1
|
Kiessling F, Schulz V. Perspectives of Evidence-Based Therapy Management. Nuklearmedizin 2023; 62:314-322. [PMID: 37802059 DOI: 10.1055/a-2159-6949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods..
Collapse
Affiliation(s)
- Fabian Kiessling
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
- Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
- Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| |
Collapse
|
2
|
Kiessling F, Schulz V. Perspectives of Evidence-Based Therapy Management. ROFO-FORTSCHR RONTG 2022; 194:728-736. [PMID: 35545101 DOI: 10.1055/a-1752-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods.. CITATION FORMAT · Kiessling F, Schulz V, . Perspectives of Evidence-Based Therapy Management. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1752-0839.
Collapse
Affiliation(s)
- Fabian Kiessling
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany.,Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany.,Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| |
Collapse
|
3
|
Modified Contrast-Detail Phantom for Determination of the CT Scanners Abilities for Low-Contrast Detection. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computerised tomography (CT) continues to be a corner stone medical and radiologic imaging modalities in radiology and radiotherapy departments. Its importance lies in its efficiency in low contrast detectability (LCD). The assessment of such capabilities requires rigorous image quality analysis using special designed phantoms with different densities as well as variation in atomic mass numbers (A) of the material. Absence of such ranges of densities and atomic mass numbers, limits the dynamic range of assessment. An example is Catphan phantom which represents only three subject contrast levels 0.3, 0.5 and 1 per cent. This project aims to present a phantom with extended range of available subject contrast to include very low-level values and to increase its dynamic scale. With this design, a relatively large number of different contrast objects (holes) can be presented for imaging by a CT scanner to assess its LCD ability. We shall thus introduce another LCD phantom to complement the existing ones, such as Catphan. The cylindrical phantom is constructed using Poly (methyl methacrylate) (PMMA), with craters (holes) having dimensions that gradually increase from 1.0 to 12.5 mm penetrated in configuration that extend from the centre to the corner. Each line of the drilled holes in the phantom is filled with contrast material of specific concentrations. As opposed to the phantom of low detail contrast used in planar imaging, the iodine (contrast material) in this phantom replaces the depth of the phantom holes. The iodine could be reduced to 0.2 l milli-Molar (mM) and can be varied for the next line of holes by a small increment depending on the required level of contrast detectability assessment required.
Collapse
|
4
|
Meurer F, Kopp F, Renz M, Harder FN, Leonhardt Y, Bippus R, Noël PB, Makowski MR, Sauter AP. Sparse-sampling computed tomography for detection of endoleak after endovascular aortic repair (EVAR). Eur J Radiol 2021; 142:109843. [PMID: 34274842 DOI: 10.1016/j.ejrad.2021.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate sparse sampling computed tomography (SpSCT) for detection of endoleak after endovascular aortic repair (EVAR) at different dose levels in terms of subjective image criteria and diagnostic accuracy. METHODS Twenty clinically indicated computed tomography aortic angiography (CTA) scans were used to obtain simulated low-dose scans with 100%, 50%, 25%, 12.5% and 6.25% of the applicated clinical dose, resulting in five dose levels (DL). From full sampling (FS) data sets, every second (2-SpSCT) or fourth (4-SpSCT) projection was used to generate simulated sparse sampling scans. All examinations were evaluated by four blinded radiologists regarding subjective image criteria and diagnostic performance. RESULTS Sensitivity was higher than 93% in 4-SpSCT at the 25% DL which is the same as with FS at full dose (100% DL). High accuracies and relative high AUC-values were obtained for 2- and 4-SpSCT down to the 12.5% DL, while for FS similar values were shown down to 25% DL only. Subjective image quality was significantly higher for 4-SpSCT compared to FS at each dose level. More than 90% of all cases were rated with a high or medium confidence for FS and 2-SpSCT at the 50% DL and for 4-SpSCT at the 25% DL. At DL 25% and 12.5%, more cases showed a high confidence using 2- and 4-SpSCT compared with FS. CONCLUSIONS Via SpSCT, a dose reduction down to a 25% dose level (mean effective dose of 1.49 mSv in the current study) for CTA is possible while maintaining high image quality and full diagnostic confidence.
