1
|
Akitegetse C, Poirier J, Sauvageau D. Sensitivity of visible range multi-wavelength algorithms for retinal tissue oximetry to acquisition parameters. BIOMEDICAL OPTICS EXPRESS 2023; 14:4296-4309. [PMID: 37799705 PMCID: PMC10549742 DOI: 10.1364/boe.495721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 10/07/2023]
Abstract
This study examined the sensitivity of broadband spectroscopy algorithms for retinal tissue oximetry to spectral acquisition parameters. Monte Carlo simulations were conducted on a 4-layer retinal model to assess the impact of various parameters. The optimal spectral range for accurate measurements was determined to be 530 nm to 585 nm. Decreased spectral resolution below 4 nm significantly reduced accuracy. Using an acquisition area larger than the blood vessel resulted in an underestimation of oxygen saturation, especially for high values. A threshold was observed where increased light intensity had no significant impact on measurement variability. The study highlights the importance of informed parameter selection for accurately assessing retinal microcapillary oxygenation and studying local hemodynamics.
Collapse
Affiliation(s)
| | | | - Dominic Sauvageau
- Zilia inc., Québec, QC, G1K 3G5, Canada
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
2
|
Pinazo-Durán MD, Muñoz-Negrete FJ, Sanz-González SM, Benítez-Del-Castillo J, Giménez-Gómez R, Valero-Velló M, Zanón-Moreno V, García-Medina JJ. The role of neuroinflammation in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:99-124. [PMID: 32958217 DOI: 10.1016/bs.pbr.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chapter is a review enclosed in the volume "Glaucoma: A pancitopatia of the retina and beyond." No cure exists for glaucoma. Knowledge on the molecular and cellular alterations underlying glaucoma neurodegeneration (GL-ND) includes innovative and path-breaking research on neuroinflammation and neuroprotection. A series of events involving immune response (IR), oxidative stress and gene expression are occurring during the glaucoma course. Uveitic glaucoma (UG) is a prevalent acute/chronic complication, in the setting of chronic anterior chamber inflammation. Managing the disease requires a team approach to guarantee better results for eyes and vision. Advances in biomedicine/biotechnology are driving a tremendous revolution in ophthalmology and ophthalmic research. New diagnostic and imaging modalities, constantly refined, enable outstanding criteria for delimiting glaucomatous neurodegeneration. Moreover, biotherapies that may modulate or inhibit the IR must be considered among the first-line for glaucoma neuroprotection. This review offers the readers useful and practical information on the latest updates in this regard.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain.
| | - Francisco J Muñoz-Negrete
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Ophthalmology Department at the University Hospital "Ramón y Cajal" (IRYCIS) and Surgery Department at the Faculty of Medicine, University Alcala de Henares, Madrid, Spain
| | - Silvia M Sanz-González
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain
| | - Javier Benítez-Del-Castillo
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the Hospital of Jerez, Jerez de la Frontera, Cádiz, Spain
| | - Rafael Giménez-Gómez
- Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the University Hospital "Reina Sofia", Córdoba, Spain
| | - Mar Valero-Velló
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; International University of Valencia, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO and Cellular and Molecular Ophthalmo-biology Group of the University of Valencia, Valencia, Spain; Researchers of the Spanish Net of Ophthalmic Research "OFTARED" of the Institute of Health Carlos III, Net RD16/0008/0022, Madrid, Spain; Department of Ophthalmology at the University Hospital "Morales Meseguer" and Department of Ophthalmology at the Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|