1
|
Prud’homme A, Nabki F. Cost-Effective Photoacoustic Imaging Using High-Power Light-Emitting Diodes Driven by an Avalanche Oscillator. SENSORS (BASEL, SWITZERLAND) 2025; 25:1643. [PMID: 40292685 PMCID: PMC11945192 DOI: 10.3390/s25061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025]
Abstract
Photoacoustic imaging (PAI) is an emerging modality that merges optical and ultrasound imaging to provide high-resolution and functional insights into biological tissues. This technique leverages the photoacoustic effect, where tissue absorbs pulsed laser light, generating acoustic waves that are captured to reconstruct images. While lasers have traditionally been the light source for PAI, their high cost and complexity drive interest towards alternative sources like light-emitting diodes (LEDs). This study evaluates the feasibility of using an avalanche oscillator to drive high-power LEDs in a basic photoacoustic imaging system. An avalanche oscillator, utilizing semiconductor avalanche breakdown to produce high-voltage pulses, powers LEDs to generate short, high-intensity light pulses. The system incorporates an LED array, an ultrasonic transducer, and an amplifier for signal detection. Key findings include the successful generation of short light pulses with sufficient intensity to excite materials and the system's capability to produce detectable photoacoustic signals in both air and water environments. While LEDs demonstrate cost-effectiveness and portability advantages, challenges such as lower power and broader spectral bandwidth compared to lasers are noted. The results affirm that LED-based photoacoustic systems, though currently less advanced than laser-based systems, present a promising direction for affordable and portable imaging technologies.
Collapse
Affiliation(s)
- Alberto Prud’homme
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | | |
Collapse
|
2
|
Svensson RB, Agergaard AS, Sardella T, Reichl C, Hjortshoej MH, Bayer ML, Hoeffner R, Couppé C, Kjaer M, Magnusson SP. Application of multispectral optoacoustic tomography for lower limb musculoskeletal sports injuries in adults. PHOTOACOUSTICS 2024; 40:100656. [PMID: 40017825 PMCID: PMC11866168 DOI: 10.1016/j.pacs.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 03/01/2025]
Abstract
Compositional changes in relation to musculoskeletal injuries are difficult to measure non-invasively. This study aims to use non-invasive label-free imaging with Multispectral Optoacoustic Tomography (MSOT) to evaluate compositional changes with injury. Five different patient groups were examined, covering diagnoses of Achilles or patellar tendinopathy, Achilles tendon rupture and gastrocnemius muscle strain injury. Injured and contralateral limbs were imaged using a commercial MSOT device. Hemoglobin, collagen, and lipid contents were estimated. Some patients were examined before and after exercise. Hemoglobin measures had high reproducibility and displayed systematic changes in response to exercise. The content and exercise response of hemoglobin was equal on both limbs. In contrast, collagen and lipid measures were inconsistent and did not display the expected distribution. In conclusion, MSOT is applicable to imaging of hemoglobin in musculoskeletal injuries, providing complimentary information to conventional ultrasound, but applicability to other components like collagen and lipids could not be shown.
Collapse
Affiliation(s)
- Rene B. Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical and Occupational Therapy, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | | | - Mikkel H. Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical and Occupational Therapy, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Centre for Health and Rehabilitation, University College Absalon, Slagelse, Denmark
| | - Monika L. Bayer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Hoeffner
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical and Occupational Therapy, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S. Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Physical and Occupational Therapy, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
3
|
Peng X, Dentinger A, Kewalramani S, Xu Z, Gray S, Ghose S, Tan YT, Yang Z, Jo J, Chamberland D, Xu G, Abdulaziz N, Gandikota G, Mills D, Wang X. An Automatic 3-D Ultrasound and Photoacoustic Combined Imaging System for Human Inflammatory Arthritis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1691-1702. [PMID: 37379174 PMCID: PMC10754277 DOI: 10.1109/tuffc.2023.3290824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Aiming at a point-of-care device for rheumatology clinics, we developed an automatic 3-D imaging system combining the emerging photoacoustic (PA) imaging with conventional Doppler ultrasound (US) for detecting human inflammatory arthritis. This system is based on a commercial-grade GE HealthCare (GEHC, Chicago, IL, USA) Vivid E95 US machine and a Universal Robot UR3 robotic arm. This system automatically locates the patient's finger joints from a photograph taken by an overhead camera powered by an automatic hand joint identification method, followed by the robotic arm moving the imaging probe to the targeted joint to scan and obtain 3-D PA and Doppler US images. The GEHC US machine was modified to enable high-speed, high-resolution PA imaging while maintaining the features available on the system. The commercial-grade image quality and the high sensitivity in detecting inflammation in peripheral joints via PA technology hold great potential to significantly benefit clinical care of inflammatory arthritis in a novel way.
Collapse
|
4
|
Ni L, Wang X, Xu G. Photoacoustic clinical applications: Musculoskeletal and abdominal imaging. Z Med Phys 2023; 33:324-335. [PMID: 37365088 PMCID: PMC10517401 DOI: 10.1016/j.zemedi.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 06/28/2023]
Abstract
Photoacoustic (PA) imaging has been extensively investigated in application in biomedicine over the last decade. This article reviews the motivation, significance, and system configuration of a few ongoing studies of implementing photoacoustic technology in musculoskeletal imaging, abdominal imaging, and interstitial sensing. The review then summarizes the methodologies and latest progress of relevant projects. Finally, we discuss our expectations for the future of translation research in PA imaging.
