1
|
Huang Y, Jones CK, Zhang X, Johnston A, Waktola S, Aygun N, Witham TF, Bydon A, Theodore N, Helm PA, Siewerdsen JH, Uneri A. Multi-perspective region-based CNNs for vertebrae labeling in intraoperative long-length images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107222. [PMID: 36370597 DOI: 10.1016/j.cmpb.2022.107222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Effective aggregation of intraoperative x-ray images that capture the patient anatomy from multiple view-angles has the potential to enable and improve automated image analysis that can be readily performed during surgery. We present multi-perspective region-based neural networks that leverage knowledge of the imaging geometry for automatic vertebrae labeling in Long-Film images - a novel tomographic imaging modality with an extended field-of-view for spine imaging. METHOD A multi-perspective network architecture was designed to exploit small view-angle disparities produced by a multi-slot collimator and consolidate information from overlapping image regions. A second network incorporates large view-angle disparities to jointly perform labeling on images from multiple views (viz., AP and lateral). A recurrent module incorporates contextual information and enforce anatomical order for the detected vertebrae. The three modules are combined to form the multi-view multi-slot (MVMS) network for labeling vertebrae using images from all available perspectives. The network was trained on images synthesized from 297 CT images and tested on 50 AP and 50 lateral Long-Film images acquired from 13 cadaveric specimens. Labeling performance of the multi-perspective networks was evaluated with respect to the number of vertebrae appearances and presence of surgical instrumentation. RESULTS The MVMS network achieved an F1 score of >96% and an average vertebral localization error of 3.3 mm, with 88.3% labeling accuracy on both AP and lateral images - (15.5% and 35.0% higher than conventional Faster R-CNN on AP and lateral views, respectively). Aggregation of multiple appearances of the same vertebra using the multi-slot network significantly improved the labeling accuracy (p < 0.05). Using the multi-view network, labeling accuracy on the more challenging lateral views was improved to the same level as that of the AP views. The approach demonstrated robustness to the presence of surgical instrumentation, commonly encountered in intraoperative images, and achieved comparable performance in images with and without instrumentation (88.9% vs. 91.2% labeling accuracy). CONCLUSION The MVMS network demonstrated effective multi-perspective aggregation, providing means for accurate, automated vertebrae labeling during spine surgery. The algorithms may be generalized to other imaging tasks and modalities that involve multiple views with view-angle disparities (e.g., bi-plane radiography). Predicted labels can help avoid adverse events during surgery (e.g., wrong-level surgery), establish correspondence with labels in preoperative modalities to facilitate image registration, and enable automated measurement of spinal alignment metrics for intraoperative assessment of spinal curvature.
Collapse
Affiliation(s)
- Y Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States
| | - C K Jones
- Department of Computer Science, Johns Hopkins University, Baltimore MD, United States
| | - X Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States
| | - A Johnston
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States
| | - S Waktola
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States
| | - N Aygun
- Department of Radiology, Johns Hopkins Medicine, Baltimore MD, United States
| | - T F Witham
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore MD, United States
| | - A Bydon
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore MD, United States
| | - N Theodore
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore MD, United States
| | - P A Helm
- Medtronic, Littleton MA, United States
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States; Department of Computer Science, Johns Hopkins University, Baltimore MD, United States; Department of Radiology, Johns Hopkins Medicine, Baltimore MD, United States; Department of Neurosurgery, Johns Hopkins Medicine, Baltimore MD, United States; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States.
