1
|
Nkune NW, Abrahamse H. Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review. J Drug Deliv Sci Technol 2024; 101:106210. [DOI: 10.1016/j.jddst.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Grygoryev K, Lu H, Sørensen S, Talebi Varnosfaderani O, Georgel R, Li L, Burke R, Andersson-Engels S. Miniature, multi-dichroic instrument for measuring the concentration of multiple fluorophores. BIOMEDICAL OPTICS EXPRESS 2024; 15:2377-2391. [PMID: 38633072 PMCID: PMC11019676 DOI: 10.1364/boe.516574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Identification of tumour margins during resection of the brain is critical for improving the post-operative outcomes. Due to the highly infiltrative nature of glioblastoma multiforme (GBM) and limited intraoperative visualization of the tumour margin, incomplete surgical resection has been observed to occur in up to 80 % of GBM cases, leading to nearly universal tumour recurrence and overall poor prognosis of 14.6 months median survival. This research presents a miniaturized, SiPMT-based optical system for simultaneous measurement of powerful DRS and weak auto-fluorescence for brain tumour detection. The miniaturisation of the optical elements confined the spatial separation of eight select wavelengths into footprint measuring 1.5 × 2 × 16 mm. The small footprint enables this technology to be integrated with existing surgical guidance instruments in the operating room. It's dynamic ability to subtract any background illumination and measure signal intensities across a broad range from pW to mWs make this design much more suitable for clinical environments as compared to spectrometer-based systems with limited dynamic ranges and high integration times. Measurements using optical tissue phantoms containing mixed fluorophores demonstrate correlation coefficients between the fitted response and actual concentration using PLS regression being 0.95, 0.87 and 0.97 for NADH, FAD and PpIX , respectively. These promising results indicate that our proposed miniaturized instrument could serve as an effective alternative in operating rooms, assisting surgeons in identifying brain tumours to achieving positive surgical outcomes for patients.
Collapse
Affiliation(s)
| | - Huihui Lu
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Simon Sørensen
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | | | - Rachel Georgel
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Liyao Li
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Ray Burke
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
| | - Stefan Andersson-Engels
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
3
|
Ghauri MD, Šušnjar S, Guadagno CN, Bhattacharya S, Thomasson B, Swartling J, Gautam R, Andersson-Engels S, Konugolu Venkata Sekar S. Hybrid heterogeneous phantoms for biomedical applications: a demonstration to dosimetry validation. BIOMEDICAL OPTICS EXPRESS 2024; 15:863-874. [PMID: 38404353 PMCID: PMC10890852 DOI: 10.1364/boe.514994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Phantoms simultaneously mimicking anatomical and optical properties of real tissues can play a pivotal role for improving dosimetry algorithms. The aim of the paper is to design and develop a hybrid phantom model that builds up on the strengths of solid and liquid phantoms for mimicking various anatomical structures for prostate cancer photodynamic therapy (PDT) dosimetry validation. The model comprises of a photosensitizer-embedded gelatin lesion within a liquid Intralipid prostate shape that is surrounded by a solid silicone outer shell. The hybrid phantom was well characterized for optical properties. The final assembled phantom was also evaluated for fluorescence tomographic reconstruction in conjunction with SpectraCure's IDOSE software. The developed model can lead to advancements in dosimetric evaluations. This would improve PDT outlook as a clinical treatment modality and boost phantom based standardization of biophotonic devices globally.
