1
|
Olivares Ordoñez MA, Smith RC, Yiu G, Liu YA. Retinal Microstructural and Microvascular Changes in Alzheimer Disease: A Review. Int Ophthalmol Clin 2025; 65:59-67. [PMID: 39710907 PMCID: PMC11817161 DOI: 10.1097/iio.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
"The eyes are a window to the brain," prompting the investigation of whether retinal biomarkers can indicate Alzheimer disease (AD) and cognitive impairment. AD is a neurodegenerative condition with a lengthy preclinical phase where pathologic changes in the central nervous system (CNS) occur before clinical symptoms. Mild cognitive impairment (MCI) often precedes AD. As part of the CNS, the retina exhibits similar pathologic changes related to AD as those seen in the brains of patients with MCI. Noninvasive imaging technologies such as optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) allow high-resolution visualization of the retina, providing an opportunity to screen and monitor AD noninvasively. In this review, we summarize the relationship between AD and retinal pathology detected by OCT and OCTA. The most common findings in patients with AD include peripapillary retinal nerve fiber layer thinning, decreased macular thickness, an enlarged foveal avascular zone, and decreased vascular densities in the superficial and deep capillary plexuses. These retinal changes correlate with magnetic resonance imaging (MRI) findings of cerebral atrophy, positron emission tomography (PET) findings of increased amyloid load, and neuropsychological testing results suggesting cognitive dysfunction. We conclude that retinal microstructural and microvascular abnormalities may serve as biomarkers for the early detection and clinical monitoring of AD and as tools for evaluating potential treatment effects. Future studies should focus on standardizing protocols for in vivo ophthalmic imaging to measure retinal pathology in AD and MCI.
Collapse
Affiliation(s)
| | | | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Yin Allison Liu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
- Department of Neurology, University of California, Davis, Sacramento, CA
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA
| |
Collapse
|
2
|
Kao CC, Hsieh HM, Chang YC, Chu HC, Yang YH, Sheu SJ. Optical Coherence Tomography Assessment of Macular Thickness in Alzheimer's Dementia with Different Neuropsychological Severities. J Pers Med 2023; 13:1118. [PMID: 37511731 PMCID: PMC10381874 DOI: 10.3390/jpm13071118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This retrospective case-control study aimed to investigate associations between disease severity of Alzheimer's dementia (AD) and macular thickness. Data of patients with AD who were under medication (n = 192) between 2013 and 2020, as well as an age- and sex-matched control group (n = 200) with normal cognitive function, were included. AD patients were divided into subgroups according to scores of the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR). Macular thickness was analyzed via the Early Treatment Diabetic Retinopathy Study (ETDRS) grid map. AD patients had significant reductions in full macula layers, including inner circle, outer inferior area, and outer nasal area of the macula. Similar retinal thinning was noted in ganglion cells and inner plexiform layers. Advanced AD patients (MMSE score < 18 or CDR ≥ 1) showed more advanced reduction of macular thickness than the AD group (CDR = 0.5 or MMSE ≥ 18), indicating that severe cognitive impairment was associated with thinner macular thickness. Advanced AD is associated with significant macula thinning in full retina and inner plexiform layers, especially at the inner circle of the macula. Macular thickness may be a useful biomarker of AD disease severity. Retinal imaging may be a non-invasive, low-cost surrogate for AD.