| |
Collapse
|
2
|
Zhang X, Uneri A, Huang Y, Jones CK, Witham TF, Helm PA, Siewerdsen JH. Deformable 3D-2D image registration and analysis of global spinal alignment in long-length intraoperative spine imaging. Med Phys 2022; 49:5715-5727. [PMID: 35762028 DOI: 10.1002/mp.15819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Spinal deformation during surgical intervention (caused by patient positioning and/or correction of malalignment) confounds conventional navigation due to assumptions of rigid transformation. Moreover, the ability to accurately quantify spinal alignment in the operating room would provide assessment of the surgical product via metrics that correlate with clinical outcome. PURPOSE A method for deformable 3D-2D registration of preoperative CT to intraoperative long-length tomosynthesis images is reported for accurate 3D evaluation of device placement in the presence of spinal deformation and automated evaluation of global spinal alignment (GSA). METHODS Long-length tomosynthesis ("Long Film", LF) images were acquired using an O-arm™ imaging system (Medtronic, Minneapolis USA). A deformable 3D-2D patient registration was developed using multi-scale masking (proceeding from the full-length image to local subvolumes about each vertebra) to transform vertebral labels and planning information from preoperative CT to the LF images. Automatic measurement of GSA [Main Thoracic Kyphosis (MThK) and Lumbar Lordosis (LL)] was obtained using a spline fit to registered labels. The "Known-Component Registration" (KC-Reg) method for device registration was adapted to the multi-scale process for 3D device localization from orthogonal LF images. The multi-scale framework was evaluated using a deformable spine phantom in which pedicle screws were inserted, and deformations were induced over a range in LL ∼25-80°. Further validation was carried out in a cadaver study with implanted pedicle screws and a similar range of spinal deformation. The accuracy of patient and device registration was evaluated in terms of 3D translational error and target registration error (TRE), respectively, and the accuracy of automatic GSA measurements were compared to manual annotation. RESULTS Phantom studies demonstrated accurate registration via the multi-scale framework for all vertebral levels in both the neutral and deformed spine: median (interquartile range, IQR) patient registration error was 1.1 mm (0.7-1.9 mm IQR). Automatic measures of MThK and LL agreed with manual delineation within -1.1° ± 2.2° and 0.7° ± 2.0° (mean and standard deviation), respectively. Device registration error was 0.7 mm (0.4-1.0 mm IQR) at the screw tip and 0.9° (1.0°-1.5°) about the screw trajectory. Deformable 3D-2D registration significantly outperformed conventional rigid registration (p < 0.05), which exhibited device registration error of 2.1 mm (0.8-4.1 mm) and 4.1° (1.2°-9.5°). Cadaver studies verified performance under realistic conditions, demonstrating patient registration error of 1.6 mm (0.9-2.1 mm); MThK within -4.2° ± 6.8° and LL within 1.7° ± 3.5°; and device registration error of 0.8 mm (0.5-1.9 mm) and 0.7° (0.4°-1.2°) for the multi-scale deformable method, compared to 2.5 mm (1.0-7.9 mm) and 2.3° (1.6°-8.1°) for rigid registration (p < 0.05). CONCLUSION The deformable 3D-2D registration framework leverages long-length intraoperative imaging to achieve accurate patient and device registration over extended lengths of the spine (up to 64 cm) even with strong anatomical deformation. The method offers a new means for quantitative validation of spinal correction (intraoperative GSA measurement) and 3D verification of device placement in comparison to preoperative images and planning data. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Ali Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Yixuan Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Craig K Jones
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD
| | - Timothy F Witham
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD
| | | | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD.,The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD.,Department of Neurosurgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
3
|
Huang Y, Uneri A, Jones CK, Zhang X, Ketcha MD, Aygun N, Helm PA, Siewerdsen JH. 3D vertebrae labeling in spine CT: an accurate, memory-efficient (Ortho2D) framework. Phys Med Biol 2021; 66. [PMID: 34082413 DOI: 10.1088/1361-6560/ac07c7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
Purpose.Accurate localization and labeling of vertebrae in computed tomography (CT) is an important step toward more quantitative, automated diagnostic analysis and surgical planning. In this paper, we present a framework (called Ortho2D) for vertebral labeling in CT in a manner that is accurate and memory-efficient.Methods. Ortho2D uses two independent faster R-convolutional neural network networks to detect and classify vertebrae in orthogonal (sagittal and coronal) CT slices. The 2D detections are clustered in 3D to localize vertebrae centroids in the volumetric CT and classify the region (cervical, thoracic, lumbar, or sacral) and vertebral level. A post-process sorting method incorporates the confidence in network output to refine classifications and reduce outliers. Ortho2D was evaluated on a publicly available dataset containing 302 normal and pathological spine CT images with and without surgical instrumentation. Labeling accuracy and memory requirements were assessed in comparison to other recently reported methods. The memory efficiency of Ortho2D permitted extension to high-resolution CT to investigate the potential for further boosts to labeling performance.Results. Ortho2D achieved overall vertebrae detection accuracy of 97.1%, region identification accuracy of 94.3%, and individual vertebral level identification accuracy of 91.0%. The framework achieved 95.8% and 83.6% level identification accuracy in images without and with surgical instrumentation, respectively. Ortho2D met or exceeded the performance of previously reported 2D and 3D labeling methods and reduced memory consumption by a factor of ∼50 (at 1 mm voxel size) compared to a 3D U-Net, allowing extension to higher resolution datasets than normally afforded. The accuracy of level identification increased from 80.1% (for standard/low resolution CT) to 95.1% (for high-resolution CT).Conclusions. The Ortho2D method achieved vertebrae labeling performance that is comparable to other recently reported methods with significant reduction in memory consumption, permitting further performance boosts via application to high-resolution CT.
Collapse
Affiliation(s)
- Y Huang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
| | - C K Jones
- The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore MD, United States of America
| | - X Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
| | - M D Ketcha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America
| | - N Aygun
- Department of Radiology, Johns Hopkins University, Baltimore MD, United States of America
| | - P A Helm
- Medtronic Inc., Littleton MA, United States of America
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, United States of America.,The Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore MD, United States of America.,Department of Radiology, Johns Hopkins University, Baltimore MD, United States of America
| |
Collapse
|