Collapse
Affiliation(s)
- M. Daniyal Ghauri
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
- Department of Engineering and Food Sciences, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Stefan Šušnjar
- SpectraCure AB, Gasverksgatan 1, SE-222 29 Lund, Sweden
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
| | - Somdatta Bhattacharya
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
| | | | | | - Rekha Gautam
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
| | - Stefan Andersson-Engels
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
- BioPixS Ltd – Biophotonics Standards, IPIC, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
- Department of Physics, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Sanathana Konugolu Venkata Sekar
- Tyndall National Institute, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
- BioPixS Ltd – Biophotonics Standards, IPIC, Lee Maltings Complex, Dyke Parade, T12R5CP, Cork, Ireland
| |
Collapse
|
4
|
Insights into Biochemical Sources and Diffuse Reflectance Spectral Features for Colorectal Cancer Detection and Localization. Cancers (Basel) 2022; 14:cancers14225715. [PMID: 36428806 PMCID: PMC9688116 DOI: 10.3390/cancers14225715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most deadly type of cancer worldwide. Early detection not only reduces mortality but also improves patient prognosis by allowing the use of minimally invasive techniques to remove cancer while avoiding major surgery. Expanding the use of microsurgical techniques requires accurate diagnosis and delineation of the tumor margins in order to allow complete excision of cancer. We have used diffuse reflectance spectroscopy (DRS) to identify the main optical CRC biomarkers and to optimize parameters for the integration of such technologies into medical devices. A total number of 2889 diffuse reflectance spectra were collected in ex vivo specimens from 47 patients. Short source-detector distance (SDD) and long-SDD fiber-optic probes were employed to measure tissue layers from 0.5 to 1 mm and from 0.5 to 1.9 mm deep, respectively. The most important biomolecules contributing to differentiating DRS between tissue types were oxy- and deoxy-hemoglobin (Hb and HbO2), followed by water and lipid. Accurate tissue classification and potential DRS device miniaturization using Hb, HbO2, lipid and water data were achieved particularly well within the wavelength ranges 350-590 nm and 600-1230 nm for the short-SDD probe, and 380-400 nm, 420-610 nm, and 650-950 nm for the long-SDD probe.
Collapse
|
5
|
Taheri-Ledari R, Ahghari MR, Ansari F, Forouzandeh-Malati M, Mirmohammadi SS, Zarei-Shokat S, Ramezanpour S, Zhang W, Tian Y, Maleki A. Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide. NANOSCALE ADVANCES 2022; 4:4418-4433. [PMID: 36321152 PMCID: PMC9552876 DOI: 10.1039/d2na00431c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Herein, a novel designed antimicrobial therapeutic drug delivery system is presented, in which halloysite nanotubes (HNTs) encapsulate a determined dosage of levofloxacin (lvx). Moreover, gold nanoparticles (AuNPs) have been embedded into the structure for plasmonic heating under irradiation of the green LED light (7 W, 526 nm). It was revealed that the plasmonic heating of the AuNPs leads to a controlled trend in the lvx release process. Also, a synergistic effect on the antimicrobial activity of the prepared therapeutic system has been observed through photothermal heating of the structure. To enhance the cell adhesion, a cell-penetrating peptide sequence (CPP) is conjugated to the surfaces. This CPP has led to quick co-localization of the prepared nano-cargo (denoted as lvx@HNT/Au-CPP) with the bacterial living cells and further attachment (confirmed by confocal microscopy). Concisely, the structure of the designed nano-cargo has been investigated by various methods, and the in vitro cellular experiments (zone of inhibition and colony-counting) have disclosed that the antimicrobial activity of the lvx is significantly enhanced through incorporation into the HNT/Au-CPP delivery system (drug content: 16 wt%), in comparison with the individual lvx with the same dosage. Hence, it can be stated that the bacterial resistance against antibiotics and the toxic effects of the chemical medications are reduced through the application of the presented strategy.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology P.O. Box 15875-4416 Tehran Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P.R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No.14, 3rd section of South Renmin Road Chengdu 610041 P.R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
6
|
Yassine AA, Lilge L, Betz V. Machine learning for real-time optical property recovery in interstitial photodynamic therapy: a stimulation-based study. BIOMEDICAL OPTICS EXPRESS 2021; 12:5401-5422. [PMID: 34692191 PMCID: PMC8515975 DOI: 10.1364/boe.431310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 05/24/2023]
Abstract
With the continued development of non-toxic photosensitizer drugs, interstitial photodynamic therapy (iPDT) is showing more favorable outcomes in recent clinical trials. IPDT planning is crucial to further increase the treatment efficacy. However, it remains a major challenge to generate a high-quality, patient-specific plan due to uncertainty in tissue optical properties (OPs), µ a and µ s . These parameters govern how light propagates inside tissues, and any deviation from the planning-assumed values during treatment could significantly affect the treatment outcome. In this work, we increase the robustness of iPDT against OP variations by using machine learning models to recover the patient-specific OPs from light dosimetry measurements and then re-optimizing the diffusers' optical powers to adapt to these OPs in real time. Simulations on virtual brain tumor models show that reoptimizing the power allocation with the recovered OPs significantly reduces uncertainty in the predicted light dosimetry for all tissues involved.