Collapse
Affiliation(s)
- Chia-Chen Kao
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Min Hsieh
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Community Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Hui-Chen Chu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Batista A, Guimarães P, Martins J, Moreira PI, Ambrósio AF, Castelo-Branco M, Serranho P, Bernardes R. Normative mice retinal thickness: 16-month longitudinal characterization of wild-type mice and changes in a model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1161847. [PMID: 37091517 PMCID: PMC10117679 DOI: 10.3389/fnagi.2023.1161847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Animal models of disease are paramount to understand retinal development, the pathophysiology of eye diseases, and to study neurodegeneration using optical coherence tomography (OCT) data. In this study, we present a comprehensive normative database of retinal thickness in C57BL6/129S mice using spectral-domain OCT data. The database covers a longitudinal period of 16 months, from 1 to 16 months of age, and provides valuable insights into retinal development and changes over time. Our findings reveal that total retinal thickness decreases with age, while the thickness of individual retinal layers and layer aggregates changes in different ways. For example, the outer plexiform layer (OPL), photoreceptor inner segments (ILS), and retinal pigment epithelium (RPE) thickened over time, whereas other retinal layers and layer aggregates became thinner. Additionally, we compare the retinal thickness of wild-type (WT) mice with an animal model of Alzheimer's disease (3 × Tg-AD) and show that the transgenic mice exhibit a decrease in total retinal thickness compared to age-matched WT mice, with statistically significant differences observed at all evaluated ages. This normative database of retinal thickness in mice will serve as a reference for future studies on retinal changes in neurodegenerative and eye diseases and will further our understanding of the pathophysiology of these conditions.
Collapse
Affiliation(s)
- Ana Batista
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Pedro Guimarães
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Paula I. Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Pedro Serranho
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Mathematics Section, Department of Sciences and Technology, Universidade Aberta, Lisbon, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Ferreira H, Serranho P, Guimarães P, Trindade R, Martins J, Moreira PI, Ambrósio AF, Castelo-Branco M, Bernardes R. Stage-independent biomarkers for Alzheimer's disease from the living retina: an animal study. Sci Rep 2022; 12:13667. [PMID: 35953633 PMCID: PMC9372147 DOI: 10.1038/s41598-022-18113-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The early diagnosis of neurodegenerative disorders is still an open issue despite the many efforts to address this problem. In particular, Alzheimer's disease (AD) remains undiagnosed for over a decade before the first symptoms. Optical coherence tomography (OCT) is now common and widely available and has been used to image the retina of AD patients and healthy controls to search for biomarkers of neurodegeneration. However, early diagnosis tools would need to rely on images of patients in early AD stages, which are not available due to late diagnosis. To shed light on how to overcome this obstacle, we resort to 57 wild-type mice and 57 triple-transgenic mouse model of AD to train a network with mice aged 3, 4, and 8 months and classify mice at the ages of 1, 2, and 12 months. To this end, we computed fundus images from OCT data and trained a convolution neural network (CNN) to classify those into the wild-type or transgenic group. CNN performance accuracy ranged from 80 to 88% for mice out of the training group's age, raising the possibility of diagnosing AD before the first symptoms through the non-invasive imaging of the retina.
Collapse
Affiliation(s)
- Hugo Ferreira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Pedro Serranho
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Department of Sciences and Technology, Universidade Aberta, Rua da Escola Politécnica, n.º 147, 1269-001, Lisboa, Portugal
| | - Pedro Guimarães
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Rita Trindade
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Paula I Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
5
|
Guimarães P, Serranho P, Martins J, Moreira PI, Ambrósio AF, Castelo-Branco M, Bernardes R. Retinal Aging in 3× Tg-AD Mice Model of Alzheimer's Disease. Front Aging Neurosci 2022; 14:832195. [PMID: 35783138 PMCID: PMC9244797 DOI: 10.3389/fnagi.2022.832195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The retina, as part of the central nervous system (CNS), can be the perfect target for in vivo, in situ, and noninvasive neuropathology diagnosis and assessment of therapeutic efficacy. It has long been established that several age-related brain changes are more pronounced in Alzheimer's disease (AD). Nevertheless, in the retina such link is still under-explored. This study investigates the differences in the aging of the CNS through the retina of 3× Tg-AD and wild-type mice. A dedicated optical coherence tomograph imaged mice's retinas for 16 months. Two neural networks were developed to model independently each group's ages and were then applied to an independent set containing images from both groups. Our analysis shows a mean absolute error of 0.875±1.1 × 10−2 and 1.112±1.4 × 10−2 months, depending on training group. Our deep learning approach appears to be a reliable retinal OCT aging marker. We show that retina aging is distinct in the two classes: the presence of the three mutated human genes in the mouse genome has an impact on the aging of the retina. For mice over 4 months-old, transgenic mice consistently present a negative retina age-gap when compared to wild-type mice, regardless of training set. This appears to contradict AD observations in the brain. However, the ‘black-box” nature of deep-learning implies that one cannot infer reasoning. We can only speculate that some healthy age-dependent neural adaptations may be altered in transgenic animals.
