1
|
Iester C, Banzhaf C, Eldably A, Schopp B, Fallgatter AJ, Bonzano L, Bove M, Ehlis AC, Barth B. NINFA: Non-commercial interface for neuro-feedback acquisitions. NEUROPHOTONICS 2025; 12:026601. [PMID: 40370478 PMCID: PMC12077575 DOI: 10.1117/1.nph.12.2.026601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Significance In recent years, functional near-infrared spectroscopy (fNIRS) has gained increasing attention in the field of neurofeedback. However, there is a lack of freely accessible tools for research in this area that reflect the state of the art in research and technology. Aim To address this need, we introduce Non-commercial Interface for Neuro-Feedback Acquisitions (NINFA), a user-friendly and flexible freely available neurofeedback application for real-time fNIRS, which is also open to other modalities such as electroencephalography (EEG). Approach NINFA was developed in MATLAB and the lab streaming layer connection offers maximum flexibility in terms of combination with different fNIRS or EEG acquisition software and hardware. Results The user-friendly interface allows measurements without requiring programming expertise. New neurofeedback protocols can be easily created, saved, and retrieved. We provide an example code for real-time data preprocessing and visual feedback; however, users can customize or expand it with appropriate programming skills. Conclusions NINFA enables real-time recording, analysis, and feedback of brain signals. We were able to demonstrate the stability and reliability of the computational performance of preprocessing and analysis methods in the current version. NINFA is intended as an application that can, should, and may evolve with the help of contributions from the community.
Collapse
Affiliation(s)
- Costanza Iester
- University of Genoa, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genoa, Italy
| | | | - Ahmed Eldably
- University Hospital, Tübingen Center for Mental Health, Tübingen Department of Psychiatry and Psychotherapy, Tübingen, Germany
- German Center for Mental Health, Partner site Tübingen, Germany
| | - Betti Schopp
- University Hospital, Tübingen Center for Mental Health, Tübingen Department of Psychiatry and Psychotherapy, Tübingen, Germany
- German Center for Mental Health, Partner site Tübingen, Germany
| | - Andreas J. Fallgatter
- University Hospital, Tübingen Center for Mental Health, Tübingen Department of Psychiatry and Psychotherapy, Tübingen, Germany
- German Center for Mental Health, Partner site Tübingen, Germany
- University of Tübingen, LEAD Graduate School and Research Network, Tübingen, Germany
| | - Laura Bonzano
- University of Genoa, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- University of Genoa, Section of Human Physiology, Department of Experimental Medicine, Genoa, Italy
| | - Ann-Christine Ehlis
- University Hospital, Tübingen Center for Mental Health, Tübingen Department of Psychiatry and Psychotherapy, Tübingen, Germany
- German Center for Mental Health, Partner site Tübingen, Germany
- University of Tübingen, LEAD Graduate School and Research Network, Tübingen, Germany
| | - Beatrix Barth
- University Hospital, Tübingen Center for Mental Health, Tübingen Department of Psychiatry and Psychotherapy, Tübingen, Germany
- German Center for Mental Health, Partner site Tübingen, Germany
- University of Tübingen, LEAD Graduate School and Research Network, Tübingen, Germany
| |
Collapse
|
2
|
Rabbito R, Cinanni A, Bussi L, Guiot C, Roatta S. A neuro-feedback prototype based on transcranial Doppler ultrasound for brain computer interface applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039404 DOI: 10.1109/embc53108.2024.10782446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This study proposes a TCD-based neurofeedback system designed to visualize interhemispheric hemodynamic imbalance based on the bilateral monitoring of middle cerebral arteries (MCAs). The difference between cerebral blood velocities collected from the right and left side is calculated in real time and used to drive the horizontal position of the ball displayed on a screen. With this visual feedback, the user may see how different thoughts impact on the position of the ball and possibly acquire and improve control of the ball through progressive training. Four healthy volunteers participated in a preliminary assessment conducted over four training sessions, on average demonstrating increased control over the ball movement. The results provide a proof of concept of the methodology, confirm the feasibility of the approach. The system's novelty lies in its simplicity, cost-effectiveness, and focus on cerebral lateralization, which make TCD an intriguing alternative to other neurofeedback systems, typically based on EEG, fMRI or fNIRS. The results encourage larger sample size, investigations on the TCD-based neurofeedback's therapeutic and rehabilitative potential.
