1
|
Li J, Liu M, Fan M, Tian Q, Wang J, Du Y, Yu J, Li X, Yang L, Zhao M, Gao Y, Sun T. Nuciferine ameliorates blood-brain barrier disruption post-ischemic stroke via inhibiting the JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156829. [PMID: 40347924 DOI: 10.1016/j.phymed.2025.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Ischemic stroke frequently results in the compromise of the blood-brain barrier (BBB), a pathological occurrence strongly linked to the impairment of cerebral microvascular endothelial cells and the disintegration of tight junction (TJ) proteins. Nuciferine, a naturally occurring aporphine alkaloid extracted from the leaves of Nelumbo nucifera, exhibits favorable pharmacokinetic characteristics, including the capacity to traverse the BBB, and has demonstrated neuroprotective potential in IS models. Nevertheless, the specific mechanisms by which nuciferine modulates BBB integrity following ischemia, and the molecular pathways involved, remain inadequately understood. PURPOSE This study probed into the protective function of nuciferine against BBB disruption following IS and the molecular pathways involved in its therapeutic action. METHODS In vivo, a photothrombotic focal cerebral ischemia mouse model was established and evaluated through neurological scoring, blood flow measurement, and 2,3,5-triphenyltetrazolium chloride staining. BBB disruption was assessed utilizing Evans Blue dye and endogenous immunoglobulin G extravasation. nuciferine (10, 20, 40 mg/kg, intragastric administration, daily for 7 days) was administered post-ischemia. In vitro, oxygen-glucose deprivation (OGD, 2 h)-induced bEnd.3 cell model was employed and treated with nuciferine (10, 20, and 40 μM, 24 h) to uncover the related mechanisms. RESULTS Our findings revealed that nuciferine effectively preserved BBB integrity and prevented cerebral edema post-photothrombotic. Mechanistically, nuciferine restored the expression of ZO-1, occludin, and claudin-5, both in photothrombotic and OGD models. Meanwhile, it showed the protective effect on OGD-induced endothelial cells injury by inhibiting apoptosis and mitochondrial dysfunction. Importantly, nuciferine targeted Janus kinase 2 and suppressed p-JAK2 and p-STAT3 in IS model. CONCLUSIONS Our findings present novel evidence that nuciferine improves the BBB integrity following IS through blocking the JAK2/STAT3 pathway. Through demonstrating the targeted suppression of JAK2 activation by nuciferine, this work contributes to a more nuanced understanding of how this pathway influences endothelial barrier function in ischemic conditions. Our results offer a conceptual basis for the continued exploration of Nuciferine as a potential therapeutic agent to address BBB dysfunction in the post-stroke setting.
Collapse
Affiliation(s)
- Jiamin Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minglei Fan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Qinqin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jian Wang
- Department of Neurosurgery, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tang du Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
2
|
Bahari F, Dzhala V, Balena T, Lillis KP, Staley KJ. Intraventricular haemorrhage in premature infants: the role of immature neuronal salt and water transport. Brain 2024; 147:3216-3233. [PMID: 38815055 PMCID: PMC11370806 DOI: 10.1093/brain/awae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.
Collapse
Affiliation(s)
- Fatemeh Bahari
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Balena
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhu X, Yi Z, Li R, Wang C, Zhu W, Ma M, Lu J, Li P. Constructing a Transient Ischemia Attack Model Utilizing Flexible Spatial Targeting Photothrombosis with Real-Time Blood Flow Imaging Feedback. Int J Mol Sci 2024; 25:7557. [PMID: 39062800 PMCID: PMC11277306 DOI: 10.3390/ijms25147557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Transient ischemic attack (TIA) is an early warning sign of stroke and death, necessitating suitable animal models due to the associated clinical diagnostic challenges. In this study, we developed a TIA model using flexible spatially targeted photothrombosis combined with real-time blood flow imaging feedback. By modulating the excitation light using wavefront technology, we precisely created a square light spot (50 × 250 µm), targeted at the distal middle cerebral artery (dMCA). The use of laser speckle contrast imaging (LSCI) provided real-time feedback on the ischemia, while the excitation light was ceased upon reaching complete occlusion. Our results demonstrated that the photothrombus formed in the dMCA and spontaneously recanalized within 10 min (416.8 ± 96.4 s), with no sensorimotor deficits or infarction 24 h post-TIA. During the acute phase, ischemic spreading depression occurred in the ipsilateral dorsal cortex, leading to more severe ischemia and collateral circulation establishment synchronized with the onset of dMCA narrowing. Post-reperfusion, the thrombi were primarily in the sensorimotor and visual cortex, disappearing within 24 h. The blood flow changes in the dMCA were more indicative of cortical ischemic conditions than diameter changes. Our method successfully establishes a photochemical TIA model based on the dMCA, allowing for the dynamic observation and control of thrombus formation and recanalization and enabling real-time monitoring of the impacts on cerebral blood flow during the acute phase of TIA.