Collapse
Affiliation(s)
- Pedro Guimarães
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- *Correspondence: Pedro Guimarães
| | - Pedro Serranho
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Sciences and Technology, Universidade Aberta, Lisbon, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Paula I. Moreira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Quantitative Optical Coherence Tomography for Longitudinal Monitoring of Postnatal Retinal Development in Developing Mouse Eyes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A better study of postnatal retinal development is essential for the in-depth understanding of the nature of the vision system. To date, quantitative analysis of postnatal retinal development is primarily limited to endpoint histological examination. This study is to validate in vivo optical coherence tomography (OCT) for longitudinal monitoring of postnatal retinal development in developing mouse eyes. OCT images of C57BL/6J mice were recorded from postnatal day (P) 14 to P56. Three-dimensional (3D) frame registration and super averaging were adopted to investigate the fine structure of the retina. Quantitative OCT analysis revealed distinct outer and inner retinal layer changes, corresponding to eye development. At the outer retina, external limiting membrane (ELM) and ellipsoid zone (EZ) band intensities gradually increased with aging, and the IZ band was detectable by P28. At the inner retina, a hyporeflective layer (HRL) between the nerve fiber layer (NFL) and inner plexiform layer (IPL) was observed in developing eyes and gradually disappeared with aging. Further image analysis revealed individual RGCs within the HRL layer of the young mouse retina. However, RGCs were merged with the NFL and the IPL in the aged mouse retina. Moreover, the sub-IPL layer structure was observed to be gradually enhanced with aging. To interpret the observed retinal layer kinetics, a model based on eyeball expansion, cell apoptosis, and retinal structural modification was proposed.
Collapse
|
7
|
Kim TH, Son T, Klatt D, Yao X. Concurrent OCT and OCT angiography of retinal neurovascular degeneration in the 5XFAD Alzheimer's disease mice. NEUROPHOTONICS 2021; 8:035002. [PMID: 34277888 PMCID: PMC8271351 DOI: 10.1117/1.nph.8.3.035002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 05/15/2023]
Abstract
Significance: As one part of the central nervous system, the retina manifests neurovascular defects in Alzheimer's disease (AD). Quantitative imaging of retinal neurovascular abnormalities may promise a new method for early diagnosis and treatment assessment of AD. Previous imaging studies of transgenic AD mouse models have been limited to the central part of the retina. Given that the pathological hallmarks of AD frequently appear in different peripheral quadrants, a comprehensive regional investigation is needed for a better understanding of the retinal degeneration associated with AD-like pathology. Aim: We aim to demonstrate concurrent optical coherence tomography (OCT) and OCT angiography (OCTA) of retinal neuronal and vascular abnormalities in the 5XFAD mouse model and to investigate region-specific retinal degeneration. Approach: A custom-built OCT system was used for retinal imaging. Retinal thickness, vessel width, and vessel density were quantitatively measured. The artery and vein (AV) were classified for differential AV analysis, and trilaminar vascular plexuses were segmented for depth-resolved density measurement. Results: It was observed that inner and outer retinal thicknesses were explicitly reduced in the dorsal and temporal quadrants, respectively, in 5XFAD mice. A significant arterial narrowing in 5XFAD mice was also observed. Moreover, overall capillary density consistently showed a decreasing trend in 5XFAD mice, but regional specificity was not identified. Conclusions: Quadrant- and layer-specific neurovascular degeneration was observed in 5XFAD mice. Concurrent OCT and OCTA promise a noninvasive method for quantitative monitoring of AD progression and treatment assessment.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Taeyoon Son
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States
| |
Collapse
|
8
|
