1
|
Gao P, Pu H, Liu T, Cao Y, Li W, Huang S, Li R, Lu H, Rong J. Automated Restarting Fast Proximal Gradient Descent Method for Single-View Cone-Beam X-ray Luminescence Computed Tomography Based on Depth Compensation. Bioengineering (Basel) 2024; 11:123. [PMID: 38391609 PMCID: PMC10885960 DOI: 10.3390/bioengineering11020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Single-view cone-beam X-ray luminescence computed tomography (CB-XLCT) has recently gained attention as a highly promising imaging technique that allows for the efficient and rapid three-dimensional visualization of nanophosphor (NP) distributions in small animals. However, the reconstruction performance is hindered by the ill-posed nature of the inverse problem and the effects of depth variation as only a single view is acquired. To tackle this issue, we present a methodology that integrates an automated restarting strategy with depth compensation to achieve reconstruction. The present study employs a fast proximal gradient descent (FPGD) method, incorporating L0 norm regularization, to achieve efficient reconstruction with accelerated convergence. The proposed approach offers the benefit of retrieving neighboring multitarget distributions without the need for CT priors. Additionally, the automated restarting strategy ensures reliable reconstructions without the need for manual intervention. Numerical simulations and physical phantom experiments were conducted using a custom CB-XLCT system to demonstrate the accuracy of the proposed method in resolving adjacent NPs. The results showed that this method had the lowest relative error compared to other few-view techniques. This study signifies a significant progression in the development of practical single-view CB-XLCT for high-resolution 3-D biomedical imaging.
Collapse
Affiliation(s)
- Peng Gao
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China;
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Tianshuai Liu
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Yilin Cao
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Wangyang Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Shien Huang
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Ruijing Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Hongbing Lu
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| | - Junyan Rong
- School of Biomedical Engineering, Air Force Medical University, Xi’an 710032, China; (P.G.); (T.L.); (Y.C.); (W.L.); (S.H.); (R.L.)
| |
Collapse
|
2
|
Fang Y, Zhang Y, Lun MC, Li C. Superfast Scan of Focused X-Ray Luminescence Computed Tomography Imaging. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:134183-134190. [PMID: 38919730 PMCID: PMC11198969 DOI: 10.1109/access.2023.3336615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
X-ray luminescence computed tomography (XLCT) is a hybrid molecular imaging modality having the high spatial resolution of x-ray imaging and high measurement sensitivity of optical imaging. Narrow x-ray beam based XLCT imaging has shown promise for high spatial resolution imaging of luminescent targets in deep tissues, but the slow acquisition speed limits its applications. In this work, we have introduced a superfast XLCT scan scheme based on the photon counter detector and a fly-scanning method. The new scan scheme is compared with three other scan methods. We have also designed and built a single-pixel x-ray detector to detect object boundaries automatically. With the detector, we can perform the parallel beam CT imaging with the XLCT imaging simultaneously. We have built the prototype XLCT imaging system to verify the proposed scan scheme. A phantom embedded with a set of four side-by-side cylindrical targets was scanned. With the proposed superfast scan scheme, we have achieved 43 seconds per transverse scan, which is 28.6 times faster than before with slightly better XLCT image quality. The superfast scan allows us to perform 3D pencil beam XLCT imaging in the future.
Collapse
Affiliation(s)
- Yile Fang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Yibing Zhang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Michael C Lun
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Changqing Li
- Department of Electrical Engineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
3
|
Zhang Y, Fang Y, Abbaraju V, Bhattacharya S, Anker JN, Wang G, Li C. Oxygenation imaging in deep tissue with X-Ray luminescence computed tomography (XLCT). PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12468:124680I. [PMID: 38957374 PMCID: PMC11218916 DOI: 10.1117/12.2654446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Oxygenation concentration of tissue is an important factor in culturing stem cells and in studying the therapy response of cancer cells. The hypoxia bone marrow is the site to harbor cancer cells. Thus, direct high-resolution measurements of molecular 𝑂2 would provide powerful means of monitoring cultured stem cells and therapied cancer cells. We proposed an imaging approach to measure oxygenation concentration in deep tissues, based on the XLCT, with combined strengths of high chemical sensitivity and high spatial resolution. We have developed different biosensing films for oxygenation measurements and tested these films with X-ray luminescent experiments. We have also performed phantom experiments with multiple targets to validate the XLCT imaging system with measurements at two channels.
