1
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
2
|
De Felice S, Hakim U, Gunasekara N, Pinti P, Tachtsidis I, Hamilton A. Having a chat and then watching a movie: how social interaction synchronises our brains during co-watching. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae006. [PMID: 38707237 PMCID: PMC11069416 DOI: 10.1093/oons/kvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.
Collapse
Affiliation(s)
- S De Felice
- Department of Psychology, University of Cambridge, 2 Free School Lane, CB2 3RF, UK
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| | - U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - N Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, 33 Torrington place, London WC1E 7JL, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
3
|
Ping A, Pan L, Zhang J, Xu K, Schriver KE, Zhu J, Roe AW. Targeted Optical Neural Stimulation: A New Era for Personalized Medicine. Neuroscientist 2023; 29:202-220. [PMID: 34865559 DOI: 10.1177/10738584211057047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targeted optical neural stimulation comprises infrared neural stimulation and optogenetics, which affect the nervous system through induced thermal transients and activation of light-sensitive proteins, respectively. The main advantage of this pair of optical tools is high functional selectivity, which conventional electrical stimulation lacks. Over the past 15 years, the mechanism, safety, and feasibility of optical stimulation techniques have undergone continuous investigation and development. When combined with other methods like optical imaging and high-field functional magnetic resonance imaging, the translation of optical stimulation to clinical practice adds high value. We review the theoretical foundations and current state of optical stimulation, with a particular focus on infrared neural stimulation as a potential bridge linking optical stimulation to personalized medicine.
Collapse
Affiliation(s)
- An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li Pan
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Kenneth E Schriver
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Iyer RR, Liu YZ, Renteria CA, Tibble BE, Choi H, Žurauskas M, Boppart SA. Ultra-parallel label-free optophysiology of neural activity. iScience 2022; 25:104307. [PMID: 35602935 PMCID: PMC9114528 DOI: 10.1016/j.isci.2022.104307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca2+ ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm2 region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian E. Tibble
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author
| |
Collapse
|
5
|
Zhu X, Lin JW, Turnali A, Sander MY. Single infrared light pulses induce excitatory and inhibitory neuromodulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:374-388. [PMID: 35154878 PMCID: PMC8803021 DOI: 10.1364/boe.444577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.
Collapse
Affiliation(s)
- Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ahmet Turnali
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Michelle Y. Sander
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, MA 02446, USA
| |
Collapse
|