1
|
Sun J, Fang T, Wang H, Wang S. Photothermal optical coherence tomography for 3D live cell detection and mapping. OPTICS CONTINUUM 2023; 2:2468-2483. [PMID: 38665863 PMCID: PMC11044816 DOI: 10.1364/optcon.503577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Imaging cells in their 3D environment with molecular specificity is important to cell biology study. Widely used microscopy techniques, such as confocal microscopy, have limited imaging depth when probing cells in optically scattering media. Optical coherence tomography (OCT) can provide millimeter-level depth for imaging of highly scattering media but lacks the contrast to distinguish cells from extracellular matrix or to distinguish between different types of cells. Photothermal OCT (PT-OCT) is a promising technique to obtain molecular contrast at the imaging scale of OCT. Here, we report PT-OCT imaging of live, nanoparticle-labeled cells in 3D. In particular, we demonstrate detection and mapping of single cell in 3D without causing call death, and show the feasibility of 3D cell mapping through optical scattering media. This work presents live cell detection and mapping at an imaging scale that complements the major microscopy techniques, which is potentially useful to study cells in their 3D native or culture environment.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tianqi Fang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
2
|
Rubinoff I, Kuranov RV, Fang R, Ghassabi Z, Wang Y, Beckmann L, Miller DA, Wollstein G, Ishikawa H, Schuman JS, Zhang HF. Adaptive spectroscopic visible-light optical coherence tomography for clinical retinal oximetry. COMMUNICATIONS MEDICINE 2023; 3:57. [PMID: 37095177 PMCID: PMC10126115 DOI: 10.1038/s43856-023-00288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Retinal oxygen saturation (sO2) provides essential information about the eye's response to pathological changes that can result in vision loss. Visible-light optical coherence tomography (vis-OCT) is a noninvasive tool that has the potential to measure retinal sO2 in a clinical setting. However, its reliability is currently limited by unwanted signals referred to as spectral contaminants (SCs), and a comprehensive strategy to isolate true oxygen-dependent signals from SCs in vis-OCT is lacking. METHODS We develop an adaptive spectroscopic vis-OCT (ADS-vis-OCT) technique that can adaptively remove SCs and accurately measure sO2 under the unique conditions of each vessel. We also validate the accuracy of ADS-vis-OCT using ex vivo blood phantoms and assess its repeatability in the retina of healthy volunteers. RESULTS In ex vivo blood phantoms, ADS-vis-OCT agrees with a blood gas machine with only a 1% bias in samples with sO2 ranging from 0% to 100%. In the human retina, the root mean squared error between sO2 values in major arteries measured by ADS-vis-OCT and a pulse oximeter is 2.1% across 18 research participants. Additionally, the standard deviations of repeated ADS-vis-OCT measurements of sO2 values in smaller arteries and veins are 2.5% and 2.3%, respectively. Non-adaptive methods do not achieve comparable repeatabilities from healthy volunteers. CONCLUSIONS ADS-vis-OCT effectively removes SCs from human images, yielding accurate and repeatable sO2 measurements in retinal arteries and veins with varying diameters. This work could have important implications for the clinical use of vis-OCT to manage eye diseases.
Collapse
Affiliation(s)
- Ian Rubinoff
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Roman V Kuranov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Opticent Inc., Evanston, IL, 60201, USA
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zeinab Ghassabi
- Department of Ophthalmology, New York University, New York, NY, 10017, USA
| | - Yuanbo Wang
- Currently with Department of Ophthalmology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - David A Miller
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Gadi Wollstein
- Department of Ophthalmology, New York University, New York, NY, 10017, USA
| | - Hiroshi Ishikawa
- Department of Ophthalmology, New York University, New York, NY, 10017, USA
- Currently with Department of Ophthalmology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joel S Schuman
- Department of Ophthalmology, New York University, New York, NY, 10017, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
3
|
Salimi MH, Villiger M, Tabatabaei N. Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries. BIOMEDICAL OPTICS EXPRESS 2022; 13:3416-3433. [PMID: 35781956 PMCID: PMC9208589 DOI: 10.1364/boe.454491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Photothermal optical coherence tomography (PT-OCT) is a functional extension of OCT with the ability to generate qualitative maps of molecular absorptions co-registered with the micron-resolution structural tomograms of OCT. Obtaining refined insight into chemical information from PT-OCT images, however, requires solid understanding of the multifactorial physics behind generation of PT-OCT signals and their dependence on system and sample parameters. Such understanding is needed to decouple the various physical effects involved in the PT-OCT signal to obtain more accurate insight into sample composition. In this work, we propose an analytical model that considers the opto-thermo-mechanical properties of multi-layered samples in 3-D space, eliminating several assumptions that have been limiting previous PT-OCT models. In parametric studies, the model results are compared with experimental signals to investigate the effect of sample and system parameters on the acquired signals. The proposed model and the presented findings open the door for: 1) better understanding of the effects of system parameters and tissue opto-thermo-mechanical properties on experimental signals; 2) informed optimization of experimentation strategies based on sample and system parameters; 3) guidance of downstream signal processing for predicting tissue molecular composition.
