1
|
Fadhel MN, Appak Baskoy S, Wang Y, Hysi E, Kolios MC. Use of photoacoustic imaging for monitoring vascular disrupting cancer treatments. JOURNAL OF BIOPHOTONICS 2023; 16:e202000209. [PMID: 32888381 DOI: 10.1002/jbio.202000209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Vascular disrupting agents disrupt tumor vessels, blocking the nutritional and oxygen supply tumors need to thrive. This is achieved by damaging the endothelium lining of blood vessels, resulting in red blood cells (RBCs) entering the tumor parenchyma. RBCs present in the extracellular matrix are exposed to external stressors resulting in biochemical and physiological changes. The detection of these changes can be used to monitor the efficacy of cancer treatments. Spectroscopic photoacoustic (PA) imaging is an ideal candidate for probing RBCs due to their high optical absorption relative to surrounding tissue. The goal of this work is to use PA imaging to monitor the efficacy of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) through quantitative analysis. Then, 4T1 breast cancer cells were injected subcutaneously into the left hind leg of eight BALB/c mice. After 10 days, half of the mice were treated with 15 mg/kg of DMXAA and the other half were injected with saline. All mice were imaged using the VevoLAZR X PA system before treatment, 24 and 72 hours after treatment. The imaging was done at six wavelengths and linear spectral unmixing was applied to the PA images to quantify three forms of hemoglobin (oxy, deoxy and met-hemoglobin). After imaging, tumors were histologically processed and H&E and TUNEL staining were used to detect the tissue damage induced by the DMXAA treatment. The total hemoglobin concentration remained unchanged after treatment for the saline treated mice. For DMXAA treated mice, a 10% increase of deoxyhemoglobin concentration was detected 24 hours after treatment and a 22.6% decrease in total hemoglobin concentration was observed by 72 hours. A decrease in the PA spectral slope parameters was measured 24 hours after treatment. This suggests that DMXAA induces vascular damage, causing red blood cells to extravasate. Furthermore, H&E staining of the tumor showed areas of bleeding with erythrocyte deposition. These observations are further supported by the increase in TUNEL staining in DMXAA treated tumors, revealing increased cell death due to vascular disruption. This study demonstrates the capability of PA imaging to monitor tumor vessel disruption by the vascular disrupting agent DMXAA.
Collapse
Affiliation(s)
- Muhannad N Fadhel
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sila Appak Baskoy
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanjie Wang
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eno Hysi
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Ontario, Canada
- Department of Physics, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Basavarajappa L, Hoyt K. Photoacoustic graphic equalization and application in characterization of red blood cell aggregates. PHOTOACOUSTICS 2022; 26:100365. [PMID: 35592591 PMCID: PMC9111976 DOI: 10.1016/j.pacs.2022.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A photoacoustic (PA) graphic equalization (PAGE) algorithm was developed to characterize the relative size of optical absorbing aggregates. This technique divides the PA signal into frequency bands related to different-sized optical absorbers. Simulations of a material containing optical absorbing microparticles of varying size were used to assess PAGE performance. Experiments were performed on phantom materials containing microspheres of varying size and concentration. Additional experiments were performed using tubes with fresh clotting blood. PA data was obtained using a Vevo LAZR-X system (FUJIFILM VisualSonics Inc). PAGE imaging of phantoms with varying-sized optical absorbers found a 1.5-fold difference in mean image intensity (p < 0.001). Conversely, PA images from these same materials exhibited no intensity changes (p = 0.68). PAGE imaging results from clotting blood exhibited differences for clot sizes in the range 0.30-0.64 mm (p < 0.001). In summary, PAGE imaging can distinguish optical absorbing aggregates of varying size.
Collapse
|
3
|
Zhang M, Chen Y, Xie W, Wu S, Liao J, Cheng Q. Photoacoustic power azimuth spectrum for microvascular evaluation. PHOTOACOUSTICS 2021; 22:100260. [PMID: 33777693 PMCID: PMC7985563 DOI: 10.1016/j.pacs.2021.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 05/08/2023]
Abstract
The tubular structures and dendritic distributions of blood vessels emit anisotropic photoacoustic (PA) signals with different intensities and frequency components at different angles. Therefore, spectral analysis of PA signals from a single angle cannot accurately determine the physical characteristics of microvessels. This study investigated the feasibility of using the PA power azimuth spectrum (PA-PAS) method to evaluate microvessel structures. We mapped the acoustic power spectrum of the PA signals along the azimuth direction. Based on a frequency-domain analysis of the broadband PA signal, we calculated the spectral parameter power-weighted mean frequency (PWMF). The results demonstrate that the PA signal information of the microvessel is mainly concentrated in the direction of its width. In addition, the PWMF decreases linearly with the microvascular size. The experimental findings exhibit good agreement with the simulation results, thus demonstrating that this approach can effectively differentiate the sizes of microvessels.
