1
|
Wu PJ, Tseng HC, Chao CC, Liao YH, Yen CT, Lin WY, Hsieh ST, Sun WZ, Sun CK. Discontinuity third harmonic generation microscopy for label-free imaging and quantification of intraepidermal nerve fibers. CELL REPORTS METHODS 2024; 4:100735. [PMID: 38503290 PMCID: PMC10985268 DOI: 10.1016/j.crmeth.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Label-free imaging methodologies for nerve fibers rely on spatial signal continuity to identify fibers and fail to image free intraepidermal nerve endings (FINEs). Here, we present an imaging methodology-called discontinuity third harmonic generation (THG) microscopy (dTHGM)-that detects three-dimensional discontinuities in THG signals as the contrast. We describe the mechanism and design of dTHGM and apply it to reveal the bead-string characteristics of unmyelinated FINEs. We confirmed the label-free capability of dTHGM through a comparison study with the PGP9.5 immunohistochemical staining slides and a longitudinal spared nerve injury study. An intraepidermal nerve fiber (IENF) index based on a discontinuous-dot-connecting algorithm was developed to facilitate clinical applications of dTHGM. A preliminary clinical study confirmed that the IENF index was highly correlated with skin-biopsy-based IENF density (Pearson's correlation coefficient R = 0.98) and could achieve differential identification of small-fiber neuropathy (p = 0.0102) in patients with diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiao-Chieh Tseng
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital, and National Taiwan University College of Medicine Taipei 100225, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Ying Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Wei-Zen Sun
- Department of Anesthesiology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei 100225, Taiwan.
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Abdi P, Anthony MR, Farkouh C, Chan AR, Kooner A, Qureshi S, Maibach H. Non-invasive skin measurement methods and diagnostics for vitiligo: a systematic review. Front Med (Lausanne) 2023; 10:1200963. [PMID: 37575985 PMCID: PMC10416110 DOI: 10.3389/fmed.2023.1200963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Vitiligo is a multifaceted autoimmune depigmenting disorder affecting around 0.5 to 2.0% of individuals globally. Standardizing diagnosis and therapy tracking can be arduous, as numerous clinical evaluation methods are subject to interobserver variability and may not be validated. Therefore, there is a need for diagnostic tools that are objective, dependable, and preferably non-invasive. Aims This systematic review provides a comprehensive overview of the non-invasive objective skin measurement methods that are currently used to evaluate the diagnosis, severity, and progression of vitiligo, as well as the advantages and limitations of each technique. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was used for the systematic review. Scopus, Embase, Cochrane Library, and Web of Science databases were comprehensively searched for non-invasive imaging and biophysical skin measuring methods to diagnose, evaluate the severity of, or monitor the effects of vitiligo treatment. The risk of bias in included articles was assessed using the QUADAS-2 quality assessment scale. Results An extensive literature search resulted in 64 studies for analysis, describing eight imaging techniques (reflectance confocal microscopy, computer-aided imaging analysis, optical coherence tomography, infrared photography, third-harmonic generation microscopy, multiphoton microscopy, ultraviolet light photography, and visible light/digital photograph), and three biophysical approaches (dermoscopy, colorimetry, spectrometry) used in diagnosing and assessing vitiligo. Pertinent information about functionality, mechanisms of action, sensitivity, and specificity was obtained for all studies, and insights into the strengths and limitations of each diagnostic technique were addressed. Methodological study quality was adequate; however, statistical analysis was not achievable because of the variety of methods evaluated and the non-standardized reporting of diagnostic accuracy results. Conclusions The results of this systematic review can enhance clinical practice and research by providing a comprehensive overview of the spectrum of non-invasive imaging and biophysical techniques in vitiligo assessment. Studies with larger sample sizes and sound methodology are required to develop verified methods for use in future practice and research. Systematic review registration (PROSPERO) database, (CRD42023395996).