Collapse
Affiliation(s)
- Mohammad Hossein Salimi
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| | - Martin Villiger
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Nima Tabatabaei
- York University, Lassonde School of Engineering, Department of Mechanical Engineering, Toronto, Canada
| |
Collapse
|
4
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
5
|
Intravital Optical Imaging to Monitor Anti-Tumor Immunological Response in Preclinical Models. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Yang S, Liu K, Ding H, Gao H, Zheng X, Ding Z, Xu K, Li P. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model. J Cereb Blood Flow Metab 2019; 39. [PMID: 29521548 PMCID: PMC6668510 DOI: 10.1177/0271678x18762636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A thorough understanding of the spatiotemporal dynamics of blood supply and tissue viability is of great importance in stroke researches. In the current study, vascular and cellular responses to focal ischemia were monitored with optical coherence tomography on chronic rat photothrombotic stroke model. The 3D mapping of blood perfusion and cellular scattering were achieved by analyzing the temporal dynamics and depth attenuation of intrinsic backscattered light respectively. Optical coherence tomography revealed that vessels of different types presented various spatial and temporal dynamics during the photothrombotic occlusion and the later recovery period. The large distal middle cerebral arteries presented a spontaneous recanalization and the small pial microvessels presented a reperfusion along with newly appeared vessels from the peripheral into the core area. The cortical capillary perfusion presented a weak recovery. Compared to the male group, the female rats showed a faster vascular recovery after photothrombotic. Moreover, the dynamic changes of the cellular scattering signal showed a high spatial and temporal correlation with the cortical capillary perfusion. Combined with well-designed photothrombotic stroke model and chronic optical window, optical coherence tomography imaging offers a unique approach to improve the understanding of stroke procedure and evaluate the treatment outcomes.
Collapse
Affiliation(s)
- Shanshan Yang
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kezhou Liu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huijie Ding
- 3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huan Gao
- 4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Xiaoxiang Zheng
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zhihua Ding
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kedi Xu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Peng Li
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Tang P, Liu S, Chen J, Yuan Z, Xie B, Zhou J, Tang Z. Cross-correlation photothermal optical coherence tomography with high effective resolution. OPTICS LETTERS 2017; 42:4974-4977. [PMID: 29216159 DOI: 10.1364/ol.42.004974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.
Collapse
|
8
|
Wang T, Pfeiffer T, Wu M, Wieser W, Amenta G, Draxinger W, van der Steen AFW, Huber R, Soest GV. Thermo-elastic optical coherence tomography. OPTICS LETTERS 2017; 42:3466-3469. [PMID: 28957064 DOI: 10.1364/ol.42.003466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/08/2017] [Indexed: 05/23/2023]
Abstract
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.
Collapse
|
9
|
Uttam S, Liu Y. Fourier phase in Fourier-domain optical coherence tomography. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:2286-306. [PMID: 26831383 PMCID: PMC4741112 DOI: 10.1364/josaa.32.002286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.
Collapse
|
10
|
Shao P, Chapman DW, Moore RB, Zemp RJ. Monitoring photodynamic therapy with photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106012. [PMID: 26509414 DOI: 10.1117/1.jbo.20.10.106012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Abstract. We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.
Collapse
Affiliation(s)
- Peng Shao
- University of Alberta, Department of Electrical & Computer Engineering, 9107-116 Street, Edmonton T6G 2V4, Canada
| | - David W Chapman
- University of Alberta, Department of Surgery and Oncology, 11560 University Avenue, Edmonton T6G 1Z2, Canada
| | - Ronald B Moore
- University of Alberta, Department of Surgery and Oncology, 11560 University Avenue, Edmonton T6G 1Z2, Canada
| | - Roger J Zemp
- University of Alberta, Department of Electrical & Computer Engineering, 9107-116 Street, Edmonton T6G 2V4, Canada
| |
Collapse
|
11
|
Tucker-Schwartz JM, Lapierre-Landry M, Patil CA, Skala MC. Photothermal optical lock-in optical coherence tomography for in vivo imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:2268-82. [PMID: 26114045 PMCID: PMC4473760 DOI: 10.1364/boe.6.002268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/12/2015] [Accepted: 05/21/2015] [Indexed: 05/19/2023]
Abstract
Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT.
Collapse
Affiliation(s)
| | | | - Chetan A. Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Current address: Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
12
|
Chong SP, Merkle CW, Leahy C, Radhakrishnan H, Srinivasan VJ. Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1429-50. [PMID: 25909026 PMCID: PMC4399681 DOI: 10.1364/boe.6.001429] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/19/2015] [Accepted: 03/14/2015] [Indexed: 05/18/2023]
Abstract
Quantification of chromophore concentrations in reflectance mode remains a major challenge for biomedical optics. Spectroscopic Optical Coherence Tomography (SOCT) provides depth-resolved spectroscopic information necessary for quantitative analysis of chromophores, like hemoglobin, but conventional SOCT analysis methods are applicable only to well-defined specular reflections, which may be absent in highly scattering biological tissue. Here, by fitting of the dynamic scattering signal spectrum in the OCT angiogram using a forward model of light propagation, we quantitatively determine hemoglobin concentrations directly. Importantly, this methodology enables mapping of both oxygen saturation and total hemoglobin concentration, or alternatively, oxyhemoglobin and deoxyhemoglobin concentration, simultaneously. Quantification was verified by ex vivo blood measurements at various pO2 and hematocrit levels. Imaging results from the rodent brain and retina are presented. Confounds including noise and scattering, as well as potential clinical applications, are discussed.
Collapse
|
13
|
Mattison SP, Kim W, Park J, Applegate BE. Molecular Imaging in Optical Coherence Tomography. CURRENT MOLECULAR IMAGING 2014; 3:88-105. [PMID: 25821718 PMCID: PMC4373611 DOI: 10.2174/2211555203666141117233442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT's impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT.
Collapse
Affiliation(s)
| | | | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| |
Collapse
|