Collapse
|
3
|
Gao Y, Rogers D, von Lühmann A, Ortega-Martinez A, Boas DA, Yücel MA. Short-separation regression incorporated diffuse optical tomography image reconstruction modeling for high-density functional near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:025007. [PMID: 37228904 PMCID: PMC10203730 DOI: 10.1117/1.nph.10.2.025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/08/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Significance Short-separation (SS) regression and diffuse optical tomography (DOT) image reconstruction, two widely adopted methods in functional near-infrared spectroscopy (fNIRS), were demonstrated to individually facilitate the separation of brain activation and physiological signals, with further improvement using both sequentially. We hypothesized that doing both simultaneously would further improve the performance. Aim Motivated by the success of these two approaches, we propose a method, SS-DOT, which applies SS and DOT simultaneously. Approach The method, which employs spatial and temporal basis functions to represent the hemoglobin concentration changes, enables us to incorporate SS regressors into the time series DOT model. To benchmark the performance of the SS-DOT model against conventional sequential models, we use fNIRS resting state data augmented with synthetic brain response as well as data acquired during a ball squeezing task. The conventional sequential models comprise performing SS regression and DOT. Results The results show that the SS-DOT model improves the image quality by increasing the contrast-to-background ratio by a threefold improvement. The benefits are marginal at small brain activation. Conclusions The SS-DOT model improves the fNIRS image reconstruction quality.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - De’Ja Rogers
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | | | | | - David A. Boas
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| | - Meryem Ayşe Yücel
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Li K, Yang J, Becker B, Li X. Functional near-infrared spectroscopy neurofeedback of dorsolateral prefrontal cortex enhances human spatial working memory. NEUROPHOTONICS 2023; 10:025011. [PMID: 37275655 PMCID: PMC10234406 DOI: 10.1117/1.nph.10.2.025011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
Significance Spatial working memory (SWM) is essential for daily life and deficits in this domain represent a common impairment across aging and several mental disorders. Impaired SWM has been closely linked to dysregulations in dorsolateral prefrontal cortex (DLPFC) activation. Aim The present study evaluates the feasibility and maintenance of functional near-infrared spectroscopy neurofeedback (fNIRS-NF) training of the DLPFC to enhance SWM in healthy individuals using a real-time fNIRS-NF platform developed by the authors. Approach We used a randomized sham-controlled between-subject fNIRS-NF design with 60 healthy subjects as a sample. Training-induced changes in the DLPFC, SWM, and attention performance served as primary outcomes. Results Feedback from the target channel significantly increased regional-specific DLPFC activation over the fNIRS-NF training compared to sham NF. A significant group difference in NF-induced frontoparietal connectivity was observed. Compared to the control group, the experimental group demonstrated significantly improved SWM and attention performance that were maintained for 1 week. Furthermore, a mediation analysis demonstrated that increased DLPFC activation mediated the effects of fNIRS-NF treatment on better SWM performance. Conclusions The present results demonstrated that successful self-regulation of DLPFC activation may represent a long-lasting intervention to improve human SWM and has the potential for further applications.