Collapse
Affiliation(s)
- Yibing Zhang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Yile Fang
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Vigjna Abbaraju
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Center for Optical Materials Science and Engineering Technology (COMSET), and Institute of Environment Toxicology (CU-ENTOX), Clemson University, Clemson, SC 29634, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
4
|
Lun MC, Cong W, Arifuzzaman M, Ranasinghe M, Bhattacharya S, Anker JN, Wang G, Li C. Focused x-ray luminescence imaging system for small animals based on a rotary gantry. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200417R. [PMID: 33738992 PMCID: PMC7970409 DOI: 10.1117/1.jbo.26.3.036004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE The ability to detect and localize specific molecules through tissue is important for elucidating the molecular basis of disease and treatment. Unfortunately, most current molecular imaging tools in tissue either lack high spatial resolution (e.g., diffuse optical fluorescence tomography or positron emission tomography) or lack molecular sensitivity (e.g., micro-computed tomography, μCT). X-ray luminescence imaging emerged about 10 years ago to address this issue by combining the molecular sensitivity of optical probes with the high spatial resolution of x-ray imaging through tissue. In particular, x-ray luminescence computed tomography (XLCT) has been demonstrated as a powerful technique for the high-resolution imaging of deeply embedded contrast agents in three dimensions (3D) for small-animal imaging. AIM To facilitate the translation of XLCT for small-animal imaging, we have designed and built a small-animal dedicated focused x-ray luminescence tomography (FXLT) scanner with a μCT scanner, synthesized bright and biocompatible nanophosphors as contrast agents, and have developed a deep-learning-based reconstruction algorithm. APPROACH The proposed FXLT imaging system was designed using computer-aided design software and built according to specifications. NaGdF4 nanophosphors doped with europium or terbium were synthesized with a silica shell for increased biocompatibility and functionalized with biotin. A deep-learning-based XLCT image reconstruction was also developed based on the residual neural network as a data synthesis method of projection views from few-view data to enhance the reconstructed image quality. RESULTS We have built the FXLT scanner for small-animal imaging based on a rotational gantry. With all major imaging components mounted, the motor controlling the gantry can be used to rotate the system with a high accuracy. The synthesized nanophosphors displayed distinct x-ray luminescence emission, which enables multi-color imaging, and has successfully been bound to streptavidin-coated substrates. Lastly, numerical simulations using the proposed deep-learning-based reconstruction algorithm has demonstrated a clear enhancement in the reconstructed image quality. CONCLUSIONS The designed FXLT scanner, synthesized nanophosphors, and deep-learning-based reconstruction algorithm show great potential for the high-resolution molecular imaging of small animals.
Collapse
Affiliation(s)
- Michael C. Lun
- University of California, Merced, Department of Bioengineering, Merced, California, United States
| | - Wenxiang Cong
- Rensselaer Polytechnic Institute, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Troy, New York, United States
| | - Mohammad Arifuzzaman
- Clemson University, Department of Chemistry, Clemson, South Carolina, United States
| | - Meenakshi Ranasinghe
- Clemson University, Department of Chemistry, Clemson, South Carolina, United States
| | - Sriparna Bhattacharya
- Clemson University, Clemson Nanomaterials Institute, Department of Physics and Astronomy, Clemson, South Carolina, United States
| | - Jeffrey N. Anker
- Clemson University, Department of Chemistry, Clemson, South Carolina, United States
- Clemson University, Institute of Environmental Toxicology, Center for Optical Materials Science and Engineering Technology, Department of Bioengineering, Clemson, South Carolina, United States
| | - Ge Wang
- Rensselaer Polytechnic Institute, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Troy, New York, United States
| | - Changqing Li
- University of California, Merced, Department of Bioengineering, Merced, California, United States
| |
Collapse
|
5
|
