1
|
Yoshimura H, Kawahara D, Saito A, Ozawa S, Nagata Y. Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN. Phys Eng Sci Med 2024; 47:1227-1243. [PMID: 38884673 PMCID: PMC11408565 DOI: 10.1007/s13246-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
To propose a style transfer model for multi-contrast magnetic resonance imaging (MRI) images with a cycle-consistent generative adversarial network (CycleGAN) and evaluate the image quality and prognosis prediction performance for glioblastoma (GBM) patients from the extracted radiomics features. Style transfer models of T1 weighted MRI image (T1w) to T2 weighted MRI image (T2w) and T2w to T1w with CycleGAN were constructed using the BraTS dataset. The style transfer model was validated with the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. Moreover, imaging features were extracted from real and synthesized images. These features were transformed to rad-scores by the least absolute shrinkage and selection operator (LASSO)-Cox regression. The prognosis performance was estimated by the Kaplan-Meier method. For the accuracy of the image quality of the real and synthesized MRI images, the MI, RMSE, PSNR, and SSIM were 0.991 ± 2.10 × 10 - 4 , 2.79 ± 0.16, 40.16 ± 0.38, and 0.995 ± 2.11 × 10 - 4 , for T2w, and .992 ± 2.63 × 10 - 4 , 2.49 ± 6.89 × 10 - 2 , 40.51 ± 0.22, and 0.993 ± 3.40 × 10 - 4 for T1w, respectively. The survival time had a significant difference between good and poor prognosis groups for both real and synthesized T2w (p < 0.05). However, the survival time had no significant difference between good and poor prognosis groups for both real and synthesized T1w. On the other hand, there was no significant difference between the real and synthesized T2w in both good and poor prognoses. The results of T1w were similar in the point that there was no significant difference between the real and synthesized T1w. It was found that the synthesized image could be used for prognosis prediction. The proposed prognostic model using CycleGAN could reduce the cost and time of image scanning, leading to a promotion to build the patient's outcome prediction with multi-contrast images.
Collapse
Affiliation(s)
- Hisanori Yoshimura
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Department of Radiology, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.
| | - Akito Saito
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, 732-0057, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, 732-0057, Japan
| |
Collapse
|
2
|
Ma T, Wang H, Ye Z. Artificial intelligence applications in computed tomography in gastric cancer: a narrative review. Transl Cancer Res 2023; 12:2379-2392. [PMID: 37859746 PMCID: PMC10583011 DOI: 10.21037/tcr-23-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023]
Abstract
Background and Objective Artificial intelligence (AI) is a revolutionary technique which is deeply impacting and reshaping clinical practice in oncology. This review aims to summarize the current status of the clinical application of AI-based computed tomography (CT) for gastric cancer (GC), focusing on diagnosis, genetic status detection and risk prediction of metastasis, prognosis and treatment efficacy. The challenges and prospects for future research will also be discussed. Methods We searched the PubMed/MEDLINE database to identify clinical studies published between 1990 and November 2022 that investigated AI applications in CT in GC. The major findings of the verified studies were summarized. Key Content and Findings AI applications in CT images have attracted considerable attention in various fields such as diagnosis, prediction of metastasis risk, survival, and treatment response. These emerging techniques have shown a high potential to outperform clinicians in diagnostic accuracy and time-saving. Conclusions AI-powered tools showed great potential to increase diagnostic accuracy and reduce radiologists' workload. However, the goal of AI is not to replace human ability but to help oncologists make decisions in their practice. Therefore, radiologists should play a predominant role in AI applications and decide the best ways to integrate these complementary techniques within clinical practice.
Collapse
Affiliation(s)
- Tingting Ma
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hua Wang
- Department of Radiology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- The Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
3
|
Paudyal R, Shah AD, Akin O, Do RKG, Konar AS, Hatzoglou V, Mahmood U, Lee N, Wong RJ, Banerjee S, Shin J, Veeraraghavan H, Shukla-Dave A. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers (Basel) 2023; 15:cancers15092573. [PMID: 37174039 PMCID: PMC10177423 DOI: 10.3390/cancers15092573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.