Collapse
Affiliation(s)
- Felix Meurer
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany.
| | - Felix Kopp
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Martin Renz
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Felix N Harder
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Yannik Leonhardt
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Rolf Bippus
- Philips Technologie GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Peter B Noël
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Markus R Makowski
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| | - Andreas P Sauter
- Klinikum rechts der Isar, School of Medicine Technical University of Munich, Institute of Diagnostic and Interventional Radiology, Munich, Germany
| |
Collapse
|
5
|
Sauter AP, Shapira N, Kopp FK, Aichele J, Bodden J, Knipfer A, Rummeny EJ, Noël PB. CTPA with a conventional CT at 100 kVp vs. a spectral-detector CT at 120 kVp: Comparison of radiation exposure, diagnostic performance and image quality. Eur J Radiol Open 2020; 7:100234. [PMID: 32420413 PMCID: PMC7215101 DOI: 10.1016/j.ejro.2020.100234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022] Open
Abstract
With SD-CT, increased radiation exposure is not present. In the current study, CTDIvol was lower with SD-CT than with C-CT, even when 100 kVp was used for the latter. With SD-CT, higher levels of diagnostic performance and image quality can be achieved. SD-CT may be the system of choice due to the availability of spectral data and thus additional image information.
Purpose To compare CT pulmonary angiographies (CTPAs) as well as phantom scans obtained at 100 kVp with a conventional CT (C-CT) to virtual monochromatic images (VMI) obtained with a spectral detector CT (SD-CT) at equivalent dose levels as well as to compare the radiation exposure of both systems. Material and Methods In total, 2110 patients with suspected pulmonary embolism (PE) were examined with both systems. For each system (C-CT and SD-CT), imaging data of 30 patients with the same mean CT dose index (4.85 mGy) was used for the reader study. C-CT was performed with 100 kVp and SD-CT was performed with 120 kVp; for SD-CT, virtual monochromatic images (VMI) with 40, 60 and 70 keV were calculated. All datasets were evaluated by three blinded radiologists regarding image quality, diagnostic confidence and diagnostic performance (sensitivity, specificity). Contrast-to-noise ratio (CNR) for different iodine concentrations was evaluated in a phantom study. Results CNR was significantly higher with VMI at 40 keV compared to all other datasets. Subjective image quality as well as sensitivity and specificity showed the highest values with VMI at 60 keV and 70 keV. Hereby, a significant difference to 100 kVp (C-CT) was found for image quality. The highest sensitivity was found using VMI at 60 keV with a sensitivity of more than 97 % for all localizations of PE. For diagnostic confidence and subjective contrast, highest values were found with VMI at 40 keV. Conclusion Higher levels of diagnostic performance and image quality were achieved for CPTAs with SD-CT compared to C-CT given similar dose levels. In the clinical setting SD-CT may be the modality of choice as additional spectral information can be obtained.
Collapse
Key Words
- BMI, body mass index
- C-CT, conventional spiral CT
- CNR, contrast-to-noise ratio
- CT, computed tomography
- CTDIVOL, volume-weighted CT dose index
- CTPA, CT pulmonary angiography
- Computed tomography angiography
- DE-CT, dual-Energy CT
- DLP, dose length product
- DS-CT, dual-Source CT
- ED, effective dose
- HU, Hounsfield Units
- IQ, image quality
- PE, pulmonary embolism
- Patient safety
- Pulmonary embolism
- ROI, region of interest
- Radiation exposure
- Radiologic
- SD-CT, spectral-detector CT
- Technology
- VMI, virtual monochromatic images
- kVp, peak kilovoltage
- keV, kilo-electronvolt
Collapse
Affiliation(s)
- Andreas P Sauter
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Nadav Shapira
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Philips Healthcare, Haifa, Israel
| | - Felix K Kopp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Juliane Aichele
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Jannis Bodden
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Andreas Knipfer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Ernst J Rummeny
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Peter B Noël
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Radiology, Munich, Germany.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
6
|
Sauter AP, Kopp FK, Bippus R, Dangelmaier J, Deniffel D, Fingerle AA, Meurer F, Pfeiffer D, Proksa R, Rummeny EJ, Noël PB. Sparse sampling computed tomography (SpSCT) for detection of pulmonary embolism: a feasibility study. Eur Radiol 2019; 29:5950-5960. [DOI: 10.1007/s00330-019-06217-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/01/2019] [Accepted: 04/02/2019] [Indexed: 02/02/2023]
|
7
|
Noël PB, Engels S, Köhler T, Muenzel D, Franz D, Rasper M, Rummeny EJ, Dobritz M, Fingerle AA. Evaluation of an iterative model-based CT reconstruction algorithm by intra-patient comparison of standard and ultra-low-dose examinations. Acta Radiol 2018; 59:1225-1231. [PMID: 29320863 DOI: 10.1177/0284185117752551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.