Collapse
Affiliation(s)
- Keshuang Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Jinhao Yang
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Benjamin Becker
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Xianchun Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| |
Collapse
|
5
|
Du J, Shi P, Liu J, Yu H, Fang F. Analgesic Electrical Stimulation Combined with Wrist-Ankle Acupuncture Reduces the Cortical Response to Pain in Patients with Myofasciitis: A Randomized Clinical Trial. PAIN MEDICINE 2023; 24:351-361. [PMID: 36102803 DOI: 10.1093/pm/pnac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) based on wrist-ankle acupuncture has been shown to relieve pain levels in patients with myofascial pain syndrome (MPS). However, its efficacy is highly subjective. The purpose of this study was to evaluate the feasibility and effectiveness of TENS based on wrist-ankle acupuncture for pain management in patients with MPS from the perspective of cerebral cortex hemodynamics. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS We designed a double-blind, randomized, controlled clinical trial. Thirty-one male patients with MPS were randomly assigned to two parallel groups. The experimental group (n = 16) received TENS based on wrist-ankle acupuncture for analgesic treatment, while the control group (n = 15) did not. The pain was induced by mechanically pressurized at acupoint Jianjing. The multichannel functional near-infrared spectroscopy (fNIRS) equipment was utilized for measuring oxyhemoglobin (HbO) levels in the cerebral cortex during the tasks. RESULTS After the intervention, visual analog scale (VAS), the activation degree and activation area of pain perception cortices were significantly reduced in the experimental group compared to the baseline values (P < .05). Particularly, Frontopolar Area (FPA), and Dorsolateral Prefrontal Cortex (DLPFC) are highly involved in the pain process and pain modulation. CONCLUSION Compared to no intervention, TENS based on wrist-ankle acupuncture can be effective in relieving pain in patients with MPS in terms of cerebral cortical hemodynamics. However, further studies are necessary to quantify the analgesic effect in terms of cerebral hemodynamics and brain activation.
Collapse
Affiliation(s)
- Jiahao Du
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Junwen Liu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Wang XY, Bao CC, An R, Wu T, Wang D, Zhang YJ, He CQ. Evaluation of the effect of physical therapy on pain and dysfunction of knee osteoarthritis based on fNIRS: a randomized controlled trial protocol. BMC Musculoskelet Disord 2023; 24:152. [PMID: 36855073 PMCID: PMC9972641 DOI: 10.1186/s12891-022-06074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a chronic musculoskeletal disease that can cause joint pain and dysfunction, affecting the quality of life of patients. Nonsurgical treatment is the conventional treatment of KOA, among which physical therapy is widely used because of its simplicity, convenience and effectiveness. The functional biomarker will add to the clinical fidelity and diagnostic accuracy. Therefore, our study chose a more objective evaluation indicator, functional near-infrared spectroscopy (fNIRS), to identify between healthy people and KOA patients, and to detect the pain change before and after treatment of KOA patients. METHODS The study will be conducted in the Rehabilitation Medical Center of West China Hospital of Sichuan University and divided into 2 stages. In the first stage, we will compare and determine the differences in baseline data between healthy volunteers and KOA patients. In the second stage, 72 KOA patients will be randomly divided into two groups: the drug therapy group (DT) and the combination therapy group (CT) for 10 treatments. Outcome measures will be measured at baseline and on the 5th and 10th days after the intervention, including the numerical rating scale (NRS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), pain catastrophizing scale (PCS), the association of pain severity with task-state functional connectivity fNIRS and association of pain severity with task-activated fNIRS. DISCUSSION By analyzing the fNIRS data of healthy volunteers and KOA patients, our study will be determined whether fNIRS can be used as a new indicator to reflect the severity of pain in KOA patients. Subsequently, the same fNIRS data for KOA patients before and after the intervention will be collected to provide an accurate evaluation criterion for the effect of physical therapy on KOA. TRIAL REGISTRATION The study was registered on the Chinese Registry website (registered in ChiCTR.org with the identifiers ChiCTR2200064175 and 29/09/2022).