Romero IO, Li C. Radiation dose estimation for pencil beam X-ray luminescence computed tomography imaging. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:773-784. [PMID: 34151883 PMCID: PMC10756503 DOI: 10.3233/xst-210904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pencil beam X-ray luminescence computed tomography (XLCT) imaging provides superior spatial resolution than other imaging geometries like sheet beam and cone beam geometries. However, the pencil beam geometry suffers from long scan times, resulting in concerns overdose which discourages the use of pencil beam XLCT. OBJECTIVE The dose deposited in pencil beam XLCT imaging was investigated to estimate the dose from one angular projection scan with three different X-ray sources. The dose deposited in a typical small animal XLCT imaging was investigated. METHODS A Monte Carlo simulation platform, GATE (Geant4 Application for Tomographic Emission) was used to estimate the dose from one angular projection scan of a mouse leg model with three different X-ray sources. Dose estimations from a six angular projection scan by three different X-ray source energies were performed in GATE on a mouse trunk model composed of muscle, spine bone, and a tumor. RESULTS With the Sigray source, the bone marrow of mouse leg was estimated to have a radiation dose of 44 mGy for a typical XLCT imaging with six angular projections, a scan step size of 100 micrometers, and 106 X-ray photons per linear scan. With the Sigray X-ray source and the typical XLCT scanning parameters, we estimated the dose of spine bone, muscle tissues, and tumor structures of the mouse trunk were 38.49 mGy, 15.07 mGy, and 16.87 mGy, respectively. CONCLUSION Our results indicate that an X-ray benchtop source (like the X-ray source from Sigray Inc.) with high brilliance and quasi-monochromatic properties can reduce dose concerns with the pencil beam geometry. Findings of this work can be applicable to other imaging modalities like X-ray fluorescence computed tomography if the imaging protocol consists of the pencil beam geometry.
Collapse
Affiliation(s)
- Ignacio O. Romero
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| |
Collapse
|
6
|
Uzair U, Johnson C, Beladi-Behbahani S, Rajamanthrilage AC, Raval YS, Benza D, Ranasinghe M, Schober G, Tzeng TRJ, Anker JN. Conformal Coating of Orthopedic Plates with X-ray Scintillators and pH Indicators for X-ray Excited Luminescence Chemical Imaging through Tissue. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52343-52353. [PMID: 33181017 DOI: 10.1021/acsami.0c13707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We describe a pH-indicating material that can be directly implanted or coated on orthopedic implant surfaces to provide high-spatial-resolution pH mapping through tissue by X-ray excited luminescence chemical imaging (XELCI). This is especially useful for detecting local pH changes during treatment of implant-associated infections. The material has two layers: an X-ray scintillator layer with Gd2O2S:Eu in epoxy, which emits 620 and 700 nm light when irradiated with X-rays, and a pH indicator dye layer, which absorbs some of the 620 nm light in a pH-dependent fashion. To acquire each pixel in the image, a focused X-ray beam irradiates a small region of scintillators and the ratio of 620 to 700 nm light is acquired through the tissue. Scanning the X-ray beam across the implant surface generates high-spatial-resolution chemical measurements. Two associated challenges are (1) to make robust sensors that can be implanted in tissue to measure local chemical concentrations specifically for metal orthopedic implants and (2) to conformally coat the implant surface with scintillators and pH indicator dyes in order to make measurements over a large area. Previously, we have physically pressed or glued a pH-sensitive hydrogel sensor onto the surface of an implant, but this is impractical for imaging over large irregular device areas such as an orthopedic plate with holes and edges. Herein, we describe a chemically sensitive and biocompatible XELCI sensor material that can conformally coat the implant surface. A two-part commercial-grade epoxy resin was mixed with Gd2O2S:Eu and adhered to the titanium surface. Sugar and salt particles were added to the surface of the epoxy as it cured to create a roughened surface and increase the surface area. On this roughened surface, a secondary layer of diacrylated polyethylene glycol (PEG) hydrogel, containing a pH sensitive dye, was polymerized. This combination of epoxy-PEG layers was found to adhere well to the metal implant unlike other previously tested polymer surfaces, which delaminated when exposed to water or humidity. The focused X-ray beam enabled 0.5 mm spatial resolution through 1 cm-thick tissue. The pH sensor-coated orthopedic plate was imaged with XELCI, through tissue, with different pH levels to acquire a calibration curve. The plates were also imaged through tissue, with a low pH region on one section due to growth of a Staphylococcus aureus biofilm. A pH sensor-coated stainless-steel rod with two distinct pH regions was inserted in a rabbit tibia specimen, and the pH was imaged through both bone and soft tissue. These studies demonstrate the use of pH sensor-coated orthopedic plates and rods for mapping the local pH through tissue during biofilm formation by XELCI.