Cao KJ, Kim JH, Kroeger H, Gaffney PM, Lin JH, Sigurdson CJ, Yang J. ARCAM-1 Facilitates Fluorescence Detection of Amyloid-Containing Deposits in the Retina. Transl Vis Sci Technol 2021; 10:5. [PMID: 34096989 PMCID: PMC8185402 DOI: 10.1167/tvst.10.7.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the use of an amyloid-targeting fluorescent probe, ARCAM-1, to identify amyloid-containing deposits in the retina of a transgenic mouse model of Alzheimer's disease (AD) and in human postmortem AD patients. Methods Aged APP/PS1 transgenic AD and wild-type (WT) mice were given an intraperitoneal (IP) injection of ARCAM-1 and their retinas imaged in vivo using a fluorescence ophthalmoscope. Eyes were enucleated and dissected for ex vivo inspection of retinal amyloid deposits. Additionally, formalin-fixed eyes from human AD and control patients were dissected, and the retinas were stained using ARCAM-1 or with an anti-amyloid-β antibody. Confocal microscopy was used to image amyloid-containing deposits stained with ARCAM-1 or with immunostaining. Results Four out of eight APP/PS1 mice showed the presence of amyloid aggregates in the retina during antemortem imaging. Retinas from three human AD patients stained with ARCAM-1 showed an apparent increased density of fluorescently labeled amyloid-containing deposits compared to the retinas from two healthy, cognitively normal (CN) patients. Immunolabeling confirmed the presence of amyloid deposits in both the retinal neuronal layers and in retinal vasculature. Conclusions ARCAM-1 facilitates antemortem detection of amyloid aggregates in the retina of a mouse model for AD, and postmortem detection of amyloid-containing deposits in human retinal tissues from AD patients. These results support the hypothesis of AD pathology manifesting in the eye and highlight a novel area for fluorophore development for the optical detection of retinal amyloid in AD patients. Translational Relevance This paper represents an initial examination for potential translation of an amyloid-targeting fluorescent probe to a retinal imaging agent for aiding in the diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Kevin J Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - John H Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Heike Kroeger
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Patricia M Gaffney
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Disease Investigations, San Diego Zoo Wildlife Alliance, San Diego, CA, USA
| | - Jonathan H Lin
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA.,Departments of Pathology and Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christina J Sigurdson
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Ferreira H, Martins J, Moreira PI, Ambrósio AF, Castelo-Branco M, Serranho P, Bernardes R. Longitudinal normative OCT retinal thickness data for wild-type mice, and characterization of changes in the 3×Tg-AD mice model of Alzheimer's disease. Aging (Albany NY) 2021; 13:9433-9454. [PMID: 33799308 PMCID: PMC8064224 DOI: 10.18632/aging.202916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Mice are widely used as models for many diseases, including eye and neurodegenerative diseases. However, there is a lack of normative data for retinal thickness over time, especially at young ages. In this work, we present a normative thickness database from one to four-months-old, for nine layers/layer-aggregates, including the total retinal thickness, obtained from the segmentation of spectral-domain optical coherence tomography (SD-OCT) data from the C57BL6/129S mouse strain. Based on fifty-seven mice, this normative database provides an opportunity to study the ageing of control mice and characterise disease models' ageing, such as the triple transgenic mouse model of Alzheimer's disease (3×Tg-AD) used in this work. We report thickness measurements, the differences in thickness per layer, demonstrate a nasal-temporal asymmetry, and the variation of thickness as a function to the distance to the optic disc centre. Significant differences were found between the transgenic group's thickness and the normative database for the entire period covered in this study. Even though it is well accepted that retinal nerve fibre layer (RNFL) thinning is a hallmark of neurodegeneration, our results show a thicker RNFL-GCL (RNFL-Ganglion cell layer) aggregate for the 3×Tg-AD mice until four-months-old.