Collapse
Affiliation(s)
- Peter B Noël
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
- Physics Department & Munich School of BioEngineering, Technische Universität München, Garching, Germany
| | - Stephan Engels
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Daniela Muenzel
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
- Physics Department & Munich School of BioEngineering, Technische Universität München, Garching, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Michael Rasper
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Martin Dobritz
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Alexander A Fingerle
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
- Physics Department & Munich School of BioEngineering, Technische Universität München, Garching, Germany
| |
Collapse
|
8
|
Zhang X, Chen J, Yu N, Ren Z, Tian Q, Tian X, He T, Guo C. Improving image quality with model-based iterative reconstruction at quarter of nominal dose in upper abdominal CT. Br J Radiol 2018; 92:20180137. [PMID: 30240280 DOI: 10.1259/bjr.20180137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To evaluate the ability of a model-based iterative reconstruction (MBIR) for improving image quality in upper abdominal CT with quarter of the normal dose, in comparison with adaptive statistical iterative reconstruction (ASiR) at normal dose. METHODS 40 upper abdominal patients were randomly divided into two groups: normal-dose group (n = 20) with tube current modulation for noise index (NI) of 10 HU and 40% ASiR reconstruction; low-dose group (n = 20) with NI = 20 HU in the delay phase and MBIR and 40%ASiR. Images in the delay phase were compared. The CT values and standard deviation (SD) values of the liver, spleen, pancreas, kidney, erector spine and fat were measured. Contrast-noise-ratio (CNR = (CTtissue-CT fat)/SDfat) of each measured organ were calculated and compared with one-way ANOVA among the three reconstruction groups. The subjective image scores of the three groups were assessed blindly by two experienced physicians using a 5-point system and the score consistency was compared by the κ test. RESULTS Dose reduction of 75 % was achieved for the low-dose scan. The subjective scores (95 % confidence intervals) of the three groups (NI 10-40 % ASiR, NI 20-40% ASiR and NI 20-MBIR) were 4.00 ± 0.79 (3.62-4.37), 3.35 ± 0.58 (3.07-3.62) and 3.90 ± 0.64 (3.60-4.19), respectively with no difference between the NI 10-40% ASiR and NI20-MBIR groups and good consistency between reviewers (κ = 0.726). MBIR had statistically lower SD values and higher contrast-to-noise ratio values in the liver, spleen, pancreas, kidney and erector spine than NI 10-40% ASiR and NI 20-40% ASiR (all p < 0.05). CONCLUSION At 75 % dose reduction, MBIR provides similar image quality compared to 40% ASiR at normal-dose. ADVANCES IN KNOWLEDGE MBIR provides good image quality at 25 % of the normal dose.
Collapse
Affiliation(s)
- Xirong Zhang
- Department of Medical Techniques, Shaanxi University of Chinese medicine, Xianyang, China.,Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Jing Chen
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Nan Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Zhanli Ren
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Qian Tian
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Xin Tian
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Taiping He
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| | - Changyi Guo
- Department of Radiology, The Second Affiliated Hospital of Shaanxi University of Chinese medicine, Xianyang, China
| |
Collapse
|
9
|
Tang Z. Application of double low dose combined low flow injection in coronary dual-source coronary computed tomography angiography. Echocardiography 2018; 35:1442-1447. [PMID: 29864195 DOI: 10.1111/echo.14036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE This study was aimed to explore the feasibility of lower tube voltage, low volumes of contrast medium, and low flow injection in prospective electrocardiogram (ECG)-triggered high-pitch dual-source coronary computed tomography angiography (CCTA) for coronary artery imaging. MATERIAL AND METHODS A total of 140 patients with body mass index (BMI) ranging from 18.5 to 24.3 kg/m2 and heart rate (HR) lower than 65 times/min underwent CCTA were divided randomly into two groups. The enhanced CT value and noise as well as signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Coronary artery was evaluated by double-blind method using a four-point grading scale. RESULTS No significant differences were found in the average enhanced CT value, noise, SNR, and CNR of all segments between the two groups (P > .05). Meanwhile, effective radiation dosages in group A were markedly lower than those in group B (P < .01). CONCLUSION The prospective ECG-triggered high-pitch dual-source CCTA with low voltage, contrast medium, and flow rate injection using sinogram affirmed iterative reconstruction is feasible which can observably reduce radiation and obtain satisfactory images.