Collapse
Affiliation(s)
- Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Shiying Wu
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Jiangnan Liao
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
- Corresponding author at: Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China; The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Xie W, Feng T, Zhang M, Li J, Ta D, Cheng L, Cheng Q. Wavelet transform-based photoacoustic time-frequency spectral analysis for bone assessment. PHOTOACOUSTICS 2021; 22:100259. [PMID: 33777692 PMCID: PMC7985564 DOI: 10.1016/j.pacs.2021.100259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the feasibility of using photoacoustic time-frequency spectral analysis (PA-TFSA) for evaluating the bone mineral density (BMD) and bone structure. Simulations and ex vivo experiments on bone samples with different BMDs and mean trabecular thickness (MTT) were conducted. All photoacoustic signals were processed using the wavelet transform-based PA-TFSA. The power-weighted mean frequency (PWMF) was evaluated to obtain the main frequency component at different times. The y-intercept, midband-fit, and slope of the linearly fitted curve of the PWMF over time were also quantified. The results show that the osteoporotic bone samples with lower BMD and thinner MTT have higher frequency components and lower acoustic frequency attenuation over time, thus higher y-intercept, midband-fit, and slope. The midband-fit and slope were found to be sensitive to the BMD; therefore, both parameters could be used to distinguish between osteoporotic and normal bones (p < 0.05).
Collapse
Key Words
- ARTB, area ratio of trabecular bone
- BMD, bone mineral density
- Bone assessment
- CWT, continuous wavelet transform
- DEXA, dual energy X-ray absorptiometry
- EDTA, ethylenediaminetetraacetic acid
- MTT, mean trabecular thickness
- PA, photoacoustic
- PA-TFS, photoacoustic time-frequency spectrum
- PA-TFSA, photoacoustic time-frequency spectral analysis
- PWMF, power-weighted mean frequency
- Photoacoustic measurement
- QUS, quantitative ultrasound
- ROI, region of interest
- Time-frequency spectral analysis
- US, ultrasound
- Wavelet transform
Collapse
Affiliation(s)
- Weiya Xie
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ting Feng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Mengjiao Zhang
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Jiayan Li
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, PR China
| | - Liming Cheng
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
5
|
Hysi E, Fadhel MN, Wang Y, Sebastian JA, Giles A, Czarnota GJ, Exner AA, Kolios MC. Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-mediated radiation treatment. PHOTOACOUSTICS 2020; 20:100201. [PMID: 32775198 PMCID: PMC7393572 DOI: 10.1016/j.pacs.2020.100201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
The development of novel anticancer therapies warrants the parallel development of biomarkers that can quantify their effectiveness. Photoacoustic imaging has the potential to measure changes in tumor vasculature during treatment. Establishing the accuracy of imaging biomarkers requires direct comparisons with gold histological standards. In this work, we explore whether a new class of submicron, vascular disrupting, ultrasonically stimulated nanobubbles enhance radiation therapy. In vivo experiments were conducted on mice bearing prostate cancer tumors. Combined nanobubble plus radiation treatments were compared against conventional microbubbles and radiation alone (single 8 Gy fraction). Acoustic resolution photoacoustic imaging was used to monitor the effects of the treatments 2- and 24-hs post-administration. Histological examination provided metrics of tumor vascularity and tumoral cell death, both of which were compared to photoacoustic-derived biomarkers. Photoacoustic metrics of oxygen saturation reveal a 20 % decrease in oxygenation within 24 h post-treatment. The spectral slope metric could separate the response of the nanobubble treatments from the microbubble counterparts. This study shows that histopathological assessment correlated well with photoacoustic biomarkers of treatment response.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Muhannad N. Fadhel
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Yanjie Wang
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Joseph A. Sebastian
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Anoja Giles
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Gregory J. Czarnota
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Deparment of Medical Biophysics, University of Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, United States
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|