Collapse
Affiliation(s)
- Xuan Zhu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Zichao Yi
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Ruolan Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Chen Wang
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Wenting Zhu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Minghui Ma
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics and MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (X.Z.); (Z.Y.); (R.L.); (W.Z.); (M.M.); (J.L.)
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Science, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Reserch Institute (JITRI), Suzhou 215100, China
| |
Collapse
|
4
|
Kalyuzhnaya Y, Khaitin A, Demyanenko S. Modeling transient ischemic attack via photothrombosis. Biophys Rev 2023; 15:1279-1286. [PMID: 37974996 PMCID: PMC10643708 DOI: 10.1007/s12551-023-01121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 11/19/2023] Open
Abstract
The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.
Collapse
Affiliation(s)
- Y.N. Kalyuzhnaya
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - A.M. Khaitin
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - S.V. Demyanenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| |
Collapse
|
5
|
Zhu L, Wang M, Liu Y, Fu P, Zhang W, Zhang H, Roe AW, Xi W. Single-microvessel occlusion produces lamina-specific microvascular flow vasodynamics and signs of neurodegenerative change. Cell Rep 2023; 42:112469. [PMID: 37141094 DOI: 10.1016/j.celrep.2023.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Recent studies have highlighted the importance of understanding the architecture and function of microvasculature, and dysfunction of these microvessels may underlie neurodegenerative disease. Here, we utilize a high-precision ultrafast laser-induced photothrombosis (PLP) method to occlude single capillaries and then quantitatively study the effects on vasodynamics and surrounding neurons. Analysis of the microvascular architecture and hemodynamics after single-capillary occlusion reveals distinct changes upstream vs. downstream branches, which shows rapid regional flow redistribution and local downstream blood-brain barrier (BBB) leakage. Focal ischemia via capillary occlusions surrounding labeled target neurons induces dramatic and rapid lamina-specific changes in neuronal dendritic architecture. Further, we find that micro-occlusion at two different depths within the same vascular arbor results in distinct effects on flow profiles in layers 2/3 vs layer 4. The current results reveal laminar-scale regulation distinctions in microinfarct response and raise the possibility that relatively greater impacts on microvascular function contribute to cognitive decline in neurodegenerative disease.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Weijie Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Li R, Wang S, Lyu J, Chen K, Sun X, Huang J, Sun P, Liang S, Li M, Yang M, Liu H, Zeng S, Chen X, Li L, Jia H, Zhou Z. Ten-kilohertz two-photon microscopy imaging of single-cell dendritic activity and hemodynamics in vivo. NEUROPHOTONICS 2023; 10:025006. [PMID: 37152357 PMCID: PMC10156610 DOI: 10.1117/1.nph.10.2.025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Significance The studying of rapid neuronal signaling across large spatial scales in intact, living brains requires both high temporal resolution and versatility of the measurement device. Aim We introduce a high-speed two-photon microscope based on a custom-built acousto-optic deflector (AOD). This microscope has a maximum line scan frequency of 400 kHz and a maximum frame rate of 10,000 frames per second (fps) at 250 × 40 pixels . For stepwise magnification from population view to subcellular view with high spatial and temporal resolution, we combined the AOD with resonance-galvo (RS) scanning. Approach With this combinatorial device that supports both large-view navigation and small-view high-speed imaging, we measured dendritic calcium propagation velocity and the velocity of single red blood cells (RBCs). Results We measured dendritic calcium propagation velocity ( 80 / 62.5 - 116.7 μ m / ms ) in OGB-1-labeled single cortical neurons in mice in vivo. To benchmark the spatial precision and detection sensitivity of measurement in vivo, we also visualized the trajectories of single RBCs and found that their movement speed follows Poiseuille's law of laminar flow. Conclusions This proof-of-concept methodological development shows that the combination of AOD and RS scanning two-photon microscopy provides both versatility and precision for quantitative analysis of single neuronal activities and hemodynamics in vivo.