Collapse
Affiliation(s)
- Hugo Ferreira
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - João Martins
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Paula I Moreira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal.,University of Coimbra, Laboratory of Physiology, Faculty of Medicine (FMUC), Coimbra, Portugal.,University of Coimbra, Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal
| | - António Francisco Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (FMUC), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal.,University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| | - Pedro Serranho
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal.,Universidade Aberta, Department of Sciences and Technology, Lisboa, Portugal
| | - Rui Bernardes
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal.,University of Coimbra, Clinical Academic Center of Coimbra (CACC), Faculty of Medicine (FMUC), Coimbra, Portugal
| |
Collapse
|
10
|
Baumann B, Harper DJ, Eugui P, Gesperger J, Lichtenegger A, Merkle CW, Augustin M, Woehrer A. Improved accuracy of quantitative birefringence imaging by polarization sensitive OCT with simple noise correction and its application to neuroimaging. JOURNAL OF BIOPHOTONICS 2021; 14:e202000323. [PMID: 33332741 DOI: 10.1002/jbio.202000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/25/2023]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.
Collapse
Affiliation(s)
- Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Danielle J Harper
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Pablo Eugui
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Conrad W Merkle
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Merkle CW, Augustin M, Harper DJ, Gesperger J, Lichtenegger A, Eugui P, Garhöfer G, Glösmann M, Baumann B. High-resolution, depth-resolved vascular leakage measurements using contrast-enhanced, correlation-gated optical coherence tomography in mice. BIOMEDICAL OPTICS EXPRESS 2021; 12:1774-1791. [PMID: 33996197 PMCID: PMC8086440 DOI: 10.1364/boe.415227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 06/09/2023]
Abstract
Vascular leakage plays a key role in vision-threatening retinal diseases such as diabetic retinopathy and age-related macular degeneration. Fluorescence angiography is the current gold standard for identification of leaky vasculature in vivo, however it lacks depth resolution, providing only 2D images that complicate precise identification and localization of pathological vessels. Optical coherence tomography (OCT) has been widely adopted for clinical ophthalmology due to its high, micron-scale resolution and rapid volumetric scanning capabilities. Nevertheless, OCT cannot currently identify leaky blood vessels. To address this need, we have developed a new method called exogenous contrast-enhanced leakage OCT (ExCEL-OCT) which identifies the diffusion of tracer particles around leaky vasculature following injection of a contrast agent. We apply this method to a mouse model of retinal neovascularization and demonstrate high-resolution 3D vascular leakage measurements in vivo for the first time.
Collapse
Affiliation(s)
- Conrad W. Merkle
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Augustin
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Danielle J. Harper
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Antonia Lichtenegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Pablo Eugui
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martin Glösmann
- Core Facility for Research and Technology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Salobrar-García E, López-Cuenca I, Sánchez-Puebla L, de Hoz R, Fernández-Albarral JA, Ramírez AI, Bravo-Ferrer I, Medina V, Moro MA, Saido TC, Saito T, Salazar JJ, Ramírez JM. Retinal Thickness Changes Over Time in a Murine AD Model APP NL-F/NL-F. Front Aging Neurosci 2021; 12:625642. [PMID: 33542683 PMCID: PMC7852550 DOI: 10.3389/fnagi.2020.625642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) may present retinal changes before brain pathology, suggesting the retina as an accessible biomarker of AD. The present work is a diachronic study using spectral domain optical coherence tomography (SD-OCT) to determine the total retinal thickness and retinal nerve fiber layer (RNFL) thickness in an APPNL−F/NL−F mouse model of AD at 6, 9, 12, 15, 17, and 20 months old compared to wild type (WT) animals. Methods: Total retinal thickness and RNFL thickness were determined. The mean total retinal thickness was analyzed following the Early Treatment Diabetic Retinopathy Study sectors. RNFL was measured in six sectors of axonal ring scans around the optic nerve. Results: In the APPNL−F/NL−F group compared to WT animals, the total retinal thickness changes observed were the following: (i) At 6-months-old, a significant thinning in the outer temporal sector was observed; (ii) at 15-months-old a significant thinning in the inner temporal and in the inner and outer inferior retinal sectors was noticed; (iii) at 17-months-old, a significant thickening in the inferior and nasal sectors was found in both inner and outer rings; and (iv) at 20-months-old, a significant thinning in the inner ring of nasal, temporal, and inferior retina and in the outer ring of superior and temporal retina was seen. In RNFL thickness, there was significant thinning in the global analysis and in nasal and inner-temporal sectors at 6 months old. Thinning was also found in the supero-temporal and nasal sectors and global value at 20 months old. Conclusions: In the APPNL−F/NL−F AD model, the retinal thickness showed thinning, possibly produced by neurodegeneration alternating with thickening caused by deposits and neuroinflammation in some areas of the retina. These changes over time are similar to those observed in the human retina and could be a biomarker for AD. The APPNL−F/NL−F AD model may help us better understand the different retinal changes during the progression of AD.
