1
|
Nuclear medicine for photodynamic therapy in cancer: Planning, monitoring and nuclear PDT. Photodiagnosis Photodyn Ther 2017; 18:236-243. [PMID: 28300723 DOI: 10.1016/j.pdpdt.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a modality with promising results for the treatment of various cancers. PDT is increasingly included in the standard of care for different pathologies. This therapy relies on the effects of light delivered to photosensitized cells. At different stages of delivery, PDT requires imaging to plan, evaluate and monitor treatment. The contribution of molecular imaging in this context is important and continues to increase. In this article, we review the contribution of nuclear medicine imaging in oncology to PDT for planning and therapeutic monitoring purposes. Several solutions have been proposed to plan PDT from nuclear medicine imaging. For instance, photosensitizer biodistribution has been evaluated with a radiolabeled photosensitizer or with conventional radiopharmaceuticals on positron emission tomography. The effects of PDT delivery have also been explored with specific SPECT or PET radiopharmaceuticals to evaluate the effects on cells (apoptosis, necrosis, proliferation, metabolism) or vascular damage. Finally, the synergy between photosensitizers and radiopharmaceuticals has been studied considering the Cerenkov effect to activate photosensitized cells.
Collapse
|
2
|
Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H, Wang YA, Chen Z, Kim S, Shin DM, Chen Z(G. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS NANO 2014; 8:6620-32. [PMID: 24923902 PMCID: PMC4155749 DOI: 10.1021/nn501652j] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 06/12/2014] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) is a highly specific anticancer treatment modality for various cancers, particularly for recurrent cancers that no longer respond to conventional anticancer therapies. PDT has been under development for decades, but light-associated toxicity limits its clinical applications. To reduce the toxicity of PDT, we recently developed a targeted nanoparticle (NP) platform that combines a second-generation PDT drug, Pc 4, with a cancer targeting ligand, and iron oxide (IO) NPs. Carboxyl functionalized IO NPs were first conjugated with a fibronectin-mimetic peptide (Fmp), which binds integrin β1. Then the PDT drug Pc 4 was successfully encapsulated into the ligand-conjugated IO NPs to generate Fmp-IO-Pc 4. Our study indicated that both nontargeted IO-Pc 4 and targeted Fmp-IO-Pc 4 NPs accumulated in xenograft tumors with higher concentrations than nonformulated Pc 4. As expected, both IO-Pc 4 and Fmp-IO-Pc 4 reduced the size of HNSCC xenograft tumors more effectively than free Pc 4. Using a 10-fold lower dose of Pc 4 than that reported in the literature, the targeted Fmp-IO-Pc 4 NPs demonstrated significantly greater inhibition of tumor growth than nontargeted IO-Pc 4 NPs. These results suggest that the delivery of a PDT agent Pc 4 by IO NPs can enhance treatment efficacy and reduce PDT drug dose. The targeted IO-Pc 4 NPs have great potential to serve as both a magnetic resonance imaging (MRI) agent and PDT drug in the clinic.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Baowei Fei
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| | - Luma V. Halig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xulei Qin
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Zhongliang Hu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hong Xu
- Ocean NanoTech LLC, San Diego, California 92126, United States
| | | | - Zhengjia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Biostatistics and Bioinformatics Shared Resource at Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Sungjin Kim
- Biostatistics and Bioinformatics Shared Resource at Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zhuo (Georgia) Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Department of Radiology and Imaging Sciences, and Department of Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Address correspondence to ,
| |
Collapse
|
3
|
Wang H, Fei B. Diffusion-weighted MRI for monitoring tumor response to photodynamic therapy. J Magn Reson Imaging 2010; 32:409-17. [PMID: 20677270 DOI: 10.1002/jmri.22247] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To examine diffusion-weighted MRI (DW-MRI) for assessing the early tumor response to photodynamic therapy (PDT). MATERIALS AND METHODS Subcutaneous tumor xenografts of human prostate cancer cells (CWR22) were initiated in athymic nude mice. A second-generation photosensitizer, Pc 4, was delivered to each animal by a tail vein injection 48 h before laser illumination. A dedicated high-field (9.4 Tesla) small animal MR scanner was used to acquire diffusion-weighted MR images pre-PDT and 24 h after the treatment. DW-MRI and apparent diffusion coefficients (ADC) were analyzed for 24 treated and 5 control mice with photosensitizer only or laser light only. Tumor size, prostate specific antigen (PSA) level, and tumor histology were obtained at different time points to examine the treatment effect. RESULTS Treated mice showed significant tumor size shrinkage and decrease of PSA level within 7 days after the treatment. The average ADC of the 24 treated tumors increased 24 h after PDT (P < 0.001) comparing with pre-PDT. The average ADC was 0.511 +/- 0.119 x 10(-3) mm(2)/s pre-PDT and 0.754 +/- 0.181 x 10(-3) mm(2)/s 24 h after the PDT. There is no significant difference in ADC values pre-PDT and 24 h after PDT in the control tumors (P = 0.20). CONCLUSION The change of tumor ADC values measured by DW-MRI may provide a noninvasive imaging marker for monitoring tumor response to Pc 4-PDT as early as 24 h.
Collapse
Affiliation(s)
- Hesheng Wang
- Emory Center for Systems Imaging, Department of Radiology, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|