Collapse
Affiliation(s)
- Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Akash D Shah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amaresha Shridhar Konar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Richard J Wong
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | | | | | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| |
Collapse
|
4
|
Stamoulou E, Spanakis C, Manikis GC, Karanasiou G, Grigoriadis G, Foukakis T, Tsiknakis M, Fotiadis DI, Marias K. Harmonization Strategies in Multicenter MRI-Based Radiomics. J Imaging 2022; 8:303. [PMID: 36354876 PMCID: PMC9695920 DOI: 10.3390/jimaging8110303] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Radiomics analysis is a powerful tool aiming to provide diagnostic and prognostic patient information directly from images that are decoded into handcrafted features, comprising descriptors of shape, size and textural patterns. Although radiomics is gaining momentum since it holds great promise for accelerating digital diagnostics, it is susceptible to bias and variation due to numerous inter-patient factors (e.g., patient age and gender) as well as inter-scanner ones (different protocol acquisition depending on the scanner center). A variety of image and feature based harmonization methods has been developed to compensate for these effects; however, to the best of our knowledge, none of these techniques has been established as the most effective in the analysis pipeline so far. To this end, this review provides an overview of the challenges in optimizing radiomics analysis, and a concise summary of the most relevant harmonization techniques, aiming to provide a thorough guide to the radiomics harmonization process.
Collapse
Affiliation(s)
- Elisavet Stamoulou
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Constantinos Spanakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
| | - Georgios C. Manikis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Georgia Karanasiou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Grigoris Grigoriadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Manolis Tsiknakis
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, 451 10 Ioannina, Greece
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology—FORTH, University Campus of Ioannina, 451 15 Ioannina, Greece
| | - Kostas Marias
- Computational BioMedicine Laboratory (CBML), Foundation for Research and Technology—Hellas (FORTH), 700 13 Heraklion, Greece
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, 714 10 Heraklion, Greece
| |
Collapse
|
5
|
Cui Y, Yin FF. Impact of image quality on radiomics applications. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Radiomics features extracted from medical images have been widely reported to be useful in the patient specific outcome modeling for variety of assessment and prediction purposes. Successful application of radiomics features as imaging biomarkers, however, is dependent on the robustness of the approach to the variation in each step of the modeling workflow. Variation in the input image quality is one of the main sources that impacts the reproducibility of radiomics analysis when a model is applied to broader range of medical imaging data. The quality of medical image is generally affected by both the scanner related factors such as image acquisition/reconstruction settings and the patient related factors such as patient motion. This article aimed to review the published literatures in this field that reported the impact of various imaging factors on the radiomics features through the change in image quality. The literatures were categorized by different imaging modalities and also tabulated based on the imaging parameters and the class of radiomics features included in the study. Strategies for image quality standardization were discussed based on the relevant literatures and recommendations for reducing the impact of image quality variation on the radiomics in multi-institutional clinical trial were summarized at the end of this article.
Collapse
|
6
|
Li Y, Reyhan M, Zhang Y, Wang X, Zhou J, Zhang Y, Yue NJ, Nie K. The impact of phantom design and material-dependence on repeatability and reproducibility of CT-based radiomics features. Med Phys 2022; 49:1648-1659. [PMID: 35103332 DOI: 10.1002/mp.15491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To understand the design of radiomics phantom and material-dependence on repeatability and reproducibility of CT radiomics features METHODS: : A radiomics phantom consisting of various materials with uniformity, textural and biological components, was constructed. The phantom was scanned with different manufacturer CT scanners and the scans were repeated multiple times on the same scanner with different acquisition settings as kVp, mAs, orientation, field of view (FOV), slice thickness, pitch, reconstruction kernels and acquisition mode. A total of 72 phantom scans were included. For each scan, 18 different regions of interest (ROI) were contoured and 708 radiomics features were extracted from each ROI via an open source radiomics tool, IBEX. To relate the phantom data to patient data, the radiomics features from different phantom materials were compared with those extracted from 50 patients' images of five disease sites as brain, head-and-neck, breast, liver and lung cases using box-plots comparison and principal component analysis (PCA). The temporal stability of imaging features was then evaluated with respect to a controlled scenario (test-retest) via the intra-class correlation coefficient (ICC). The reproducibility of radiomics features