Collapse
Affiliation(s)
- Parsa Abdi
- Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, Canada
| | | | | | - Airiss R. Chan
- Division of Dermatology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Amritpal Kooner
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Simal Qureshi
- Memorial University of Newfoundland, Faculty of Medicine, St. Johns, NL, Canada
| | - Howard Maibach
- Division of Dermatology, Faculty of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Liu C, Wu PJ, Chia SH, Sun CK, Liao YH. Characterization of picosecond laser-induced optical breakdown using harmonic generation microscopy. Lasers Surg Med 2023. [PMID: 37051896 DOI: 10.1002/lsm.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND OBJECTIVES By creating microinjuries usually confined to the epidermis, a fractional picosecond 1064-nm Nd:YAG laser that delivers an array of highly focused beamlets can be effectively used for facial rejuvenation or resurfacing. However, the mechanism of dermal remodeling underlying this nonablative treatment remains unclear. METHODS Five participants having skin phototype III-IV were recruited for intervention using a fractional picosecond 1064-nm Nd:YAG laser system equipped with a holographic diffractive beam-splitting optic. The laser-induced histopathological changes on human skin were examined in vivo using a harmonic generation microscopy (HGM), visualizing second harmonic generation (SHG), and third harmonic generation (THG) contrasts dichromatically. SHG refers for collagen distribution, while THG represents for epidermal components in the HGM signal. RESULTS Histological hematoxylin and eosin staining and in vivo HGM imaging studies revealed the presence of epidermal vacuoles below the stratum granulosum along with keratinocyte degeneration or cytolysis. In addition to the epidermal vacuoles, HGM imaging exclusively demonstrated laser-induced shock wave propagation arranged as a THG-bright concentric pattern in the epidermis and loss of SHG signals in the papillary dermis immediately beneath the epidermal vacuoles. CONCLUSIONS Alongside generating epidermal vacuoles, the fractional picosecond 1064-nm Nd:YAG laser induced collagen changes. These collagen changes may lead to dermal remodeling and neocollagenesis underlying the fractional picosecond laser treatment.
Collapse
Affiliation(s)
- Connie Liu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
| | - Pei-Jhe Wu
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Shih-Hsuan Chia
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Wang X, Zhang D, Zhang X, Xing Y, Wu J, Sui X, Huang X, Chang G, Li L. Application of Multiphoton Microscopic Imaging in Study of Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221133244. [PMID: 36379591 PMCID: PMC9676310 DOI: 10.1177/15330338221133244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Multiphoton microscopy (MPM) imaging relies on the nonlinear interaction between ultrashort optical pulses and the samples to achieve image contrast. Featuring larger penetration depth, less phototoxicity, 3-dimensional sectioning capability, no need for labeling, MPM become a powerful medical imaging technique that can identify structural characteristics of tissues at the cellular and subcellular levels. In this review paper, we introduce the working principle of MPM imaging, present the current results of MPM imaging applied to the study of gastric tumors, and discuss the future prospects of this interdisciplinary research field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Strategic Support Force Medical Center, Beijing, China
| | - Di Zhang
- Ningxia Jingyuan County People's Hospital, Ningxia, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuting Xing
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- Strategic Support Force Medical Center, Beijing, China
| | - Xinke Sui
- Strategic Support Force Medical Center, Beijing, China
| | - Xin Huang
- Strategic Support Force Medical Center, Beijing, China
| | - Guoqing Chang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lianyong Li
- Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
5
|
Wu PJ, Chen ST, Liao YH, Sun CK. In vivo harmonic generation microscopy for monitoring the height of basal keratinocytes in solar lentigines after laser depigmentation treatment. BIOMEDICAL OPTICS EXPRESS 2021; 12:6129-6142. [PMID: 34745726 PMCID: PMC8548006 DOI: 10.1364/boe.434789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 05/22/2023]
Abstract
The development of solar lentigines (SLs) is related to chronic ultraviolet exposure-induced cell senescence. We have previously demonstrated that basal keratinocyte enlargement is a morphological hallmark of skin senescence correlated to the process of skin aging, while clinical studies on the long-term monitoring of the cellular morphological changes in SLs after laser treatment are lacking. In this study, we have developed the harmonic generation microscopy (HGM) for in vivo monitoring the height of basal keratinocytes (HBK) and had administered Q-switched ruby laser or picosecond 532-nm Nd:YAG laser treatment on each side of the face of 25 Asian patients with facial SLs, respectively. In vivo HGM imaging was conducted to longitudinally analyze HBK and the horizontal cell size (HCS). Before treatment, the HBK was significantly higher in the SLs lesional area than that in the adjacent normal region, whereas there was no significant difference in the HCS. After treatment, the lesional HBK remained significantly higher than normal skin regardless of the laser treatment used. Our study indicates that the basal keratinocytes remain abnormal after laser treatment and demonstrates the capability of in vivo HGM for longitudinal, quantitative monitoring of cell senescence and therapeutic effect in SLs.