Collapse
Affiliation(s)
- Xiao-yi Wang
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Chun-cha Bao
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Ran An
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Tao Wu
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Dun Wang
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Yu-jia Zhang
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| | - Cheng-qi He
- grid.412901.f0000 0004 1770 1022Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan People’s Republic of China ,grid.412901.f0000 0004 1770 1022Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, 610041 Chengdu, People’s Republic of China
| |
Collapse
|
7
|
Deng X, Jian C, Yang Q, Jiang N, Huang Z, Zhao S. The analgesic effect of different interactive modes of virtual reality: A prospective functional near-infrared spectroscopy (fNIRS) study. Front Neurosci 2022; 16:1033155. [PMID: 36458040 PMCID: PMC9707398 DOI: 10.3389/fnins.2022.1033155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 02/25/2024] Open
Abstract
UNLABELLED Virtual reality has demonstrated its analgesic effectiveness. However, its optimal interactive mode for pain relief is yet unclear, with rare objective measurements that were performed to explore its neural mechanism. OBJECTIVE This study primarily aimed at investigating the analgesic effect of different VR interactive modes via functional near-infrared spectroscopy (fNIRS) and exploring its correlations with the subjectively reported VR experience through a self-rating questionnaire. METHODS Fifteen healthy volunteers (Age: 21.93 ± 0.59 years, 11 female, 4 male) were enrolled in this prospective study. Three rounds of interactive mode, including active mode, motor imagery (MI) mode, and passive mode, were successively facilitated under consistent noxious electrical stimuli (electrical intensity: 23.67 ± 5.69 mA). Repeated-measures of analysis of variance (ANOVA) was performed to examine its pain relief status and cortical activation, with post hoc analysis after Bonferroni correction performed. Spearman's correlation test was conducted to explore the relationship between VR questionnaire (VRQ) items and cortical activation. RESULTS A larger analgesic effect on the active (-1.4(95%CI, -2.23 to -0.57), p = 0.001) and MI modes (-0.667(95%CI, -1.165 to -0.168), p = 0.012) was observed compared to the passive mode in the self-rating pain score, with no significant difference reported between the two modes (-0.733(95%CI, -1.631 to.165), p = 0.131), associated with diverse activated cortical region of interest (ROI) in charge of motor and cognitive functions, including the left primary motor cortex (LM1), left dorsal-lateral prefrontal cortex (LDLPFC), left primary somatosensory cortex (LS1), left visual cortex at occipital lobe (LOL), and left premotor cortex (LPMC). On the other hand, significant correlations were found between VRQ items and different cortical ROIs (r = -0.629 to 0.722, p < 0.05) as well as its corresponding channels (r = -0.599 to 0.788, p < 0.05). CONCLUSION Our findings suggest that VR can be considered as an effective non-invasive approach for pain relief by modulating cortical pain processing. A better analgesic effect can be obtained by exciting and integrating cortical ROIs in charge of motor and cognitive functions. The interactive mode can be easily tailored to be in line with the client's characteristics, in spite of the diverse cortical activation status when an equivalent analgesic effect can be obtained.
Collapse
Affiliation(s)
- Xue Deng
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chuyao Jian
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Qinglu Yang
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Naifu Jiang
- Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhaoyin Huang
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Shaofeng Zhao
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
8
|
Zheng Y, Tian B, Zhuang Z, Zhang Y, Wang D. fNIRS-based adaptive visuomotor task improves sensorimotor cortical activation. J Neural Eng 2022; 19. [PMID: 35853431 DOI: 10.1088/1741-2552/ac823f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Investigating how to promote the functional activation of the central sensorimotor system is an important goal in the neurorehabilitation research domain. We aim to validate the effectiveness of facilitating cortical excitability using a closed-loop visuomotor task, in which the task difficulty is adaptively adjusted based on an individual's sensorimotor cortical activation. APPROACH We developed a novel visuomotor task, in which subjects moved a handle of a haptic device along a specific path while exerting a constant force against a virtual surface under visual feedback. The difficulty levels of the task were adapted with the aim of increasing the activation of sensorimotor areas, measured non-invasively by functional near-infrared spectroscopy. The changes in brain activation of the bilateral prefrontal cortex, sensorimotor cortex, and the occipital cortex obtained during the adaptive visuomotor task (adaptive group), were compared to the brain activation pattern elicited by the same duration of task with random difficulties in a control group. MAIN RESULTS During one intervention session, the adaptive group showed significantly increased activation in the bilateral sensorimotor cortex, also enhanced effective connectivity between the prefrontal and sensorimotor areas compared to the control group. SIGNIFICANCE Our findings demonstrated that the fNIRS-based adaptive visuomotor task with high ecological validity can facilitate the neural activity in sensorimotor areas and thus has the potential to improve hand motor functions.