with respect to different scanners or acquisition settings were further evaluated with concordance correlation coefficients (CCC). RESULTS Among all phantom materials, the biological component had feature values closest to human tissues, especially for tumors in brain and liver. The textural component showed similar ranges of variation to lung lesions, particularly for cartridges of rice, cereal, and the 3D-printed textural phantom with fine and rough-grid. It also showed that certain materials, such as polystyrene foam, plaster and peanuts, did not have comparable values to human tissue and could be excluded for future phantom design. High repeatability was observed in the test-retest study as indicated by an ICC value of 0.998 ± 0.020. All materials were used for feature stability analysis. For the inter-scanner study, shape-related features were the most-reliable category with 94% of features having CCC ≥0.9, while GOH were the least-reliable with only 14.6% meeting the criteria. For the intra-scanner study, the reproducibility of CT-based radiomics features showed material-dependence. In general, the instability of radiomics features introduced by kVp, mAs, pitch, acquisition mode and orientation were relatively mild. However, the homogeneous materials were more vulnerable to those changes compared to materials with textural patterns. Regardless of material compositions, resolution parameters like FOV and slice thickness, could have large impact on feature stability. Switching between standard and bone reconstruction kernels could also result significant changes to feature reproducibility. CONCLUSION We have built a radiomics phantom using materials that cover a wide span of tumor textures seen in oncological CT images. The designed phantom presents a preliminary opportunity for investigating reproducibility of radiomics features and the reproducibility can be material dependent. Thus, in the radiomics quality assurance design, it is important to choose appropriate materials that can provide a close range of radiomics features to patients with specific disease sites dependency taken into consideration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanjing Li
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Meral Reyhan
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Yin Zhang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Xiao Wang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Jinghao Zhou
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Yang Zhang
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| | - Ke Nie
- Department of Radiation Oncology, Rutgers-Cancer Institute of New Jersey, New Brunswick, NJ, 08901
| |
Collapse
|
7
|
Acciavatti RJ, Cohen EA, Maghsoudi OH, Gastounioti A, Pantalone L, Hsieh MK, Conant EF, Scott CG, Winham SJ, Kerlikowske K, Vachon C, Maidment ADA, Kontos D. Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation. Cancers (Basel) 2021; 13:5497. [PMID: 34771660 PMCID: PMC8582675 DOI: 10.3390/cancers13215497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Digital mammography has seen an explosion in the number of radiomic features used for risk-assessment modeling. However, having more features is not necessarily beneficial, as some features may be overly sensitive to imaging physics (contrast, noise, and image sharpness). To measure the effects of imaging physics, we analyzed the feature variation across imaging acquisition settings (kV, mAs) using an anthropomorphic phantom. We also analyzed the intra-woman variation (IWV), a measure of how much a feature varies between breasts with similar parenchymal patterns-a woman's left and right breasts. From 341 features, we identified "robust" features that minimized the effects of imaging physics and IWV. We also investigated whether robust features offered better case-control classification in an independent data set of 575 images, all with an overall BI-RADS® assessment of 1 (negative) or 2 (benign); 115 images (cases) were of women who developed cancer at least one year after that screening image, matched to 460 controls. We modeled cancer occurrence via logistic regression, using cross-validated area under the receiver-operating-characteristic curve (AUC) to measure model performance. Models using features from the most-robust quartile of features yielded an AUC = 0.59, versus 0.54 for the least-robust, with p < 0.005 for the difference among the quartiles.
Collapse
Affiliation(s)
- Raymond J. Acciavatti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Eric A. Cohen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Omid Haji Maghsoudi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Aimilia Gastounioti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Lauren Pantalone
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Meng-Kang Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Emily F. Conant
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Christopher G. Scott
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.G.S.); (S.J.W.); (C.V.)
| | - Stacey J. Winham
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.G.S.); (S.J.W.); (C.V.)
| | - Karla Kerlikowske
- Departments of Medicine and Epidemiology/Biostatistics, Women’s Health Clinical Research Center, UCSF, San Francisco, CA 94143, USA;
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; (C.G.S.); (S.J.W.); (C.V.)
| | - Andrew D. A. Maidment
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| | - Despina Kontos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (E.A.C.); (O.H.M.); (A.G.); (L.P.); (M.-K.H.); (E.F.C.); (A.D.A.M.); (D.K.)
