1
|
Mirg S, Samanta K, Chen H, Jiang J, Turner KL, Salehi F, Ramiah KM, Drew PJ, Kothapalli SR. Integrated Ultrasound Neuromodulation and Optical Neuroimaging in Awake Mice using a Transparent Ultrasound Transducer Cranial Window. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638722. [PMID: 40060492 PMCID: PMC11888234 DOI: 10.1101/2025.02.19.638722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Ultrasound neuromodulation is a rapidly advancing, non-invasive technique with significant therapeutic potential for treating various neurological disorders. Although extensive in vitro and in vivo studies have provided valuable insights into its modulatory effects, the underlying mechanisms remain poorly understood, limiting its clinical translation. Optical neuroimaging techniques can help investigate these mechanisms; however, the opacity and bulkiness of conventional ultrasound transducers pose significant challenges for their integration with in vivo ultrasound neuromodulation studies, particularly in awake rodents. To address these limitations, we propose a straightforward solution: a miniaturized lithium niobate-based transparent ultrasound transducer (TUT) integrated as a thinned-skull cranial window for ultrasound stimulation while facilitating multimodal optical neuroimaging in awake mice brain. Using laser speckle contrast imaging and intrinsic optical signal imaging, we studied changes in brain hemodynamics in response to various ultrasound stimulation sequences. Our experiments demonstrated that TUT cranial window can robustly induce neuromodulatory effects with observed increase in both cerebral blood flow and total hemoglobin, with peak and cumulative hemodynamic changes directionally correlated with ultrasound stimulation duration and intensity. Overall, these findings highlight that TUT cranial window can seamlessly integrate ultrasound stimulation and optical neuroimaging in awake mouse brain models, offering promising prospects for uncovering the underlying mechanisms of ultrasound neuromodulation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
| | - Krishnendu Samanta
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
| | - Jin Jiang
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fatemeh Salehi
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Kathiravan M Ramiah
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, PA 16802,USA
- Penn State Cancer Institute, Hershey, PA, 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, PA 16802, USA
| |
Collapse
|
2
|
Roeterink RMA, Casadevall I Solvas X, Collins DJ, Scott DJ. Force versus Response: Methods for Activating and Characterizing Mechanosensitive Ion Channels and GPCRs. Adv Healthc Mater 2024; 13:e2402167. [PMID: 39402780 DOI: 10.1002/adhm.202402167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanotransduction is the process whereby cells convert mechanical signals into electrochemical responses, where mechanosensitive proteins mediate this interaction. To characterize these critical proteins, numerous techniques have been developed that apply forces and measure the subsequent cellular responses. While these approaches have given insight into specific aspects of many such proteins, subsequent validation and cross-comparison between techniques remain difficult given significant variations in reported activation thresholds and responses for the same protein across different studies. Accurately determining mechanosensitivity responses for various proteins, however, is essential for understanding mechanotransduction and potential physiological implications, including therapeutics. This critical review provides an assessment of current and emerging approaches used for mechanosensitive ion channel and G-Coupled Receptors (GPCRs) stimulation and measurement, with a specific focus on the ability to quantitatively measure mechanosensitive responses.
Collapse
Affiliation(s)
- Renate M A Roeterink
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
4
|
Lee K, Lee JM, Phan TT, Lee CJ, Park JM, Park J. Ultrasonocoverslip: In-vitro platform for high-throughput assay of cell type-specific neuromodulation with ultra-low-intensity ultrasound stimulation. Brain Stimul 2023; 16:1533-1548. [PMID: 37909109 DOI: 10.1016/j.brs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Brain stimulation with ultra-low-intensity ultrasound has rarely been investigated due to the lack of a reliable device to measure small neuronal signal changes made by the ultra-low intensity range. We propose Ultrasonocoverslip, an ultrasound-transducer-integrated-glass-coverslip that determines the minimum intensity for brain cell activation. Brain cells can be cultured directly on Ultrasonocoverslip to simultaneously deliver uniform ultrasonic pressure to hundreds of cells with real-time monitoring of cellular responses using fluorescence microscopy and single-cell electrophysiology. The sensitivity for detecting small responses to ultra-low-intensity ultrasound can be improved by averaging simultaneously obtained responses. Acoustic absorbers can be placed under Ultrasonocoverslip, and stimuli distortions are substantially reduced to precisely deliver user-intended acoustic stimulations. With the proposed device, we discover the lowest acoustic threshold to induce reliable neuronal excitation releasing glutamate. Furthermore, mechanistic studies on the device show that the ultra-low-intensity ultrasound stimulation induces cell type-specific neuromodulation by activating astrocyte-mediated neuronal excitation without direct neuronal involvement. The performance of ultra-low-intensity stimulation is validated by in vivo experiments demonstrating improved safety and specificity in motor modulation of tail movement compared to that with supra-watt-intensity.
Collapse
Affiliation(s)
- Keunhyung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Moo Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jinhyoung Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Fang H, Yu X. Special Section Guest Editorial: Hybrid Photonic/X Neurointerfaces. NEUROPHOTONICS 2022; 9:032201. [PMID: 36196247 PMCID: PMC9524387 DOI: 10.1117/1.nph.9.3.032201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The article introduces the Special Section on Hybrid Photonic/X Neurointerfaces for Neurophotonics Volume 9 Issue 3.
Collapse
Affiliation(s)
- Hui Fang
- Dartmouth College, Hanover, New Hampshire, United States
| | - Xin Yu
- MGH/HST Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| |
Collapse
|