Collapse
Affiliation(s)
- Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Lídia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain
| | - Ana I Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Isabel Bravo-Ferrer
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Edinburgh Medical School, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Violeta Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Juan J Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and Ear, Nose, and Throat, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Vandenabeele M, Veys L, Lemmens S, Hadoux X, Gelders G, Masin L, Serneels L, Theunis J, Saito T, Saido TC, Jayapala M, De Boever P, De Strooper B, Stalmans I, van Wijngaarden P, Moons L, De Groef L. The App NL-G-F mouse retina is a site for preclinical Alzheimer's disease diagnosis and research. Acta Neuropathol Commun 2021; 9:6. [PMID: 33407903 PMCID: PMC7788955 DOI: 10.1186/s40478-020-01102-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we report the results of a comprehensive phenotyping of the retina of the AppNL-G-F mouse. We demonstrate that soluble Aβ accumulation is present in the retina of these mice early in life and progresses to Aβ plaque formation by midlife. This rising Aβ burden coincides with local microglia reactivity, astrogliosis, and abnormalities in retinal vein morphology. Electrophysiological recordings revealed signs of neuronal dysfunction yet no overt neurodegeneration was observed and visual performance outcomes were unaffected in the AppNL-G-F mouse. Furthermore, we show that hyperspectral imaging can be used to quantify retinal Aβ, underscoring its potential as a biomarker for AD diagnosis and monitoring. These findings suggest that the AppNL-G-F retina mimics the early, preclinical stages of AD, and, together with retinal imaging techniques, offers unique opportunities for drug discovery and fundamental research into preclinical AD.
Collapse
Affiliation(s)
- Marjan Vandenabeele
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lien Veys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Sophie Lemmens
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Xavier Hadoux
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Géraldine Gelders
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Luca Masin
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lutgarde Serneels
- Leuven Brain Institute, Leuven, Belgium
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Theunis
- Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Interuniversity Microelectronics Centre (Imec), Leuven, Belgium
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Murali Jayapala
- Interuniversity Microelectronics Centre (Imec), Leuven, Belgium
| | - Patrick De Boever
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Bart De Strooper
- Leuven Brain Institute, Leuven, Belgium
- Center for Brain and Disease Research, Flemish Institute for Biotechnology (VIB), Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
- Research Group Ophthalmology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville, Australia
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 61, Box 2464, 3000, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
14
|
Hsu D, Kwon JH, Ng R, Makita S, Yasuno Y, Sarunic MV, Ju MJ. Quantitative multi-contrast in vivo mouse imaging with polarization diversity optical coherence tomography and angiography. BIOMEDICAL OPTICS EXPRESS 2020; 11:6945-6961. [PMID: 33408972 PMCID: PMC7747897 DOI: 10.1364/boe.403209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 05/02/2023]
Abstract
Retinal microvasculature and the retinal pigment epithelium (RPE) play vital roles in maintaining the health and metabolic activity of the eye. Visualization of these retina structures is essential for pre-clinical studies of vision-robbing diseases, such as age-related macular degeneration (AMD). We have developed a quantitative multi-contrast polarization diversity OCT and angiography (QMC-PD-OCTA) system for imaging and visualizing pigment in the RPE using degree of polarization uniformity (DOPU), along with flow in the retinal capillaries using OCT angiography (OCTA). An adaptive DOPU averaging kernel was developed to increase quantifiable values from visual data, and QMC en face images permit simultaneous visualization of vessel location, depth, melanin region thickness, and mean DOPU values, allowing rapid identification and differentiation of disease symptoms. The retina of five different mice strains were measured in vivo, with results demonstrating potential for pre-clinical studies of retinal disorders.