| |
Collapse
|
8
|
Ibrahim A, Widaatalla Y, Refaee T, Primakov S, Miclea RL, Öcal O, Fabritius MP, Ingrisch M, Ricke J, Hustinx R, Mottaghy FM, Woodruff HC, Seidensticker M, Lambin P. Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data. Cancers (Basel) 2021; 13:cancers13184638. [PMID: 34572870 PMCID: PMC8468150 DOI: 10.3390/cancers13184638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Radiomics has been reported to have potential for correlating with clinical outcomes. However, handcrafted radiomic features (HRFs)—the quantitative features extracted from medical images—are limited by their sensitivity to variations in scanning parameters. Furthermore, radiomics analyses require big data with good quality to achieve desirable performances. In this study, we investigated the reproducibility of HRFs between scans acquired with the same scanning parameters except for the imaging phase (arterial and portal venous phases) to assess the possibilities of merging scans from different phases or replacing missing scans from a phase with other phases to increase data entries. Additionally, we assessed the potential of ComBat harmonization to remove batch effects attributed to this variation. Our results show that the majority of HRFs were not reproducible between the arterial and portal venous phases before or after ComBat harmonization. We provide a guide for analyzing scans of different imaging phases. Abstract Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference. ComBat harmonization is a method based on Bayesian estimates that was developed for gene expression arrays, and has been investigated as a potential method for harmonizing HRFs. Our results show that the majority of HRFs are not reproducible between the arterial and portal venous imaging phases, yet a number of HRFs could be used interchangeably between those phases. Furthermore, ComBat harmonization increased the number of reproducible HRFs across both phases by 1%. Our results guide the pooling of arterial and venous phases from different patients in an effort to increase cohort size, as well as joint analysis of the phases.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (A.I.); (T.R.)
| | - Yousif Widaatalla
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.I.); (T.R.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Razvan L. Miclea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Matthias P. Fabritius
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| |
Collapse
|
9
|
Mali SA, Ibrahim A, Woodruff HC, Andrearczyk V, Müller H, Primakov S, Salahuddin Z, Chatterjee A, Lambin P. Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. J Pers Med 2021; 11:842. [PMID: 34575619 PMCID: PMC8472571 DOI: 10.3390/jpm11090842] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.
Collapse
Affiliation(s)
- Shruti Atul Mali
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Physics, Division of Nuclear Medicine and Oncological Imaging, Hospital Center Universitaire de Liege, 4000 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Vincent Andrearczyk
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Henning Müller
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
10
|
Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, Lambin P, Bottari F, Tsoutzidis N, Miraglio B, Walsh S, Vos W, Hustinx R, Ferreira M, Lovinfosse P, Leijenaar RTH. A review in radiomics: Making personalized medicine a reality via routine imaging. Med Res Rev 2021; 42:426-440. [PMID: 34309893 DOI: 10.1002/med.21846] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Radiomics is the quantitative analysis of standard-of-care medical imaging; the information obtained can be applied within clinical decision support systems to create diagnostic, prognostic, and/or predictive models. Radiomics analysis can be performed by extracting hand-crafted radiomics features or via deep learning algorithms. Radiomics has evolved tremendously in the last decade, becoming a bridge between imaging and precision medicine. Radiomics exploits sophisticated image analysis tools coupled with statistical elaboration to extract the wealth of information hidden inside medical images, such as computed tomography (CT), magnetic resonance (MR), and/or Positron emission tomography (PET) scans, routinely performed in the everyday clinical practice. Many efforts have been devoted in recent years to the standardization and validation of radiomics approaches, to demonstrate their usefulness and robustness beyond any reasonable doubts. However, the booming of publications and commercial applications of radiomics approaches warrant caution and proper understanding of all the factors involved to avoid "scientific pollution" and overly enthusiastic claims by researchers and clinicians alike. For these reasons the present review aims to be a guidebook of sorts, describing the process of radiomics, its pitfalls, challenges, and opportunities, along with its ability to improve clinical decision-making, from oncology and respiratory medicine to pharmacological and genotyping studies.