Collapse
Affiliation(s)
- Zhenhua Tang
- Department of Medical Imaging, Xin Tai People's Hospital, Taian, China
| |
Collapse
|
10
|
Hou P, Feng X, Liu J, Wang X, Jiang Y, Dong L, Gao J. Low Tube Voltage and Iterative Model Reconstruction in Follow-up CT Angiography After Thoracic Endovascular Aortic Repair: Ultra-low Radiation Exposure and Contrast Medium Dose. Acad Radiol 2018; 25:494-501. [PMID: 29249576 DOI: 10.1016/j.acra.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the feasibility of reducing radiation exposure and contrast medium (CM) dose in follow-up computed tomography angiography (CTA) after thoracic endovascular aortic repair (TEVAR) using low tube voltage and knowledge-based iterative model reconstruction (IMR). MATERIALS AND METHODS Thirty-six patients that required follow-up CTA after TEVAR were included in this intra-individual study. The conventional protocol with standard tube voltage of 120 kVp and CM volume of 70 mL was applied in the first follow-up CTA of all the patients (control group A). The ultra-low CM dose protocol with low tube voltage of 80 kVp and weight-adapted CM volume of 0.4 mL/kg was utilized in the second follow-up CTA (study group B). Set A.FBP (group A filtered back-projection) contained images for group A that were reconstructed through FBP method. Three sets (B.FBP, B.HIR, and B.IMR) for group B were reconstructed using three methods, FBP, hybrid iterative reconstruction (HIR), and IMR, respectively. Objective measurements including aortic attenuations, image noise, contrast-to-noise ratios (CNRs), and figure of merit of CNR (FOMCNR), and subjective rating scores of the four image sets were compared. RESULTS Compared to the images in set A.FBP, the images in set B.IMR had better quality in terms of equivalent attenuation values, equivalent subjective scores, lower noise, higher or equivalent CNRs, and higher FOMCNR. The quality of images in sets B.FBP and B.HIR was unacceptable. The radiation exposure and CM dose in group B were 1.94 mGy and 28 ± 5 mL, respectively, representing reductions of 77.6% (P < .001) and 60% (P < .001) as compared to those in group A. CONCLUSIONS In follow-up examinations after TEVAR, CTA with ultra-low radiation exposure and CM dose is feasible using low tube voltage and IMR for nonobese patients.
Collapse
Affiliation(s)
- Ping Hou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Xiangnan Feng
- School of Economics and Management, Southwest Jiaotong University, Chengdu, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Xiaopeng Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Yaojun Jiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Leigang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
11
|
Qin L, Ma Z, Yan F, Yang W. Iterative model reconstruction (IMR) algorithm for reduced radiation dose renal artery CT angiography with different tube voltage protocols. Radiol Med 2017; 123:83-90. [DOI: 10.1007/s11547-017-0821-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
12
|
Hou P, Feng X, Liu J, Zhou Y, Jiang Y, Jiang X, Gao J. Iterative reconstruction in single-source dual-energy CT angiography: feasibility of low and ultra-low volume contrast medium protocols. Br J Radiol 2017; 90:20160506. [PMID: 28555508 DOI: 10.1259/bjr.20160506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of using contrast medium (CM) of low and ultra-low volumes and injection rates in aortic CT angiography (CTA) through the joint application of single-source dual-energy CT (ssDECT) and adaptive statistical iterative reconstruction (ASIR). METHODS 120 patients with known or suspected aortic dissection underwent aortic CTA and were equally divided into 3 groups. Conventional 120-kVp scan with a CM volume of 70 ml and an injection rate of 5 ml s-1 was performed on Group A. Groups B and C underwent ssDECT scan with CM volumes of 0.6 and 0.4 ml kg-1, respectively. 40% and 50% ASIR algorithms were applied for Groups B and C, respectively. A five-point grading scheme was utilized to subjectively evaluate the image quality, and the CT value and contrast-to-noise ratio were recorded as objective measures. The radiation dose was also evaluated. RESULTS Groups B and C had equivalent subjective scores and CT values as Group A, whereas they had higher or equivalent contrast-to-noise ratios. Group B had 40.1% and 30% reductions on CM volume and injection rate, respectively, than Group A. Group C further resulted in 19.2% and 22% lesser CM volume and injection rate than Group B. The average effective radiation doses for the study groups were 22.5-24.5% lower than the control group. CONCLUSION With the aid of ASIR and ssDECT for aortic CTA, it is feasible to adopt low and ultra-low CM volumes and injection rates while obtaining good quality images. Advances in knowledge: Low and ultra-low CM volumes and injection rates are feasible in CTA through the joint application of ssDECT and ASIR.