Collapse
Affiliation(s)
- Destiny Hsu
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ji Hoon Kwon
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- co-first author
| | - Ringo Ng
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Shuichi Makita
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Yoshiaki Yasuno
- University of Tsukuba, Computational Optics Group, Institute of Applied Physics, Japan
| | - Marinko V. Sarunic
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
| | - Myeong Jin Ju
- Simon Fraser University, Biomedical Optics Research Group, Department of Engineering Science, Burnaby, British Columbia, Canada
- University of British Columbia, Department of Ophthalmology and Visual Sciences, Vancouver, British Columbia, Canada
- University of British Columbia, School of Biomedical Engineering, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Stiebing C, Jahn IJ, Schmitt M, Keijzer N, Kleemann R, Kiliaan AJ, Drexler W, Leitgeb RA, Popp J. Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy. ACS Chem Neurosci 2020; 11:3301-3308. [PMID: 32991138 PMCID: PMC7581290 DOI: 10.1021/acschemneuro.0c00420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
![]()
The presence of biomarkers characteristic
for Alzheimer’s
disease in the retina is a controversial topic. Raman spectroscopy
offers information on the biochemical composition of tissues. Thus,
it could give valuable insight into the diagnostic value of retinal
analysis. Within the present study, retinas of a double transgenic
mouse model, that expresses a chimeric mouse/human amyloid precursor
protein and a mutant form of human presenilin 1, and corresponding
control group were subjected to ex vivo Raman imaging.
The Raman data recorded on cross sections of whole eyes highlight
the layered structure of the retina in a label-free manner. Based
on the Raman information obtained from en face mounted
retina samples, a discrimination between healthy and Alzheimer’s
disease retinal tissue can be done with an accuracy of 85.9%. For
this a partial least squares-linear discriminant analysis was applied.
Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman
spectroscopy, subtle biochemical changes happening in the retina could
lead to Alzheimer’s disease identification.
Collapse
Affiliation(s)
- Clara Stiebing
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), a member of the Leibniz Research Alliance Leibniz Health Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Izabella J. Jahn
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), a member of the Leibniz Research Alliance Leibniz Health Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Nanda Keijzer
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Amanda J. Kiliaan
- Department of Anatomy Donders Institute for Brain, Cognition, and Behavior Preclinical Imaging Center, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, The Netherlands
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringerguertel 18-20, 1090 Vienna, Austria
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), a member of the Leibniz Research Alliance Leibniz Health Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
16
|
Chibhabha F, Yaqi Y, Li F. Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2019-0119/revneuro-2019-0119.xml. [PMID: 32804680 DOI: 10.1515/revneuro-2019-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- Department of Anatomy, Faculty of Medicine, Midlands State University, P. Bag 9055, Senga, Gweru, Zimbabwe
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Yang Yaqi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
17
|
Sidiqi A, Wahl D, Lee S, Ma D, To E, Cui J, To E, Beg MF, Sarunic M, Matsubara JA. In vivo Retinal Fluorescence Imaging With Curcumin in an Alzheimer Mouse Model. Front Neurosci 2020; 14:713. [PMID: 32719582 PMCID: PMC7350785 DOI: 10.3389/fnins.2020.00713] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/12/2020] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by amyloid beta (Aβ) plaques in the brain detectable by highly invasive in vivo brain imaging or in post-mortem tissues. A non-invasive and inexpensive screening method is needed for early diagnosis of asymptomatic AD patients. The shared developmental origin and similarities with the brain make the retina a suitable surrogate tissue to assess Aβ load in AD. Using curcumin, a FluoroProbe that binds to Aβ, we labeled and measured the retinal fluorescence in vivo and compared with the immunohistochemical measurements of the brain and retinal Aβ load in the APP/PS1 mouse model. In vivo