Collapse
Affiliation(s)
- Linyu Ni
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
5
|
Peng X, Xu Z, Dentinger A, Kewalramani S, Jo J, Xu G, Chamberland D, Abdulaziz N, Gandikota G, Mills D, Wang X. Longitudinal volumetric assessment of inflammatory arthritis via photoacoustic imaging and Doppler ultrasound imaging. PHOTOACOUSTICS 2023; 31:100514. [PMID: 37255965 PMCID: PMC10225933 DOI: 10.1016/j.pacs.2023.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
Aiming at clinical translation, we developed an automatic 3D imaging system combining the emerging photoacoustic imaging with conventional Doppler ultrasound for detecting inflammatory arthritis. This system was built with a GE HealthCare (GEHC) Vivid™ E95 ultrasound system and a Universal Robot UR3 robotic arm. In this work, the performance of this system was examined with a longitudinal study utilizing a clinically relevant adjuvant induced arthritis (AIA) murine model. After adjuvant injection, daily imaging of the rat ankle joints was conducted until joint inflammation was obvious based on visual inspection. Processed imaging results and statistical analyses indicated that both the hyperemia (enhanced blood volume) detected by photoacoustic imaging and the enhanced blood flow detected by Doppler ultrasound reflected the progress of joint inflammation. However, photoacoustic imaging, by leveraging the highly sensitive optical contrast, detected inflammation earlier than Doppler ultrasound, and also showed changes that are more statistically significant. This side-by-side comparison between photoacoustic imaging and Doppler ultrasound using the same commercial grade GEHC ultrasound machine demonstrates the advantage and potential value of the emerging photoacoustic imaging for rheumatology clinical care of arthritis.
Collapse
Affiliation(s)
- Xiaorui Peng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhanpeng Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Shivangi Kewalramani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - David Chamberland
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nada Abdulaziz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - David Mills
- General Electric Research, Niskayuna, NY, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Jo J, Mills D, Dentinger A, Chamberland D, Abdulaziz NM, Wang X, Schiopu E, Gandikota G. Photoacoustic Imaging of COVID-19 Vaccine Site Inflammation of Autoimmune Disease Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:2789. [PMID: 36904999 PMCID: PMC10006996 DOI: 10.3390/s23052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Based on the observations made in rheumatology clinics, autoimmune disease (AD) patients on immunosuppressive (IS) medications have variable vaccine site inflammation responses, whose study may help predict the long-term efficacy of the vaccine in this at-risk population. However, the quantitative assessment of the inflammation of the vaccine site is technically challenging. In this study analyzing AD patients on IS medications and normal control subjects, we imaged the inflammation of the vaccine site 24 h after mRNA COVID-19 vaccinations were administered using both the emerging photoacoustic imaging (PAI) method and the established Doppler ultrasound (US) method. A total of 15 subjects were involved, including 6 AD patients on IS and 9 normal control subjects, and the results from the two groups were compared. Compared to the results obtained from the control subjects, the AD patients on IS medications showed statistically significant reductions in vaccine site inflammation, indicating that immunosuppressed AD patients also experience local inflammation after mRNA vaccination but not in as clinically apparent of a manner when compared to non-immunosuppressed non-AD individuals. Both PAI and Doppler US were able to detect mRNA COVID-19 vaccine-induced local inflammation. PAI, based on the optical absorption contrast, shows better sensitivity in assessing and quantifying the spatially distributed inflammation in soft tissues at the vaccine site.
Collapse
Affiliation(s)
- Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Mills
- General Electric Research, Niskayuna, NY 12309, USA
| | | | - David Chamberland
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nada M. Abdulaziz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elena Schiopu
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Van Heumen S, Riksen JJ, Singh MKA, Van Soest G, Vasilic D. LED-based photoacoustic imaging for preoperative visualization of lymphatic vessels in patients with secondary limb lymphedema. PHOTOACOUSTICS 2023; 29:100446. [PMID: 36632606 PMCID: PMC9826814 DOI: 10.1016/j.pacs.2022.100446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Lymphedema is the accumulation of protein-rich fluid in the interstitium (i.e., dermal backflow (DBF)). Preoperative imaging of the lymphatic vessels is a prerequisite for lymphovenous bypass surgical planning. We investigated the visualization of lymphatic vessels and veins using light-emitting diode (LED)-based photoacoustic imaging (PAI). Indocyanine-green mediated near-infrared fluorescence lymphography (NIRF-L) was done in fifteen patients with secondary limb lymphedema. Photoacoustic images were acquired in locations where lymphatic vessels and DBF were observed with NIRF-L. We demonstrated that LED-based PAI can visualize and differentiate lymphatic vessels and veins even in the presence of DBF. We observed lymphatic and blood vessels up to depths of 8.3 and 8.6 mm, respectively. Superficial lymphatic vessels and veins can be visualized using LED-based PAI even in the presence of DBF showing the potential for pre-operative assessment. Further development of the technique is needed to improve its usability in clinical settings.
Collapse
Affiliation(s)
- Saskia Van Heumen
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jonas J.M. Riksen
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Gijs Van Soest
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Dalibor Vasilic
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Regensburger AP, Brown E, Krönke G, Waldner MJ, Knieling F. Optoacoustic Imaging in Inflammation. Biomedicines 2021; 9:483. [PMID: 33924983 PMCID: PMC8145174 DOI: 10.3390/biomedicines9050483] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| | - Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gerhard Krönke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| |
Collapse
|