Collapse
Affiliation(s)
- Julien Guiot
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Akshayaa Vaidyanathan
- Radiomics (Oncoradiomics SA), Liège, Belgium.,The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Louis Deprez
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Fadila Zerka
- Radiomics (Oncoradiomics SA), Liège, Belgium.,The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Denis Danthine
- Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Anne-Noelle Frix
- Department of Pneumology, University Hospital of Liège, Liège, Belgium
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, Department of Nuclear Medicine, GROW-School for Oncology, Maastricht University, Maastricht, The Netherlands
| | | | | | | | - Sean Walsh
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Wim Vos
- Radiomics (Oncoradiomics SA), Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine and Oncological Imaging, University Hospital of Liege, Liege, Belgium.,GIGA-CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Marta Ferreira
- GIGA-CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Department of Nuclear Medicine and Oncological Imaging, University Hospital of Liege, Liege, Belgium
| | | |
Collapse
|
11
|
Prediction of Human Papillomavirus (HPV) Association of Oropharyngeal Cancer (OPC) Using Radiomics: The Impact of the Variation of CT Scanner. Cancers (Basel) 2021; 13:cancers13092269. [PMID: 34066857 PMCID: PMC8125906 DOI: 10.3390/cancers13092269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recent studies exploring the application of radiomics features in medicine have shown promising results. However, variation in imaging parameters may impact the robustness of these features. Feature robustness may then in turn affect the prediction performance of the machine learning models built upon these features. While numerous studies have tested feature robustness against a variety of imaging parameters, the extent to which feature robustness affects predictions remains unclear. A particularly notable application of radiomics in clinical oncology is the prediction of Human Papillomavirus (HPV) association in Oropharyngeal cancer. In this study we explore how CT scanner type affects the performance of radiomics features for HPV association prediction and highlight the need to implement precautionary approaches so as to minimize this effect. Abstract Studies have shown that radiomic features are sensitive to the variability of imaging parameters (e.g., scanner models), and one of the major challenges in these studies lies in improving the robustness of quantitative features against the variations in imaging datasets from multi-center studies. Here, we assess the impact of scanner choice on computed tomography (CT)-derived radiomic features to predict the association of oropharyngeal squamous cell carcinoma with human papillomavirus (HPV). This experiment was performed on CT image datasets acquired from two different scanner manufacturers. We demonstrate strong scanner dependency by developing a machine learning model to classify HPV status from radiological images. These experiments reveal the effect of scanner manufacturer on the robustness of radiomic features, and the extent of this dependency is reflected in the performance of HPV prediction models. The results of this study highlight the importance of implementing an appropriate approach to reducing the impact of imaging parameters on radiomic features and consequently on the machine learning models, without removing features which are deemed non-robust but may contain learning information.
Collapse
|
12
|
Ibrahim A, Refaee T, Leijenaar RTH, Primakov S, Hustinx R, Mottaghy FM, Woodruff HC, Maidment ADA, Lambin P. The application of a workflow integrating the variable reproducibility and harmonizability of radiomic features on a phantom dataset. PLoS One 2021; 16:e0251147. [PMID: 33961646 PMCID: PMC8104396 DOI: 10.1371/journal.pone.0251147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those–the “ComBatable” RFs–which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Faculty of Applied Medical Sciences, Department of Diagnostic Radiology, Jazan University, Jazan, Saudi Arabia
| | | | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew D. A. Maidment
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Reiazi R, Abbas E, Famiyeh P, Rezaie A, Kwan JYY, Patel T, Bratman SV, Tadic T, Liu FF, Haibe-Kains B. The impact of the variation of imaging parameters on the robustness of Computed Tomography radiomic features: A review. Comput Biol Med 2021; 133:104400. [PMID: 33930766 DOI: 10.1016/j.compbiomed.2021.104400] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The field of radiomics is at the forefront of personalized medicine. However, there is concern that high variation in imaging parameters will impact robustness of radiomic features and subsequently the performance of the predictive models built upon them. Therefore, our review aims to evaluate the impact of imaging parameters on the robustness of radiomic features. We also provide insights into the validity and discrepancy of different methodologies applied to investigate the robustness of radiomic features. We selected 47 papers based on our predefined inclusion criteria and grouped these papers by the imaging parameter under investigation: (i) scanner parameters, (ii) acquisition parameters and (iii) reconstruction parameters. Our review highlighted that most of the imaging parameters are disruptive parameters, and shape along with First order statistics were reported as the most robust radiomic features against variation in imaging parameters. This review identified inconsistencies related to the methodology of the reviewed studies such as the metrics used for robustness, the feature extraction techniques, the reporting style, and their outcome inclusion. We hope this review will aid the scientific community in conducting research in a way that is more reproducible and avoids the pitfalls of previous analyses.
Collapse
Affiliation(s)
- Reza Reiazi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Engy Abbas
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Petra Famiyeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aria Rezaie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Y Y Kwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tirth Patel
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Tony Tadic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Abstract
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
Collapse
Affiliation(s)
- R Da-Ano
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - D Visvikis
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| | - M Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| |
Collapse
|