Collapse
Affiliation(s)
- Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Lai JH, Liao EY, Liao YH, Sun CK. Investigating the optical clearing effects of 50% glycerol in ex vivo human skin by harmonic generation microscopy. Sci Rep 2021; 11:329. [PMID: 33431907 PMCID: PMC7801418 DOI: 10.1038/s41598-020-77889-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Imaging depth and quality of optical microscopy can be enhanced by optical clearing. Here we investigate the optical clearing of the ex vivo human skin by 50% glycerol topical application, which is allowed for cosmetic usage. Harmonic generation microscopy, by combining second and third harmonic generation (THG) modalities, was utilized to examine the clearing effect. The THG image intensity is sensitive to the improved optical homogeneity after optical clearing, and the second harmonic generation (SHG) image intensity in the dermis could serve as a beacon to confirm the reduction of the scattering in the epidermis layer. As a result, our study supports the OC effect through 50% glycerol topical application. Our study further indicates the critical role of stratum corneum shrinkage for the observed SHG and THG signal recovery.
Collapse
Affiliation(s)
- Jia-Hong Lai
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - En-Yu Liao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10002, Taiwan.
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
7
|
Sun CK, Wu PJ, Chen ST, Su YH, Wei ML, Wang CY, Gao HC, Sung KB, Liao YH. Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3009-3024. [PMID: 32637238 PMCID: PMC7316008 DOI: 10.1364/boe.391451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/21/2023]
Abstract
The capability to image the 3D distribution of melanin in human skin in vivo with absolute quantities and microscopic details will not only enable noninvasive histopathological diagnosis of melanin-related cutaneous disorders, but also make long term treatment assessment possible. In this paper, we demonstrate clinical in vivo imaging of the melanin distribution in human skin with absolute quantities on mass density and with microscopic details by using label-free third-harmonic-generation (THG) enhancement-ratio microscopy. As the dominant absorber in skin, melanin provides the strongest THG nonlinearity in human skin due to resonance enhancement. We show that the THG-enhancement-ratio (erTHG) parameter can be calibrated in vivo and can indicate the melanin mass density. With an unprecedented clinical imaging resolution, our study revealed erTHG-microscopy's unique capability for long-term treatment assessment and direct clinical observation of melanin's micro-distribution to shed light into the unknown pathway and regulation mechanism of melanosome transfer and translocation.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsiang Su
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Liang Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao-Yi Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Cheng Gao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Kung-Bing Sung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
8
|
Chakraborty S, Chen ST, Hsiao YT, Chiu MJ, Sun CK. Additive-color multi-harmonic generation microscopy for simultaneous label-free differentiation of plaques, tangles, and neuronal axons. BIOMEDICAL OPTICS EXPRESS 2020; 11:571-585. [PMID: 32206388 PMCID: PMC7041468 DOI: 10.1364/boe.378447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 05/10/2023]
Abstract
Multicolor fluorescence imaging has been widely used by neuroscientists to simultaneously observe different neuropathological features of the brain. However, these optical modalities rely on exogenous labeling. Here, we demonstrate, for the first time, a label-free additive-color multi-harmonic generation microscopy to elucidate, concurrently with different hues, Alzheimer's disease (AD) neuropathological hallmarks: amyloid β (Aβ) plaques and neurofibrillary tangles (NFT). By treating third harmonic generation (THG) and second harmonic generation (SHG) as two primary colors, our study can simultaneously label-free differentiate AD hallmarks by providing different additive colors between Aβ plaques, NFT, and neuronal axons, with weaker THG presentation from NFT in most places of the brain. Interestingly our pixel-based quantification and Pearson's correlation results further corroborated these findings. Our proposed label-free technique fulfills the unmet challenge in the clinical histopathology for stain-free slide-free differential visualization of neurodegenerative disease pathologies, with a sub-femtoliter resolution in a single image field-of-view.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yang-Ting Hsiao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei 10051, Taiwan
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Psychology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|