Collapse
Affiliation(s)
- Abdul-Amir Yassine
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G1L7, Canada
| | - Vaughn Betz
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Rd, Toronto, ON M5S3G8, Canada
| |
Collapse
|
7
|
Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210111-PERR. [PMID: 34302323 PMCID: PMC8299827 DOI: 10.1117/1.jbo.26.7.070604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE Despite remarkable advances in the core modalities used in combating cancer, malignant diseases remain the second largest cause of death globally. Interstitial photodynamic therapy (IPDT) has emerged as an alternative approach for the treatment of solid tumors. AIM The aim of our study is to outline the advancements in IPDT in recent years and provide our vision for the inclusion of IPDT in standard-of-care (SoC) treatment guidelines of specific malignant diseases. APPROACH First, the SoC treatment for solid tumors is described, and the attractive properties of IPDT are presented. Second, the application of IPDT for selected types of tumors is discussed. Finally, future opportunities are considered. RESULTS Strong research efforts in academic, clinical, and industrial settings have led to significant improvements in the current implementation of IPDT, and these studies have demonstrated the unique advantages of this modality for the treatment of solid tumors. It is envisioned that further randomized prospective clinical trials and treatment optimization will enable a wide acceptance of IPDT in the clinical community and inclusion in SoC guidelines for well-defined clinical indications. CONCLUSIONS The minimally invasive nature of this treatment modality combined with the relatively mild side effects makes IPDT a compelling alternative option for treatment in a number of clinical applications. The adaptability of this technique provides many opportunities to both optimize and personalize the treatment.
Collapse
Affiliation(s)
- Katarzyna Komolibus
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- Address all correspondence to Katarzyna Komolibus,
| | - Carl Fisher
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
| | | | - Sune Svanberg
- Lund University, Department of Physics, Lund, Sweden
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
| | - Katarina Svanberg
- South China Normal University, South China Academy of Advanced Optoelectronics, Guangzhou, China
- Lund University Hospital, Department of Clinical Sciences, Lund, Sweden
| | - Stefan Andersson-Engels
- Tyndall National Institute, Biophotonics@Tyndall, IPIC, Cork, Ireland
- University College Cork, Department of Physics, Cork, Ireland
| |
Collapse
|
8
|
Yue D, Cai X, Fan M, Zhu J, Tian J, Wu L, Jiang Q, Gu Z. An Alternating Irradiation Strategy-Driven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis. Adv Healthc Mater 2021; 10:e2001850. [PMID: 33314663 DOI: 10.1002/adhm.202001850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia and hypoxia induced overexpression of vascular endothelial growth factor (VEGF) not only seriously affects the treatment effects of photodynamic therapy (PDT) but also promotes tumor metastasis. Herein, an alternating irradiation strategy (referred to as alternate use of low/high dose of light [ALHDL] irradiation)-driven combination therapy of PDT and RNA interference (RNAi) is developed to synergistically inhibit tumor growth and metastasis. A cationic amphipathic peptide (ALS) served as a carrier in the co-delivery system of photochlor (HPPH) and siVEGF (ALSH/siVEGF). At the beginning of ALHDL-driven ALSH/siVEGF treatment, short-term LDL irradiation can facilitate the tumor penetration, cellular uptake, and endosome escape of ALSH/siVEGF. Moreover, accompanied by HDL-mediated rapid cell apoptosis and LDL-mediated efficient VEGF silencing, the joint use of PDT and RNAi achieved remarkable antitumor effects both in vitro and in vivo. Importantly, benefited from the excellent performance of ALHDL in slowing the rapid deterioration of the anoxic environment of tumors, and ALSH/siVEGF treatment-mediated highly improved VEGF silencing efficacy and inhibitory effect on angiogenesis, the liver and lung metastases of HeLa cells have been successfully suppressed. Together, this study clearly indicates that ALHDL-driven combination therapy of PDT and RNAi is a highly effective modality for inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Dong Yue
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Xiaojun Cai
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Mengni Fan
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jingwu Zhu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jiang Tian
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Lihuang Wu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| |
Collapse
|