Collapse
Affiliation(s)
- Unaiza Uzair
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Chloe Johnson
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | | | - Yash S Raval
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Donald Benza
- Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Meenakshi Ranasinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Gretchen Schober
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Jeffrey N Anker
- Departments of Chemistry and Bioengineering, Center for Optical Materials Science and Engineering Technology (COMSET), Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
7
|
Zhang Y, Guo Q, Zhang L, Li J, Gao F, Jiang J, Zhou Z. Investigation of a simple coded-aperture based multi-narrow beam x-ray luminescence computed tomography system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:093101. [PMID: 33003801 DOI: 10.1063/5.0008773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this paper is to introduce and study a multi-narrow beam X-ray Luminescence Computed Tomography (XLCT) system based on a simple coded aperture. The proposed XLCT system is studied through simulations of x rays and diffuse light propagation and the implementation of the multi-narrow beam XLCT reconstruction algorithm. The relationship between the reconstructed quality of the XLCT image and the pass-element distribution of the coded aperture mask is investigated. The coded aperture that produces the best image quality metrics for the numerical phantom is selected for the XLCT system. The effects of detection positions and the number of projection angles are also investigated for considering the scanning efficiency and system structural complexity. The results demonstrate that the proposed multi-narrow beam XLCT system is competent in resolving targets with high complexity when comparing with the coded aperture compressed sensing XLCT system based on a complicated mask. It can also offer an enhancement in scanning efficiency in comparison with the conventional multi-narrow beam XLCT system.
Collapse
Affiliation(s)
- Yueming Zhang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Qingwei Guo
- Department of Medical Imaging, First Teaching Hospital of Tianjin University of Traditional Chinese, Tianjin 300193, China
| | - Limin Zhang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jiao Li
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jingying Jiang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Zhongxing Zhou
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Gao P, Cheng K, Schüler E, Jia M, Zhao W, Xing L. Restarted primal-dual Newton conjugate gradient method for enhanced spatial resolution of reconstructed cone-beam x-ray luminescence computed tomography images. Phys Med Biol 2020; 65:135008. [PMID: 32268318 PMCID: PMC7594591 DOI: 10.1088/1361-6560/ab87fb] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed as a promising imaging tool, which enables three-dimensional imaging of the distribution of nanophosphors (NPs) in small animals. However, the reconstruction performance is usually unsatisfactory in terms of spatial resolution due to the ill-posedness of the CB-XLCT inverse problem. To alleviate this problem and to achieve high spatial resolution, a reconstruction method consisting of inner and outer iterations based on a restarted strategy is proposed. In this method, the primal-dual Newton conjugate gradient method (pdNCG) is adopted in the inner iterations to get fast reconstruction, which is used for resetting the permission region and increasing the convergence speed of the outer iteration. To assess the performance of the method, both numerical simulation and physical phantom experiments were conducted with a CB-XLCT system. The results demonstrate that compared with conventional reconstruction methods, the proposed re-pdNCG method can accurately and efficiently resolve the adjacent NPs with the least relative error.
