1
|
Zinos A, Wagner JC, Beardsley SA, Chen WL, Conant L, Malloy M, Heffernan J, Quirk B, Prost R, Maheshwari M, Sugar J, Whelan HT. Spatial correspondence of cortical activity measured with whole head fNIRS and fMRI: Toward clinical use within subject. Neuroimage 2024; 290:120569. [PMID: 38461959 DOI: 10.1016/j.neuroimage.2024.120569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.
Collapse
Affiliation(s)
- Anthony Zinos
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie C Wagner
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Wei-Liang Chen
- Center for Neuroscience Research, Children's National Medical Center, George Washington University, Washington DC, USA
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marsha Malloy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| | - Joseph Heffernan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brendan Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Prost
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mohit Maheshwari
- Department of Radiology, Children's Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Sugar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurology, Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Comparison of Whole-Head Functional Near-Infrared Spectroscopy With Functional Magnetic Resonance Imaging and Potential Application in Pediatric Neurology. Pediatr Neurol 2021; 122:68-75. [PMID: 34301451 DOI: 10.1016/j.pediatrneurol.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.
Collapse
|
3
|
Hernandez-Martin E, Gonzalez-Mora JL. Diffuse optical tomography in the human brain: A briefly review from the neurophysiology to its applications. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present work describes the use of noninvasive diffuse optical tomography (DOT) technology to measure hemodynamic changes, providing relevant information which helps to understand the basis of neurophysiology in the human brain. Advantages such as portability, direct measurements of hemoglobin state, temporal resolution, non‐restricted movements as occurs in magnetic resonance imaging (MRI) devices mean that DOT technology can be used in research and clinical fields. In this review we covered the neurophysiology, physical principles underlying optical imaging during tissue‐light interactions, and technology commonly used during the construction of a DOT device including the source‐detector requirements to improve the image quality. DOT provides 3D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head. Moreover, we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing, avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science, Faculty of Health Science, Medicine Section, Universidad de La Laguna, 38071, Spain
| | - José Luis Gonzalez-Mora
- Department of Basic Medical Science, Faculty of Health Science, Medicine Section, Universidad de La Laguna, 38071, Spain
| |
Collapse
|
4
|
Hernandez-Martin E, Marcano F, Modroño C, Janssen N, González-Mora JL. Diffuse optical tomography to measure functional changes during motor tasks: a motor imagery study. BIOMEDICAL OPTICS EXPRESS 2020; 11:6049-6067. [PMID: 33282474 PMCID: PMC7687968 DOI: 10.1364/boe.399907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
The present work shows the spatial reliability of the diffuse optical tomography (DOT) system in a group of healthy subjects during a motor imagery task. Prior to imagery task performance, the subjects executed a motor task based on the finger to thumb opposition for motor training, and to corroborate the DOT spatial localization during the motor execution. DOT technology and data treatment allows us to distinguish oxy- and deoxyhemoglobin at the cerebral gyri level unlike the cerebral activations provided by fMRI series that were processed using different approaches. Here we show the DOT reliability showing functional activations at the cerebral gyri level during motor execution and motor imagery, which provide subtler cerebral activations than the motor execution. These results will allow the use of the DOT system as a monitoring device in a brain computer interface.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
| | - Francisco Marcano
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Cristian Modroño
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Niels Janssen
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
- Psychology Department, Universidad de La Laguna 38071, Spain
| | - Jose Luis González-Mora
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| |
Collapse
|
5
|
Hernandez-Martin E, Marcano F, Modroño-Pascual C, Casanova-González O, Plata-Bello J, González-Mora JL. Is it possible to measure hemodynamic changes in the prefrontal cortex through the frontal sinus using continuous wave DOT systems? BIOMEDICAL OPTICS EXPRESS 2019; 10:817-837. [PMID: 30800517 PMCID: PMC6377888 DOI: 10.1364/boe.10.000817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 05/20/2023]
Abstract
The present work shows the capability of near infrared (NIR) light to reach the cerebral cortex through the frontal sinus using continuous-wave techniques (CW-DOT) in a dual study. On the one hand, changes in time during the tracking of a blood dye in the prefrontal cortex were monitored. On the other hand, hemodynamic changes induced by low frequency of transcranial magnetic stimulation applied on the prefrontal cortex were recorded. The results show how NIR light projected through the frontal sinus reaches the cerebral cortex target, providing enough information to have a reliable measurement of cortical hemodynamic changes using CW-DOT.
Collapse
|