Collapse
Affiliation(s)
- Yilei Zheng
- Beihang University, State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Bohao Tian
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Zhiqi Zhuang
- Beihang University, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Yuru Zhang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| | - Dangxiao Wang
- State Key Laboratory of Virtual Reality Technology and Systems, 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191, Beijing, 100191, CHINA
| |
Collapse
|
9
|
Girges C, Vijiaratnam N, Zrinzo L, Ekanayake J, Foltynie T. Volitional Control of Brain Motor Activity and Its Therapeutic Potential. Neuromodulation 2022; 25:1187-1196. [DOI: 10.1016/j.neurom.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/08/2021] [Accepted: 12/28/2021] [Indexed: 12/01/2022]
|
10
|
Cortical Activity Linked to Clocking in Deaf Adults: fNIRS Insights with Static and Animated Stimuli Presentation. Brain Sci 2021; 11:brainsci11020196. [PMID: 33562848 PMCID: PMC7914875 DOI: 10.3390/brainsci11020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
The question of the possible impact of deafness on temporal processing remains unanswered. Different findings, based on behavioral measures, show contradictory results. The goal of the present study is to analyze the brain activity underlying time estimation by using functional near infrared spectroscopy (fNIRS) techniques, which allow examination of the frontal, central and occipital cortical areas. A total of 37 participants (19 deaf) were recruited. The experimental task involved processing a road scene to determine whether the driver had time to safely execute a driving task, such as overtaking. The road scenes were presented in animated format, or in sequences of 3 static images showing the beginning, mid-point, and end of a situation. The latter presentation required a clocking mechanism to estimate the time between the samples to evaluate vehicle speed. The results show greater frontal region activity in deaf people, which suggests that more cognitive effort is needed to process these scenes. The central region, which is involved in clocking according to several studies, is particularly activated by the static presentation in deaf people during the estimation of time lapses. Exploration of the occipital region yielded no conclusive results. Our results on the frontal and central regions encourage further study of the neural basis of time processing and its links with auditory capacity.
Collapse
|
11
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
12
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Benitez-Andonegui A, Burden R, Benning R, Möckel R, Lührs M, Sorger B. An Augmented-Reality fNIRS-Based Brain-Computer Interface: A Proof-of-Concept Study. Front Neurosci 2020; 14:346. [PMID: 32410938 PMCID: PMC7199634 DOI: 10.3389/fnins.2020.00346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/23/2020] [Indexed: 02/04/2023] Open
Abstract
Augmented reality (AR) enhances the user's environment by projecting virtual objects into the real world in real-time. Brain-computer interfaces (BCIs) are systems that enable users to control external devices with their brain signals. BCIs can exploit AR technology to interact with the physical and virtual world and to explore new ways of displaying feedback. This is important for users to perceive and regulate their brain activity or shape their communication intentions while operating in the physical world. In this study, twelve healthy participants were introduced to and asked to choose between two motor-imagery tasks: mental drawing and interacting with a virtual cube. Participants first performed a functional localizer run, which was used to select a single fNIRS channel for decoding their intentions in eight subsequent choice-encoding runs. In each run participants were asked to select one choice of a six-item list. A rotating AR cube was displayed on a computer screen as the main stimulus, where each face of the cube was presented for 6 s and represented one choice of the six-item list. For five consecutive trials, participants were instructed to perform the motor-imagery task when the face of the cube that represented their choice was facing them (therewith temporally encoding the selected choice). In the end of each run, participants were provided with the decoded choice based on a joint analysis of all five trials. If the decoded choice was incorrect, an active error-correction procedure was applied by the participant. The choice list provided in each run was based on the decoded choice of the previous run. The experimental design allowed participants to navigate twice through a virtual menu that consisted of four levels if all choices were correctly decoded. Here we demonstrate for the first time that by using AR feedback and flexible choice encoding in form of search trees, we can increase the degrees of freedom of a BCI system. We also show that participants can successfully navigate through a nested menu and achieve a mean accuracy of 74% using a single motor-imagery task and a single fNIRS channel.