retinal images were acquired every 2 months using custom fluorescence scanning laser ophthalmoscopy (fSLO) after tail vein injections of curcumin in individual mice followed longitudinally from ages 5 to 19 months. At the same time points, 1–2 mice from the same cohort were sacrificed and immunohistochemistry was performed on their brain and retinal tissues. Results demonstrated cortical and retinal Aβ immunoreactivity were significantly greater in Tg than WT groups. Age-related increase in retinal Aβ immunoreactivity was greater in Tg than WT groups. Retinal Aβ immunoreactivity was present in the inner retinal layers and consisted of small speck-like extracellular deposits and intracellular labeling in the cytoplasm of a subset of retinal ganglion cells. In vivo retinal fluorescence with curcumin injection was significantly greater in older mice (11–19 months) than younger mice (5–9 months) in both Tg and WT groups. In vivo retinal fluorescence with curcumin injection was significantly greater in Tg than WT in older mice (ages 11–19 months). Finally, and most importantly, the correlation between in vivo retinal fluorescence with curcumin injection and Aβ immunoreactivity in the cortex was stronger in Tg compared to WT groups. Our data reveal that retina and brain of APP/PS1 Tg mice increasingly express Aβ with age. In vivo retinal fluorescence with curcumin correlated strongly with cortical Aβ immunohistochemistry in Tg mice. These findings suggest that using in vivo fSLO imaging of AD-susceptible retina may be a useful, non-invasive method of detecting Aβ in the retina as a surrogate indicator of Aβ load in the brain.
Collapse
Affiliation(s)
- Ahmad Sidiqi
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Wahl
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Sieun Lee
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Da Ma
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Elliott To
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Cui
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Marinko Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Gardner MR, Baruah V, Vargas G, Motamedi M, Milner TE, Rylander HG. Scattering Angle Resolved Optical Coherence Tomography Detects Early Changes in 3xTg Alzheimer's Disease Mouse Model. Transl Vis Sci Technol 2020; 9:18. [PMID: 32821490 PMCID: PMC7401921 DOI: 10.1167/tvst.9.5.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Clinical intensity-based optical coherence tomographic retinal imaging is unable to resolve some of the earliest changes to Alzheimer's disease (AD) neurons. The aim of this pilot study was to demonstrate that scattering-angle-resolved optical coherence tomography (SAR-OCT), which is sensitive to changes in light scattering angle, is a candidate retinal imaging modality for early AD detection. SAR-OCT signal data may be sensitive to changes in intracellular constituent morphology that are not detectable with conventional OCT. Methods In this cross-sectional study, retinas of a triple transgenic mouse model of AD (3xTg-AD) were imaged alongside age-matched control mice (C57BL/6J) using SAR-OCT. A total of 32 mice (12 control, 20 3xTg-Ad) at four ages (10, 20, 30, and 45 weeks) were included in this cross-sectional study, and three retinal feature sets (scattering, thickness, and angiography) were examined between the disease and control groups. Results AD mice had significantly increased scattering diversity (lower SAR-OCT C parameter) at the earliest imaging time (10 weeks). Differences in the C parameter between AD and control mice were diminished at later times when both groups showed increased scattering diversity. AD mice have reduced retinal thickness compared to controls, particularly in central regions and superficial layers. No differences in vascular density or fractional blood volume between groups were detected. Conclusions SAR-OCT is sensitive to scattering angle changes in a 3xTg-AD mouse model and could provide early-stage biomarkers for neurodegenerative diseases such as AD. Translational Relevance Clinical OCT systems may be modified to record SAR-OCT images for non-invasive retinal diagnostic imaging of patients with neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Michael R Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.,Department of Biomedical Engineering, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Vikram Baruah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gracie Vargas
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Henry G Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|