear to low methodological quality and limited volume of evidence, we cannot draw any implications for practice. The main value of the preliminary studies included may be in providing guidance on the possible components of new diagnostic rules for diagnosis of melanoma or BCC using HFUS that will require future evaluation. A prospective evaluation of HFUS added to visual inspection and dermoscopy alone in a standard healthcare setting, with a clearly defined and representative population of participants, would be required for a full and proper evaluation of accuracy.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jeffrey Bamber
- Institute of Cancer Research and The Royal Marsden NHS Foundation TrustJoint Department of Physics15 Cotswold RoadSuttonUKSM2 5NG
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
5
|
Dinnes J, Matin RN, Moreau JF, Patel L, Chan SA, Chuchu N, Bayliss SE, Grainge M, Takwoingi Y, Davenport C, Walter FM, Fleming C, Schofield J, Shroff N, Godfrey K, O'Sullivan C, Deeks JJ, Williams HC. Tests to assist in the diagnosis of cutaneous melanoma in adults: a generic protocol. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2015. [DOI: 10.1002/14651858.cd011902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jac Dinnes
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Rubeta N Matin
- Churchill Hospital; Department of Dermatology; Old Road Headington Oxford UK OX3 7LJ
| | - Jacqueline F Moreau
- University of Pittsburgh Medical Center; Internal Medicine; Department of Medicine, Office of Education UPMC Montefiore Hospital, N715 Pittsburgh USA PA, 15213
| | - Lopa Patel
- Royal Stoke Hospital; Plastic Surgery; Stoke-on-Trent Staffordshire UK ST4 6QG
| | - Sue Ann Chan
- NHS; Dermatology; 104 Times Square Avenue Brierley Hill Dudley UK DY5 1SX
| | - Naomi Chuchu
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Susan E Bayliss
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Matthew Grainge
- School of Community Health Sciences; Division of Epidemiology and Public Health; University of Nottingham Nottingham UK NG7 2UH
| | - Yemisi Takwoingi
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Clare Davenport
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Fiona M Walter
- University of Cambridge; Public Health & Primary Care; Strangeways Research Laboratory, Worts Causeway Cambridge UK CB1 8RN
| | - Colin Fleming
- NHS Tayside, Ninewells Hospital; Dermatology; Ninewells Drive Dundee UK DD1 9SY
| | - Julia Schofield
- United Lincolnshire Hospitals NHS Trust; Dermatology; Greetwell Street Lincoln UK LN2 5QY
| | - Neil Shroff
- Keyworth Medical Practice; Bunny Lane Keyworth Nottingham UK NG12 5JU
| | - Kathie Godfrey
- The University of Nottingham; c/o Cochrane Skin Group; Nottingham UK
| | | | - Jonathan J Deeks
- University of Birmingham; Public Health, Epidemiology and Biostatistics; Birmingham UK B15 2TT
| | - Hywel C Williams
- The University of Nottingham; Centre of Evidence Based Dermatology; Queen's Medical Centre Derby Road Nottingham UK NG7 2UH
| |
Collapse
|
6
|
Goulart VP, dos Santos MO, Latrive A, Freitas AZ, Correa L, Zezell DM. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051007. [PMID: 25415566 DOI: 10.1117/1.jbo.20.5.051007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.
Collapse
Affiliation(s)
- Viviane P Goulart
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Moisés O dos Santos
- Universidade do Estado do Amazonas, Escola Superior de Tecnologia, Av. Darcy Vargas, 1200, Parque 10 de Novembro, Manaus, 69050-020, AM, Brazil
| | - Anne Latrive
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Anderson Z Freitas
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| | - Luciana Correa
- Universidade de Sao Paulo, Faculdade de Odontologia, Av. Lineu Prestes, 2227, Sao Paulo, 05508-000, SP, Brazil
| | - Denise M Zezell
- IPEN-CNEN/SP, Center for Lasers and Applications-CLA, Laboratório de Biofotônica, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, SP, Brazil
| |
Collapse
|
7
|
Arranz A, Dong D, Zhu S, Rudin M, Tsatsanis C, Tian J, Ripoll J. Helical optical projection tomography. OPTICS EXPRESS 2013; 21:25912-25. [PMID: 24216818 DOI: 10.1364/oe.21.025912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A new technique termed Helical Optical Projection Tomography (hOPT) has been developed with the aim to overcome some of the limitations of current 3D optical imaging techniques. hOPT is based on Optical Projection Tomography (OPT) with the major difference that there is a translation of the sample in the vertical direction during the image acquisition process, requiring a new approach to image reconstruction. Contrary to OPT, hOPT makes possible to obtain 3D-optical images of intact long samples without imposing limits on the sample length. This has been tested using hOPT to image long murine tissue samples such as spinal cords and large intestines. Moreover, 3D-reconstructed images of the colon of DSS-treated mice, a model for Inflammatory Bowel Disease, allowed the identification of the structural alterations. Finally, the geometry of the hOPT device facilitates the addition of a Selective Plane Illumination Microscopy (SPIM) arm, providing the possibility of delivering high resolution images of selected areas together with complete volumetric information.
Collapse
|