Collapse
Affiliation(s)
- Ruijie Li
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Sibo Wang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Jing Lyu
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Ke Chen
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Xiaxin Sun
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Medical School, Chengdu, China
| | - Junjie Huang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Pei Sun
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
| | - Susu Liang
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Min Li
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Mengke Yang
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| | - Hongbang Liu
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Xiaowei Chen
- Third Military Medical University, Brain Research Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Longhui Li
- Chongqing University, School of Medicine, Center for Neurointelligence, Chongqing, China
| | - Hongbo Jia
- Guangxi University, Advanced Institute for Brain and Intelligence, School of Physical Science and Technology, Nanning, China
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Technical University Munich, Institute of Neuroscience and the SyNergy Cluster, Munich, Germany
| | - Zhenqiao Zhou
- Chinese Academy of Sciences, Suzhou Institute of Biomedical Engineering and Technology, Brain Research Instrument Innovation Center, Suzhou, China
| |
Collapse
|
7
|
Liu Z, He B, Wang X, Peng J, Sun Q, Luo C. Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex. Neurosci Lett 2023; 802:137170. [PMID: 36898650 DOI: 10.1016/j.neulet.2023.137170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have explored the clinical consequences of cortical microinfarction, mainly age-related cognitive decline. However, functional impairment of deep cortical microinfarction remains poorly understood. Based on anatomical knowledge and previous research, we infer that damage to the deep cortex may lead to cognitive deficits and communication impairment between the superficial cortex and thalamus. This study aimed to develop a new model of deep cortical microinfarction based on femtosecond laser ablation of a perforating artery. METHODS Twenty-eight mice were anesthetized with isoflurane, and a cranial window was thinned using a microdrill. Intensively focused femtosecond laser pulses were used to produce perforating arteriolar occlusions and ischemic brain damage was examined using histological analysis. RESULTS Occlusion of different perforating arteries induced different types of cortical microinfarctions. Blocking the perforating artery, which enters the cerebral cortex vertically and has no branches within 300 μm below, can result in deep cortical microinfarction. Moreover, this model showed neuronal loss and microglial activation in the lesions as well as dysplasia of nerve fibers and β-amyloid deposition in the corresponding superficial cortex. CONCLUSIONS We present here a new model of deep cortical microinfarction in mice, in which specific perforating arteries are selectively occluded by a femtosecond laser, and we preliminarily observe several long-term effects related to cognition. This animal model is helpful in investigating the pathophysiology of deep cerebral microinfarction. However, further clinical and experimental studies are required to explore deep cortical microinfarctions in greater molecular and physiological detail.
Collapse
Affiliation(s)
- Zhoujing Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou 510120, China
| | - Xuemin Wang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Jiamin Peng
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Qiaosong Sun
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| |
Collapse
|
8
|
Lin ZP, Ngo W, Mladjenovic SM, Wu JLY, Chan WCW. Nanoparticles Bind to Endothelial Cells in Injured Blood Vessels via a Transient Protein Corona. NANO LETTERS 2023; 23:1003-1009. [PMID: 36692977 DOI: 10.1021/acs.nanolett.2c04501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticles travel through blood vessels to reach disease sites, but the local environment they encounter may affect their surface chemistry and cellular interactions. Here, we found that as nanoparticles transit through injured blood vessels they may interact with a highly localized concentration of platelet factor 4 proteins released from activated platelets. The platelet factor 4 binds to the nanoparticle surface and interacts with heparan sulfate proteoglycans on endothelial cells, and induces uptake. Understanding nanoparticle interactions with blood proteins and endothelial cells during circulation is critical to optimizing their design for diseased tissue targeting and delivery.
Collapse
Affiliation(s)
- Zachary P Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
| | - Wayne Ngo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
| | - Stefan M Mladjenovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
| | - Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Terrence Donnelly Center for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5 3E1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Zhu L, Wang M, Fu P, Liu Y, Zhang H, Roe AW, Xi W. Precision 1070 nm Ultrafast Laser-Induced Photothrombosis of Depth-Targeted Vessels In Vivo. SMALL METHODS 2023; 7:e2200917. [PMID: 36286988 DOI: 10.1002/smtd.202200917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The cerebrovasculature plays an essential role in neurovascular and homeostatic functions in health and disease conditions. Many efforts have been made for developing vascular thrombosis methods to study vascular dysfunction in vivo, while technical challenges remain, such as accuracy and depth-selectivity to target a single vessel in the cerebral cortex. Herein, this paper first demonstrates the evaluation and quantification of the feasibility and effects of Rose Bengal (RB)-induced photothrombosis with 720-1070 nm ultrafast lasers in a raster scan. A flexible and reproducible approach is then proposed to employ a 1070 nm ultrafast laser with a spiral scan for producing RB-induced occlusion, which is described as precision ultrafast laser-induced photothrombosis (PLP). Combine with two-photon microscopy imaging, this PLP displays highly precise and fast occlusion induction of various vessel types, sizes, and depths, which enhances the precision and power of the photothrombosis protocol. Overall, the PLP method provides a real-time, practical, precise, and depth-selected single-vessel photothrombosis technology in the cerebral cortex with commercially available optical equipment, which is crucial for exploring brain vascular function with high spatial-temporal resolution in the brain.
Collapse
Affiliation(s)
- Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Mengqi Wang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Peng Fu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Shih AY, Coelho-Santos V, Kılıç K. Special Section Guest Editorial: Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces. NEUROPHOTONICS 2022; 9:031901. [PMID: 36204654 PMCID: PMC9529636 DOI: 10.1117/1.nph.9.3.031901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The guest editorial provides an introduction to Parts 1 and 2 of the Neurophotonics Special Section on Imaging Neuroimmune, Neuroglial, and Neurovascular Interfaces.
Collapse
Affiliation(s)
- Andy Y. Shih
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Vanessa Coelho-Santos
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|