Collapse
Affiliation(s)
- Ping Hou
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangnan Feng
- 2 Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Liu
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Zhou
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaojun Jiang
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaochen Jiang
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianbo Gao
- 1 Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Sauter A, Koehler T, Fingerle AA, Brendel B, Richter V, Rasper M, Rummeny EJ, Noël PB, Münzel D. Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction. PLoS One 2016; 11:e0162716. [PMID: 27611830 PMCID: PMC5017721 DOI: 10.1371/journal.pone.0162716] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Objective Evaluation of a new iterative reconstruction algorithm (IMR) for detection/rule-out of pulmonary embolism (PE) in ultra-low dose computed tomography pulmonary angiography (CTPA). Methods Lower dose CT data sets were simulated based on CTPA examinations of 16 patients with pulmonary embolism (PE) with dose levels (DL) of 50%, 25%, 12.5%, 6.3% or 3.1% of the original tube current setting. Original CT data sets and simulated low-dose data sets were reconstructed with three reconstruction algorithms: the standard reconstruction algorithm “filtered back projection” (FBP), the first generation iterative reconstruction algorithm iDose and the next generation iterative reconstruction algorithm “Iterative Model Reconstruction” (IMR). In total, 288 CTPA data sets (16 patients, 6 tube current levels, 3 different algorithms) were evaluated by two blinded radiologists regarding image quality, diagnostic confidence, detectability of PE and contrast-to-noise ratio (CNR). Results iDose and IMR showed better detectability of PE than FBP. With IMR, sensitivity for detection of PE was 100% down to a dose level of 12.5%. iDose and IMR showed superiority to FBP regarding all characteristics of subjective (diagnostic confidence in detection of PE, image quality, image noise, artefacts) and objective image quality. The minimum DL providing acceptable diagnostic performance was 12.5% (= 0.45 mSv) for IMR, 25% (= 0.89 mSv) for iDose and 100% (= 3.57 mSv) for FBP. CNR was significantly (p < 0.001) improved by IMR compared to FBP and iDose at all dose levels. Conclusion By using IMR for detection of PE, dose reduction for CTPA of up to 75% is possible while maintaining full diagnostic confidence. This would result in a mean effective dose of approximately 0.9 mSv for CTPA.
Collapse
Affiliation(s)
- Andreas Sauter
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany
| | - Thomas Koehler
- Philips GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Alexander A Fingerle
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany
| | - Bernhard Brendel
- Philips GmbH, Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Vivien Richter
- Department of diagnostic and interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Michael Rasper
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany
| | - Peter B Noël
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany.,Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Daniela Münzel
- Department of diagnostic and interventional Radiology, Technische Universität München, Munich, Germany
| |
Collapse
|
14
|
Kopp FK, Holzapfel K, Baum T, Nasirudin RA, Mei K, Garcia EG, Burgkart R, Rummeny EJ, Kirschke JS, Noël PB. Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment. PLoS One 2016; 11:e0159903. [PMID: 27447827 PMCID: PMC4957801 DOI: 10.1371/journal.pone.0159903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/11/2016] [Indexed: 01/23/2023] Open
Abstract
We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Collapse
Affiliation(s)
- Felix K. Kopp
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Konstantin Holzapfel
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Radin A. Nasirudin
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Kai Mei
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eduardo G. Garcia
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Orthopedic Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rainer Burgkart
- Department of Orthopedic Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Section of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter B. Noël
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Chair for Biomedical Physics, Physik-Department, Technische Universität München, Garching, Germany
| |
Collapse
|