Collapse
Affiliation(s)
- Amaia Benitez-Andonegui
- Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
- Laboratory for Cognitive Robotics and Complex Self-Organizing Systems, Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Rodion Burden
- Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| | - Richard Benning
- Instrumentation Engineering, Dean and Directors Office, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Rico Möckel
- Laboratory for Cognitive Robotics and Complex Self-Organizing Systems, Department of Data Science and Knowledge Engineering, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Michael Lührs
- Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
- Research Department, Brain Innovation B.V., Maastricht, Netherlands
| | - Bettina Sorger
- Department Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Center, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Brain–machine interfaces using functional near-infrared spectroscopy: a review. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00592-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Ota Y, Takamoto K, Urakawa S, Nishimaru H, Matsumoto J, Takamura Y, Mihara M, Ono T, Nishijo H. Motor Imagery Training With Neurofeedback From the Frontal Pole Facilitated Sensorimotor Cortical Activity and Improved Hand Dexterity. Front Neurosci 2020; 14:34. [PMID: 32116496 PMCID: PMC7025527 DOI: 10.3389/fnins.2020.00034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activity during a motor rehabilitation task. Thirty-one right-handed healthy subjects participated in this study. They received motor imagery training six times for 2 weeks under fNIRS neurofeedback from the aPFC, in which they were instructed to increase aPFC activity. The real group subjects (n = 16) were shown real fNIRS neurofeedback signals from the aPFC, whereas the sham group subjects (n = 15) were shown irrelevant randomized signals during neurofeedback training. Before and after the training, hand dexterity was assessed by a motor rehabilitation task, during which cerebral hemodynamic activity was also measured. The results indicated that aPFC activity was increased during the training, and performance improvement rates in the rehabilitation task after the training was increased in the real group when compared with the sham group. Improvement rates of mean aPFC activity across the training were positively correlated with performance improvement rates in the motor rehabilitation task. During the motor rehabilitation task after the training, the hemodynamic activity in the left somatosensory motor-related areas [premotor area (PM), primary motor area (M1), and primary somatosensory area (S1)] was increased in the real group, whereas the hemodynamic activity was increased in the supplementary motor area in the sham group. This hemodynamic activity increases in the somatosensory motor-related areas after the training correlated with aPFC activity during the last 2 days of motor imagery training. Furthermore, improvement rates of M1 hemodynamic activity after the training was positively correlated with performance improvement rates in the motor rehabilitation task. The results suggest that the aPFC might shape activity in the somatosensory motor-related areas to improve hand dexterity. These findings further suggest that the motor imagery training using neurofeedback signals from the aPFC might be useful to patients with motor disability.