Collapse
Affiliation(s)
- Peng Gao
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
- School of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- These authors contributed to this work equally
| | - Kai Cheng
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
- These authors contributed to this work equally
| | - Emil Schüler
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Mengyu Jia
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Wei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
9
|
Lun MC, Cong W, Arifuzzaman M, Ranasinghe M, Bhattacharya S, Anker J, Wang G, Li C. X-ray luminescence imaging for small animals. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11224:112240F. [PMID: 33574637 PMCID: PMC7875188 DOI: 10.1117/12.2544601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
X-ray luminescence imaging emerged for about a decade and combines both the high spatial resolution of x-ray imaging with the high measurement sensitivity of optical imaging, which could result in a great molecular imaging tool for small animals. So far, there are two types of x-ray luminescence computed tomography (XLCT) imaging. One uses a pencil beam x-ray for high spatial resolution at a cost of longer measurement time. The other uses cone beam x-ray to cover the whole mouse to obtain XLCT images at a very short time but with a compromised spatial resolution. Here we review these two methods in this paper and highlight the synthesized nanophosphors by different research groups. We are building a focused x-ray luminescence tomography (FXLT) imaging system, developing a machine-learning based FXLT reconstruction algorithm, and synthesizing nanophosphors with different emission wavelengths. In this paper, we will report our current progress from these three aspects. Briefly, we mount all main components, including the focused x-ray tube, the fiber detector, and the x-ray tube and x-ray detector for a microCT system, on a rotary which is a heavy-duty ring track. A microCT scan will be performed before FXLT scan. For a FXLT scan, we will have four PMTs to measure four fiber detectors at two different wavelengths simultaneously for each linear scan position. We expect the spatial resolution of the FXLT imaging will be around 100 micrometers and a limit of detection of approximately 2 μg/mL (for Gd2O2S:Eu).
Collapse
Affiliation(s)
- Michael C Lun
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Wenxiang Cong
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Md. Arifuzzaman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | - Sriparna Bhattacharya
- Clemson Nanomaterials Institute, Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jeffery Anker
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Center for Optical Materials Science and Engineering Technology (COMSET), and Institute of Environment Toxicology (CU-ENTOX), Clemson University, Clemson, SC 29634, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
10
|
Lun MC, Li C. High-resolution x-ray luminescence computed tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11317:113171D. [PMID: 32214600 PMCID: PMC7096071 DOI: 10.1117/12.2544493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
High-resolution imaging modalities play a critical role for advancing biomedical sciences. Recently, x-ray luminescence computed tomography (XLCT) imaging was introduced as a hybrid molecular imaging modality that combines the high-spatial resolution of x-ray imaging and molecular sensitivity of optical imaging. The narrow x-ray beam based XLCT imaging has been demonstrated to achieve high spatial resolution, even at depth, with great molecular sensitivity. Using a focused x-ray beam as the excitation source, orders of magnitude of increased sensitivity has been verified compared with previous methods with a collimated x-ray beam. In this work, we demonstrate the high-spatial resolution capabilities of our focused x-ray beam based XLCT imaging system by scanning two sets of targets, differing in the target size, embedded inside of two tissue-mimicking cylindrical phantoms. Gd2O2S:Eu3+ targets of 200 µm and 150 µm diameters were created and embedded with the same edge-to-edge distances as their diameters respectively. We scanned and reconstructed a single transverse section and successfully demonstrated that a focused x-ray beam with an average dual-cone size of 125 µm could separate the targets in both phantoms with good shape and location accuracy. We have also improved the current XLCT imaging system to make it feasible for fast three-dimensional XLCT scanning.
Collapse
Affiliation(s)
- Michael C. Lun
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
11
|
Lun MC, Li C. Focused x-ray luminescence computed tomography: experimental studies. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10871:108710G. [PMID: 32231401 PMCID: PMC7105158 DOI: 10.1117/12.2506927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality and has shown great promises in overcoming the strong optical scattering in deep tissues. Though the narrow x-ray beam based XLCT imaging has been demonstrated to obtain high spatial resolution at depth, it suffers from a relatively long measurement time, hindering its practical applications. Recently, we have designed a focused x-ray beam based XLCT imaging system and have successfully performed imaging in about 7.5 seconds per section for a mouse sized object. However, its high spatial resolution capacity has not been fully implemented yet. In this paper, with a superfine focused x-ray beam we design a focused-x-ray luminescence tomography (FXLT) system for spatial resolution up to 94 μm. First, we have described our design in details. Then, we estimate the performance of the designed FXLT imaging system. Lastly, we have found that the spatial resolution of FXLT can be further improved by reducing the scan step size, which has been demonstrated by numerical simulations.
Collapse
Affiliation(s)
- Michael C. Lun
- Department of Bioengineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|