Collapse
Affiliation(s)
- Yuya Ota
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kouichi Takamoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Shimonoseki, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Okayama, Japan
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
16
|
Li K, Jiang Y, Gong Y, Zhao W, Zhao Z, Liu X, Kendrick KM, Zhu C, Becker B. Functional near-infrared spectroscopy-informed neurofeedback: regional-specific modulation of lateral orbitofrontal activation and cognitive flexibility. NEUROPHOTONICS 2019; 6:025011. [PMID: 31930153 PMCID: PMC6951484 DOI: 10.1117/1.nph.6.2.025011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Cognitive flexibility and reward processing critically rely on the orbitofrontal cortex (OFC). Dysregulations in these domains and orbitofrontal activation have been reported in major psychiatric disorders. Hemodynamic brain imaging-informed neurofeedback allows regional-specific control over brain activation and thus may represent an innovative intervention to regulate orbitofrontal dysfunctions. Against this background the present proof-of-concept study evaluates the feasibility and behavioral relevance of functional near-infrared spectroscopy (fNIRS)-assisted neurofeedback training of the lateral orbitofrontal cortex (lOFC). In a randomized sham-controlled between-subject design, 60 healthy participants have undergone four subsequent runs of training to enhance the lOFC activation. Training-induced changes in the lOFC, attentional set-shifting performance, and reward experience have served as primary outcomes. Feedback from the target channel significantly increases the regional-specific lOFC activation over the four training runs in comparison with sham neurofeedback. The real-time OFC neurofeedback group demonstrates a trend for faster responses during the set-shifting relative to the sham neurofeedback group. Within the real-time OFC neurofeedback group, stronger training-induced lOFC increases are associated with higher reward experience. The present results demonstrate that fNIRS-informed neurofeedback allows regional-specific regulation of lOFC activation and may have the potential to modulate the associated behavioral domains. As such fNIRS-informed neurofeedback may represent a promising strategy to regulate OFC dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Keshuang Li
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Yihan Jiang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Yilong Gong
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Weihua Zhao
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Zhiying Zhao
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Xiaolong Liu
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Keith M. Kendrick
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Chaozhe Zhu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
- Beijing Normal University, IDG/McGovern Institute for Brain Research, Beijing, China
- Beijing Normal University, Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing, China
| | - Benjamin Becker
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| |
Collapse
|
17
|
Soltanlou M, Sitnikova MA, Nuerk HC, Dresler T. Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language. Front Psychol 2018; 9:277. [PMID: 29666589 PMCID: PMC5891614 DOI: 10.3389/fpsyg.2018.00277] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we aim to highlight the application of functional near-infrared spectroscopy (fNIRS) as a useful neuroimaging technique for the investigation of cognitive development. We focus on brain activation changes during the development of mathematics and language skills in schoolchildren. We discuss how technical limitations of common neuroimaging techniques such as functional magnetic resonance imaging (fMRI) have resulted in our limited understanding of neural changes during development, while fNIRS would be a suitable and child-friendly method to examine cognitive development. Moreover, this technique enables us to go to schools to collect large samples of data from children in ecologically valid settings. Furthermore, we report findings of fNIRS studies in the fields of mathematics and language, followed by a discussion of the outlook of fNIRS in these fields. We suggest fNIRS as an additional technique to track brain activation changes in the field of educational neuroscience.
Collapse
Affiliation(s)
- Mojtaba Soltanlou
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | | | - Hans-Christoph Nuerk
- Department of Psychology, University of Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Online Removal of Baseline Shift with a Polynomial Function for Hemodynamic Monitoring Using Near-Infrared Spectroscopy. SENSORS 2018; 18:s18010312. [PMID: 29361729 PMCID: PMC5795942 DOI: 10.3390/s18010312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Near-infrared spectroscopy (NIRS) has become widely accepted as a valuable tool for noninvasively monitoring hemodynamics for clinical and diagnostic purposes. Baseline shift has attracted great attention in the field, but there has been little quantitative study on baseline removal. Here, we aimed to study the baseline characteristics of an in-house-built portable medical NIRS device over a long time (>3.5 h). We found that the measured baselines all formed perfect polynomial functions on phantom tests mimicking human bodies, which were identified by recent NIRS studies. More importantly, our study shows that the fourth-order polynomial function acted to distinguish performance with stable and low-computation-burden fitting calibration (R-square >0.99 for all probes) among second- to sixth-order polynomials, evaluated by the parameters R-square, sum of squares due to error, and residual. This study provides a straightforward, efficient, and quantitatively evaluated solution for online baseline removal for hemodynamic monitoring using NIRS devices.
Collapse
|